
Received March 22, 2019, accepted March 31, 2019, date of publication April 4, 2019, date of current version April 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2909274

Deep-Discharging Li-Ion Battery State of Charge
Estimation Using a Partial Adaptive Forgetting
Factors Least Square Method
SHIQI LIU1, JUNHUA WANG 1, (Member, IEEE), QISHENG LIU1, JIA TANG1,
HAOLU LIU1, AND ZHIJIAN FANG 2, (Member, IEEE)
1School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
2School of Automation, China University of Geosciences, Wuhan 430074, China

Corresponding author: Junhua Wang (junhuawang@whu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Project 51707138 and Project 51507114, and
in part by the National Key Research and Development Plan under Project 2017YFB1201003-21 and Project 2017YFB1201002.

ABSTRACT State of charge (SOC) estimation of deep-discharging Li-ion batteries under complicated
working conditions at different temperatures is still challenging. Nowadays, the depth of discharge (DOD)
of batteries in electric vehicles (EVs) is generally low, resulting in the insufficient use of battery energy.
This paper proposes a SOC estimation method using a novel partial adaptive forgetting factors recursive
least square (PAFFRLS), which adjusts the forgetting factors based on the own physical properties of
each parameter in equivalent circuit models (ECMs) to accommodate to greatly changing under deep-
discharging range and high dynamic working conditions. The gain matrix in the proposed method is split
to update independently according to each parameter, which solves the issue of mutual influence between
parameters vary with different rates. In addition, four typical test profiles, including DST, UDDS, US06, and
EUDC, are employed to simulate different working conditions of EVs. Eventually, numerous simulations
and experiments results at different temperatures are employed to verify the validity of the proposed method.
All average errors of the SOC estimation under four different kinds of working conditions are less than 1.3%
as well as all peak errors are less than 5%. All peak errors are less than 3% while DOD is larger than 90%,
which illustrates the effectiveness of the proposedmethod in the case of deep-discharging and provides better
guidance to the design of battery management system (BMS) in EVs.

INDEX TERMS Deep-discharging Li-ion battery, battery equivalent circuit analysis, state of charge
estimation, partial adaptive forgetting factors, parameter identification.

I. INTRODUCTION
The implementation of electric vehicle (EVs) is important as
the global warming, climate change and greenhouse gas emis-
sions caused by diesel, petrol-based vehicles [1]. Lithium-ion
batteries are now the leading candidate for commercial use
due to their desirable merits such as high energy density,
design flexibility, and long lifespan [2]. However, state of
charge (SOC) estimation of deep-discharging Li-ion bat-
tery under complicated working conditions is still challeng-
ing in EVs. The depth of discharge (DOD) of batteries in
EVs is generally less than 80% nowadays, resulting in the
insufficient use of battery energy. Therefore, accurate SOC
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estimation for deep-discharging Li-ion batteries under com-
plicated conditions is significant for improving the mileage
range of EVs.

The battery SOC estimation methods can be classified into
two groups, including model-free and model-based meth-
ods [3]. As for model-free methods, ampere-hour integral
method is easy to implement but the initial value is difficult
to determine during the whole working condition, and the
error may accumulate if the current measurements are not
accuracy [4]. As for looking-up table based method, bat-
teries must be settled a long time to recovery which is not
appropriate for online SOC estimation [5]. The data driven
methods such as Neural Network [1], [6], Support Vector
Regression (SVR) model [7], Metabolic Grey Model [8], and
so on, are very sensitive to their parameters and they may not
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even be convergent with bad parameters selection when the
training data cannot completely cover the present operating
conditions. On the contrary, model-based methods including
electrochemical model and equivalent circuit model (ECM)
are effective methods to estimate the state of the battery.
The electrochemical model is precise but it depends much
on the parameter which is quite hard to measure. Also it is
hard to solve the complicated partial differential equations
of the electrochemical model [9]. ECMs utilize a combina-
tion of battery equivalent circuits and filtering algorithms.
In [10], twelve kinds of battery equivalent circuits are intro-
duced to simulate the charging and discharging process of
the battery. Recently, fractional-order models (FOMs) have
attracted growing attention in the arena of batteries [11], [12].
Different kinds of filtering algorithms including Luenberger
observer [13], sliding-mode observer [14], particle filter [15],
Kalman filter (KF) and extended Kalman filter (EKF) [16]
are used in SOC estimation based on ECMs. The accuracy
of SOC estimation using above methods relies significantly
on the parameters of ECMs. The accuracy of the parameter
database needs to be updated due to the different working
conditions and aging. Therefore, their improved algorithms,
such as adaptive unscented Kalman filter (AUKF) [17], dual
extended Kalman filter (DEKF) and joint extended Kalman
filter (JEKF) are employed to keep the model update over-
time [18]. However, these improved methods may cause
heavy computational load for online application such as
BMS. In addition, the parameter database should be obtained
by numerous offline experiments which is a demanding and
time-consuming task [19].

Considering the abovementioned circumstances, the recur-
sive least squares (RLS) methods to ECMs are employed
because there is no matrix inversion required which is an
advantage of RLS over KF and its variants [18]. Bastawrous
proposed an adaptive forgetting factors recursive least-
squares for LiFePO4 battery [20]. Hu proposed a two-
timescale scheme that estimates separately the battery fast
dynamics (FD) and slow dynamics (SD) parameters [21].Wei
proposed a multi-timescale estimator to identify the ECM
parameters and the battery open circuit voltage (OCV) in
real time [22]. Dai suggested a different method to estimate
the battery FD and SD on separated time scales [23]. Zhang
employed a decoupled least squares, which shows better per-
formance than conventional methods [24]. However, there is
a lack of studies on the application of RLS and its variants
to deep-discharging (DOD>85%) Li-ion battery. In addi-
tion, the effectiveness of the algorithms under different tem-
peratures and working conditions including frequent speed
changes, cruising uniform driving, uniform acceleration and
deceleration driving, which can be equivalent to pulse cur-
rent, constant power current and ramp current step profile,
respectively, remain to be studied.

This paper proposes a SOC estimation method
using a novel partial adaptive forgetting factors least square
(PAFFRLS), which improves the dynamic tracking accuracy
of parameters in the ECM. The proposed method adjusts

FIGURE 1. Simplified equivalent circuit.

the forgetting factors based on the own physical properties
of each parameter in the ECM to accommodate to greatly
changing of the parameters under deep-discharging range
and highly dynamic working conditions. Gain matrix in the
proposed method is split to update independently according
to each parameter, which reduces the computational load
caused by adaptive process of forgetting factors. In addition,
the effectiveness of the proposed method under different
temperatures and working conditions is examined based on
numerous simulations and experiments.

ECMs for deep-discharging Li-ion batteries are analyzed
in Section 2. Section 3 illustrates the PAFFRLS method
in details. Four different working conditions and numerous
experiments are shown in Section 4. Section 5 shows the
result and discussion. The conclusions are given in Section 6.

II. BATTERY MODELING
A. EQUIVALENT CIRCUIT MODEL
A charge region is formed in the electrode and the electrolyte
during the charging and discharging process. The voltage of
the battery electrode directly affects the amount of charge in
the region. The above reaction is similar to a capacitor, and the
effect is called electrochemical charge transfer reaction. The
electrochemical charge transfer reaction is mainly described
by charge transfer over-potential, which can be described as
Fig.1 in an equivalent circuit. A charge transfer resistance
RCT and a capacitor CDL are employed to display the charge
transfer over-potential. The resistance of the electrolyte and
active mass is described as Rb [25]. RCT and CDL are two
parameters that vary with SOC, aging degree and operating
conditions according to the electrochemical theory. The inter-
nal resistance Rb is mainly affected by the aging degree of the
battery.

Some common used ECMs have been proposed based on
above theory. It mainly includes Rint model, Theveninmodel,
and n-RC model. The above ECMs are commonly consist of
a voltage source (Uoc) describing the battery energy source
and a resistor R0 describing the internal resistance of the
battery. The main purpose of using the above ECMs is to
compute unobservable variables related to SOC and SOH
such as OCV and internal resistance through the observable
variables, such as terminal voltage and current during the
working conditions. Fig.1 shows the general form of the
ECMs. It is represented as a Rint model while n = 0.
A circuit structure very similar to Fig.1, which simulates the
dynamics of the charge and discharge of a battery from the
perspective of electrochemical polarization by using a 1-RC
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is used in the Thevenin model. The n-RCmodel simulates the
concentration polarization by introducing multiple RC links
to achieve accurate simulation of the dynamic process of the
battery.

Transfer function of n-RC model in s-domain is described
as equation (1):

G(s) =
Ut (s)− UOC (s)

I (s)

= −(R0 +
RP1

1+ RP1CP1s
+ ...+

RPn
1+ RPnCPns

),

(n = 0, 1, 2, ...) (1)

Taking the Thevenin model as an example, the circuit
model parameters are derived as follows: The basic forward
Euler transformation method in [20] is employed, which can
decouple the parameters R0 andUoc from Equation (1). Equa-
tion (2) displays result in z-domain where 1t is sampling
interval.

G(z) = −(
a0 + a1z−1

1+ a2z−1
) (2)

Equation (2) can be replaced by Equation (3) where a1 to
a3 can be found in Equation (4).

Uk = a0Ik+a1Ik−1 + a2(UOC,k−1 − Uk−1)+ UOC,k (3)
a0 = R0

a1 = −R0 +
1t
CP
+
1tR0
RPCP

a2 =
R0

RPCP
− 1

(4)

Equation (3) can be described as follows.

Uk = φk · θk (5)

where ϕk represents the data matrix as well as θ represents
the parameter matrix of the system.

φk =
[
Ik Ik−1 (UOC,k−1 − Uk−1) 1

]
(6)

θk =
[
a0 a1 a2 UOC

]T (7)

B. MODEL SIMULATIONS AND ANALYSIS
The simulation accuracy of the above model for dynamic
short pulses has been compared in [26]. This paper focuses
on the simulation accuracy of various circuit models dur-
ing deep-discharging process. Therefore, the following test
steps are taken. Test bench and batteries specifications are
described in details in Section 4:

a) The battery is rest for 1 hour while SOC is 15%, 10%,
and 5%.

b) A discharge pulse with 10 seconds and 1C is employed.
c) Terminal voltage of the battery is measured.
d) Establish a terminal voltage tracking model for different

circuit models using Simpowersystems in Matlab.
e) Change the discharge rate to 2.5C and 4C, and repeat

steps (a) to (d).
The terminal voltage tracking results are shown

in Fig. 3 (a)-(c). Table 1-3 show the terminal voltage tracking

TABLE 1. Results for equivalent circuit model analysis (rate = 1C).

TABLE 2. Results for equivalent circuit model analysis (rate = 2.5C).

TABLE 3. Results for equivalent circuit model analysis (rate = 4C).

average error and peak error of the four mentioned ECMs
including Rint model, Thevenin model, 2-RC model and 3-
RC model.
Table 1-3 indicate that the maximum tracking error of the

Rint model is 305.2mV, which shows weak ability to track
dynamic current profiles. The 2-RC model displays mini-
mum terminal voltage tracking error compared with others.
The minimum and maximum peak error are 1.7 mV and
58.6mV, respectively. The tracking error of the 3-RC model
is slightly higher than the 2-RC model, however it is not
suitable for the EVs because of the higher computational
load. The minimum and maximum peak error of Thevenin
model are 3.3 mV and 70.6mV, respectively. The average
error is close to the 2-RC model under different discharge
rates. Therefore, the Thevenin model is more suitable for the
practical application of BMS within the error tolerance as
for the smaller computation load than n-RC model, which is
employed in this paper.

In addition, table 1-3 indicate that the tracking performance
of the mentioned ECMs on terminal voltage is significantly
weakened as the SOC decreases from 15% to 5%. Taking
the 2-RC model with the best tracking performance at 4C
rate as an example, the average error of the terminal voltage
tracking is 6.8mV and the peak error is 11.3mV while SOC
is 15%. The average error increases to 25.4 mV and the
peak error is 58.6 mV which shows an 8.6-fold increase
while SOC is 5%. In addition, as the discharge rate increases,
the tracking performance is significantly weakened at the
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FIGURE 2. Battery equivalent circuit model.

FIGURE 3. Simulation results under 1C rate: (a) SOC = 15% and
(b) SOC = 10% (c) SOC = 5%.

same SOC range. Taking the 2-RC model with the best track-
ing accuracy while SOC is 5% as an example, the average
and peak error are 2.2mV and 5.3mV under 1C rate, respec-
tively. The average and peak error are 25.4 mV and 58.6mV
under 4C rate. The tracking peak error shows a 11.6-fold
increase. As can be clearly seen in above model simulations
and analysis, the physical property parameters of the Li-ion
battery change greatly while the DOD is high. Thus, the
tracking of the terminal voltage is greatly affected by the
dynamic parameters under high rate and DOD, which leads

to a large tracking error using the conventional time domain
methods.

Given the above simulations and analysis, a novel
PAFFRLSis proposed to meet the issues. The proposed
method adjusts the forgetting factors based on the own physi-
cal properties of each parameter in the ECM to accommodate
to greatly changing of the parameters under deep-discharging
range and highly dynamic working conditions.

III. ONLINE SOC ESTIMATION METHOD
The parameters in ECMs can be calculated offline after test-
ing at different temperatures, discharge rates and SOCs, based
on the conventional method described in Section 2. A com-
prehensive database of battery parameters can be obtained
through a large number of tests. However, it is difficult to
fully simulate all the conditions in the actual operation of
EVs. In addition, the accuracy based on offline parameters
calculation is not reliable enough under high discharge rate
and DOD according to the analysis in section 2. Thus, there is
often a certain deviation in actual working conditions. On the
other hand, the parameters in battery ECMs will change with
the temperatures, working conditions, SOCs, and aging in the
actual operation of the EVs. Therefore, the parameters should
be updated online. In order to solve the above issues, this
paper proposes a PAFFRLSmethod to accurately identify the
parameters in the battery ECM on line.

A. RECURSIVE LEAST SQUARE WITH FORGETTING
FACTORS
In conventional least square estimation theory, unknown
parameters are chosen in such a way which the sum of the
squares of the difference between the actually observed and
the computed values is a minimum [27].

J =
n∑
i=1

[y(i)−φ(i)θ̂ (i)]2 (8)

The conventional (RLS) estimation can be described as
follow:

K (k) =
P(k − 1) · φ(k)

1+ φT (k) · P(k − 1) · φ(k)
(9)

P(k) = (1− K (k) · φT (k))P(k − 1) (10)

θ(k) = θ(k − 1)+ K (k)(y(k)− φT (k) · θ (k − 1)) (11)

where P is the covariance matrix and K is referred to as the
update gain.

The periodic resetting of the estimation scheme can poten-
tially capture the new values of the parameters. The model
will lose the ability to track slow changes in parameters while
the covariance matrix decays to around zero. The concept of
forgetting factors has been proposed which can be viewed as
giving less weight to older data and more weight to recent
data. The single fixed forgetting factors is not able to track
parameters with different variation rates. Thus, a method
called self-turning regulars with multiple forgetting factors
has been widely used in the field of control [28]. The P can
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be described as equation (11) and A is the multiple forgetting
factors matrix.

P(k) = A−1[I − K (k)φT (k)P(k − 1)]A−1 (12)

A = diag[λ1 λ2 λ3 λ4] (13)

B. PARTIAL ADAPTIVE FORGETTING FACTOR RLS
(PAFFRLS)
Parameters in ECMs including R0, Uoc, Rp and Cp vary with
different rates under the whole working condition. Taking the
dynamic working condition as an example, the Cp and Rp
show large fluctuations with the dynamic input profile. On the
contrary, R0 and Uoc change with SOC, which show a time
integral of input profile. Additionally, there is not a significant
change throughout the discharge process but a significant
increase while the DOD is high. Therefore, the following
issues should be solved when estimating the parameters of
deep-discharging Li-ion batteries.

(a) The error sources of each parameter in the ECM are dif-
ferent and the changes of the errors are asynchronous. Thus,
the error of each parameter should be tracked independently
in the recursive solution process.

(b) The parameters vary with different rates due to their
own physical characteristics. Therefore, the forgetting pro-
cess of the algorithm should be able to track each parameter
with different time-varying rates.

However, in conventional methods, equation (8) - (10)
indicate that the covariance is a scalar which is superim-
posed by all parameter errors. Therefore, the algorithm may
lose the ability to track all parameters while the error is
caused by the errors of partial parameters. For instance,
if there are drifts in Rp and Cp because of the dynamic
current profile, the same order will be applied to R0 and
Uoc which results in unnecessary corrections since the
R0 is proved to show a slow change process under the
whole working condition. Thus, a decoupling method is
employed in this paper to track the error of each parameter
independently.

The error of the proposed PAFFRLS method is defined as
shown in Equation (14), which can be regarded as a separate
form of the equation (8).

J =
k∑
i=1

λk−i1 [y(i)− φ1(i)θ̂1(i)−
∑

m=2,3,4

φm(i)θm(i)]2

+

k∑
i=1

λk−i2 [y(i)− φ2(i)θ̂2(i)−
∑

m=1,3,4

φm(i)θm(i)]2

+

k∑
i=1

λk−i3 [y(i)− φ3(i)θ̂3(i)−
∑

m=1,2,4

φm(i)θm(i)]2

+

k∑
i=1

λk−i4 [y(i)− φ4(i)θ̂4(i)−
∑

m=1,2,3

φm(i)θm(i)]2

(14)

The recursive equations of θ1 after separation is shown in
equation (15) - (17).

K1(k) =
P1(k − 1)φ1(k)

λ1 + φ
T
1 (k)P1(k − 1)φ1(k)

(15)

P1(k) = (I − K1(k)φT1 (k))P1(k − 1)
1
λ1

(16)

θ̂1(k) = θ̂1(k − 1)+ K1(k)(y(k)

−φ1(k)θ̂1(k − 1)−
∑

m=2,3,4

φm(k)θm(k)) (17)

θm(k) (m= 2, 3, 4) in equation (17) are unknown. Accord-
ing to the assumption in [29], the substitution is also justified
when the actual and estimated values are very close to each
other or within the algorithm region of convergence. Thus, the
θm(k) (m = 2, 3, 4) are replaced by their estimates, upon the
substitution, the recursive equation is shown in equation (18).

θ̂1(k)+ K1(k)
∑

m=2,3,4

φm(k)θ̂m(k)

= θ̂1(k − 1)+ K1(k)(y(k)− φ1(k)θ̂1(k − 1)) (18)

The recursive forms of θ2, θ3 and θ4 are similar with
equation (18). Thus, the recursive equation of the proposed
PAFFRLS is shown as follows.

θ̂(k) = θ̂ (k − 1)+ K (k)(y(k)− φT (k)θ̂ (k − 1)) (19)

K (k) =


P1(k − 1)φ1(k)/(λ1(1+ S(k)))
P2(k − 1)φ2(k)/(λ2(1+ S(k)))
P3(k − 1)φ3(k)/(λ3(1+ S(k)))
P4(k − 1)φ4(k)/(λ4(1+ S(k)))

 (20)

where

S(k) =
4∑
i=1

Pi(k − 1)φi(k)2

λi
(21)

As can be clearly seen from Equation (19) - (20) that
the decoupled recursive gain K can be updated according to
the independent error generated by each parameter without
affecting each other. Further, each parameter can be tracked
with different rates by using four separate independent for-
getting factors.

However, the physical characteristics of each parameter
should be considered when confirming the value of each
parameter. Parameters in the battery ECM are not all physical
quantities that the practical significance for them can be
found. The Uoc and R0 are the inherent electrical parameters
in batteries which do not change with the external working
conditions. As for Uoc, there is a one-to-one correspondence
between Uoc and SOC as well as the SOC is related to the
embedding quantity of lithium-ion in the active material and
with static thermodynamics [30]. The internal resistance R0
and SOC exhibits a parabolic-like relationship, which means
that the internal resistance is significantly higher than the
plateau while the SOC is high and low. On the contrary, Rp
and Cp characterize the electrochemical polarization which
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FIGURE 4. Steps of PAFFRLS.

varywith theworking conditions a lot, especially the dynamic
pulse profile is employed.

λ1(k) = ξ1

λ2(k) = 1− 1/(1+
ξ2

φT (k)P2(k − 1)φ(k)
)

λ3(k) = ξ3

λ4(k) = 1− 1/(1+
ξ4

φT (k)P4(k − 1)φ(k)
)

(22)

In order to track each parameter according to its own char-
acteristics, a partial adaptive method for forgetting factors is
employed in this paper. Equation (22) indicates the partial
adaptive forgetting factors matrix consist of two adaptive
forgetting factors based on inputs and two fixed forgetting
factors for R0 and Uoc, which are assigned to a1, a2, a0
and Uoc in Equation (7), respectively. The adaptive equations
in [20] are used and the fixed forgetting factors are deter-
mined by genetic algorithms.

The partial adaptive forgetting factors in Equation (22) not
only adjust variation inputs, but also track the variation of
battery parameters dynamically, which improve the tracking
effect of the system. The accuracy of tracked Uoc based on
this method is shown in section 5. Steps of SOC estimation
using the proposed PAFFRLS are shown in Fig. 4.

IV. EXPERIMENTS
The battery test bench, which composes of a battery tester
(Neware BTS-4000-10V/10A) for loading and sampling the
battery, a host computer with Neware Software for on-line
experiment control and data recording, a HIOKI BT3563 bat-
tery tester for internal resistance measurement, and a thermo-
stat for controlling test temperature, is shown in Fig. 5.

The cylindrical Li(NiCoMn)O2 (NCM) batteries, are
employed in the tests, and the specifications are shown
in Table 4. The tests are carried out at different tempera-

FIGURE 5. Battery test bench.

TABLE 4. Battery specifications at 25◦C.

tures of −15◦C, −5◦C, 5◦C, 10◦C, 15◦C, 25◦C and 35◦C,
respectively.

A. STATIC CAPACITY TEST
The capacity of the test cells used in this paper are statically
calibrated as follows:

a) The battery is fully charged by constant-current con-
stant-voltage (CC-CV).

b) Discharge at 1C rate to cutoff voltage.
c) Repeat the above process 3 times and take the average

of three test capacity as the initial capacity.

B. HYBRID PULSE TEST (HPT)
Hybrid Pulse Power Characterization (HPPC) Test is
intended to determine dynamic power capability over the
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FIGURE 6. HPT test profile.

TABLE 5. Test profile.

device’s useable charge and voltage range using a test profile
that incorporates both discharge and regen pulses [31].

Test profile in this paper is similar to the HPPC Test
to validate the proposed PAFFRLS method and correct the
OCV-SOC look-up table given by the manufacturer. The test
profile in this paper is shown in Table 5 and Fig. 6.

In each HPT test cycle, a 10s charge and discharge pulse,
a CC discharge process, and a long period of rest are included.
Among them, the 10s short pulse is used to accurately calcu-
late the Uoc and ECM parameters according to the terminal
voltage at each SOC range. The CC discharge process is
employed to fix the discharge capacity to reach the next SOC
range by setting the discharge current and time. Since the
Uoc can not be measured during the test, the terminal voltage
after a long time rest is measured at each SOC level, which
is used as the reference Uoc at each SOC range to verify the
Uoc estimation accuracy using the 10s pulse.

Therefore, the reference and calculated Uoc at each SOC
range can be obtained through the HPT test.

C. WORKING CONDITIONS TEST
The typical working conditions of EVs mainly includes: fre-
quent acceleration and deceleration in cities, smooth acceler-
ation or deceleration or uniform speed in suburb or highway.
Thus, the SOC estimation methods employed in EVs need
to show higher estimation accuracy under different working
conditions. The typical test working conditions provided by
USABC, UN/ECE, and EPA organizations are used to verify
the estimation accuracy of the proposed PAFFRLS method,
including Dynamic Stress Test (DST), Urban Dynamome-
ter Driving Schedule (UDDS), US06, UN/ECE Extra-Urban
Driving Cycle (EUDC) in this paper.

DST is a simplified working condition of EVs which can
effectively simulate dynamic discharging. The 360 seconds
DST test profiles are repeated end-to-end with no time delay

FIGURE 7. Working conditions: (a) DST (b) UDDS (c) US06 and (d) EUDC.

(rest period) which is shown in Fig. 7 (a) [32]. Fig.7 (a) dis-
plays that DST working condition contains short pulses of
different magnifications in the 360s cycle, which is a simula-
tion case similar to the pulse test used in the second section
of this paper.

However, the current change is not composed of reg-
ular short pulses during the actual working condition of
EVs. Other three typical working conditions are shown
in Fig.7 (b)-(d). The EPA UDDS is commonly called the
‘‘LA4’’ or ‘‘the city test’’ and represents city driving con-
ditions. The US06 is a high acceleration aggressive driv-
ing schedule that is often identified as the ‘‘Supplemental
FTP’’ driving schedule. The UN/ECE Extra-Urban Driving
Cycle (EUDC) is Part 2 of the ECE Type 1 Test.

A method for the battery current computation based on the
speed is given in [32], as shown in Equation (16)-(17) and
all coefficients of a reference electric car are shown in the
table 6.

Pt = (M · g · f +
1
2
ρa · CD · Af · v2 +M · δ · v̇

+M · g · i)v (23)

Ib = −(
1
ηw

1+ sgn(Pt )
2

+ ηr
1− sgn(Pt

2
)

Pt
α · N · Vb

(24)

V. RESULT AND DISSCUSSION
The basis for batteries SOC estimation is accurate OCV-SOC
look-up tables and Uoc in real time, which is verified in this
section.

Different charge and discharge pulses (±0.5, ±1, ±1.5,
±2, ±2.5, ±3, ±3.5 and ±4) are employed in the HPT test
for NCM cells. The test cells in this section are grouped
according to capacity deviation, which is less than 1%. 8 cells
are divided into one group and the test result is the average
of 8 cells.

A. OCV-SOC LOOK-UP TABLE CORRECTION
OCV-SOC look-up table correlation is significant. The Uoc
which can be observed in rest steps during different rates HPT
test are displayed in Fig. 8.
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TABLE 6. Reference electric car parameters [32], [33].

FIGURE 8. OCV-SOC look-up table correlation.

Fig. 8 indicates that the test cells shows a voltage platform
while SOC range is 20%-50%. The largest deviation between
OCV-SOC curves of different discharge rates is 0.36% aswell
as the curves of high rate groups are higher than the curves of
low rates group in Fig. 8 due to the no complete polarization
reaction. An average OCV-SOC look-up table is employed to
avoid the issues above.

As can be clearly seen in Fig. 8 that the OCV-SOC
look-up table of NCM batteries is steeper than LiFePO4
(LFP) batteries, which makes estimating SOC through the
OCV-SOC look-up table a viable method. However, the OCV
can not be directly measured during working conditions,
which can only be read after a long time rest. In addition,
OCV is affected by the length of the rest time. Although the
terminal voltage (Ut ) of the battery can be measured during
working conditions,Ut does not show a fixed correspondence
with SOC. This is because the Ut at the same SOC range is
affected by the temperatures, working conditions, and aging
conditions.

Therefore, the steps in Fig. 4 are employed to solve the
above issues. The Uoc under the entire working condition
is accurately estimated online using the proposed PAFFRLS
method, as well as the corrected OCV-SOC look-up table in
this section is applied to estimate the SOC.

FIGURE 9. Error of Uoc estimation, Rate = 1C: (a) −15◦C (b) −5◦C (c) 5◦C
(d) 15◦C (e) 25◦C and (f) 35◦C.

FIGURE 10. Average error of Uoc estimation and capacity at different
temperatures.

FIGURE 11. Average error of different parameters estimation methods
under different discharge rates. T = 15◦C.

B. Uoc ESTIMATION WITH PAFFRLS UNDER HPT TEST
Uoc is the most important parameter in the ECM while
SOC estimation because there is a one-to-one correspondence
between Uoc and SOC. Thus, the Uoc estimation accuracy of
the proposed PAFFRLS is verified under different tempera-
tures and discharge rates.
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FIGURE 12. Results of NCM cell parameters estimation. T = 15◦C.

FIGURE 13. Results of internal resistance measurement. T = 15◦C.

The conventional RLS, single forgetting factors RLS
(SFFRLS) and multiple forgetting factors RLS (MFFRLS)
are used to compare with PAFFRLS method to verify
the accuracy of the Uoc estimation. The reference Uoc is
described as follows: the terminal voltage after an hour rest
in HPT test is employed as the reference Uoc.
Fig. 9 (a)-(f) indicate that the proposed PAFFRLS shows

better accuracy compared to the other three methods over the
entire SOC ranges. As can be clearly seen in Fig.9, estimation
accuracies of three conventional methods are significantly

reduced as well as the proposed PAFFRLS still shows good
performance on deep-discharging process (DOD>85%) at
different temperatures. The Uoc estimation errors at −15◦C,
−5◦C, 5◦C, 10◦C, 15◦C, 25◦C and 35◦C are 5.3mV, 4.3mV,
0.7mV, 0.5mV, 1mV and 0.9mV, respectively, while SOC
is 5%.

This is because when the DOD is high, the internal resis-
tance R0 and polarization resistance Rp become larger, result-
ing in more severe fluctuations in the terminal voltage under
the same current profile. However, all parameters in ECM are
applied with a same gain matrix while the three conventional
RLS methods are employed, which results in some param-
eters that should have less error are also applied with the
same overall error. On the contrary, the proposed PAFFRLS
realizes independent tracking of each parameter by decou-
pling the gain matrix, so that each parameter can be recursed
according to its own estimation error, which shows better
effect at high DOD.

In addition, Fig. 10 indicates that as the temperature
decreases, the internal resistance under low temperature will
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FIGURE 14. Result of NCM cells SOC estimation under DST working condition. T = 15◦C.

FIGURE 15. Result of NCM cells SOC estimation under UDDS working condition. T = 15◦C.

become larger, resulting in an increase in the error ofUoc esti-
mation using mentioned methods. The Uoc estimation aver-
age errors using the proposed PAFFRLS at −15◦C, −5◦C,
5◦C, 10◦C, 15◦C, 25◦C and 35◦C are 3.0mV, 1.3mV, 0.7mV,
0.8mV, 0.4mV and 0.4mV, respectively, which show good
performance at different temperatures.

Results of the HPT test with different rates including
RLS, SFFRLS, MFFRLS and PAFFRLS method are shown
in Fig. 11. Fig. 11 indicates that errors of the proposed
PAFFRLS method are all below 5 mV at 15◦C while dis-
charge rates are different. Moreover, Uoc estimation errors of
four methods increase with the increase of discharge pulses
rates. It is because that the discharging process of polarization
capacitor in the ECM cannot be fully performed during a
short period of rest while the pulses in HPT are large, which
reduces the simulation accuracy of the ECM on the discharge
and charge process of cells.

C. PARAMETERS ESTIMATION UNDER DST WORKING
CONDITION
DST working condition is used to verify cells SOC
estimation in this section. The proposed PAFFRLS is
employed to estimate Uoc online and the corrected OCV-
SOC look-up table in Fig. 8 is then used to estimate
SOC. The results of parameters estimation are shown
in Fig. 12.

Fig.12 (a), (c), (e) and (g) display the forgetting factors of
Uoc, Rp, R0 and Cp, respectively. λ1 and λ3 are 0.9982 and
0.9995 in this paper while DST condition is used. λ2 and λ4
are adaptive based on the current change. Smaller forgetting
factors (λ2 and λ4) are obtained in the system while the cur-
rent changes greatly to enhance the ability to track dynamic
parameters. Fig. 12 (b) displays the Uoc estimation error is
less than 8mV while DST working condition is used. The
referenceUoc in Fig. 12 (b) is based on the actual SOC and the
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FIGURE 16. Result of NCM cells SOC estimation under US06 working condition. T = 15◦C.

corrected look-up table in Fig. 8 on the basis of the accurate
current measurement.
R0 in Fig. 12 (f) is almost a constant at a value of 36 m�,

which is consistent with the measurement result of the inter-
nal resistance tester in Fig.13. Fig. 12 (d) and (h) display Rp
and Cp respectively which follow the inputs change. Both Rp
and Cp have larger values while the operating condition is
at a large rate discharge pulse, so that the time constant in
equivalent circuit is larger, which is similar to Fig. 11.

D. SOC ESTIMATION UNDER DIFFERENT WORKING
CONDITIONS
In this paper, the commonly used EKF method in BMS and
the proposed PAFFRLS method are used to estimate the
SOC of NCM batteries under different working conditions.
The ECM parameters in EKF are calculated based on the
offline method in section 2. Four different working condi-
tions, including DST, UDDS, US06 and EUDC are used to
verify the applicability of the proposed PAFFRLS method.

The estimation result of DST working condition is shown
in Fig. 14. As can be clearly seen in Fig.14 (b), the termi-
nal voltage is tracked accurately during the whole dynamic
current profile in Fig. 14 (a). Fig. 14 (c) indicates there is a
good fitness of SOC estimation using the proposed PAFFRLS
method. The average errors of PAFFRLS and EKF are 1.11%
and 1.90%, respectively. The errors of the SOC estimation
are displayed in Fig. 14 (d). Based on the DST working
condition test, the proposed PAFFRLS method shows good
performance on the NCM cells SOC estimation.

The results of the UDDS and US06 working conditions
are shown in Fig. 15 (a)-(d) and Fig. 16 (a)-(d), respectively.
Fig. 15 (a) and Fig. 16 (a) display the current profiles of
two working conditions, which are both more dynamic than
the DST working condition. As can be clearly seen in Fig.
15 (b) and Fig. 16 (b), the terminal voltage is tracked accu-
rately during the whole working conditions. Fig. 15 (c) and

TABLE 7. Error of SOC estimation.

Fig. 16 (c) indicate good fitness of the estimated SOC by the
proposed PAFFRLSmethod. The error of the SOC estimation
is displayed in Fig. 15 (d) and Fig. 16 (d). As for UDDS
working condition, the average errors of PAFFRLS and EKF
are 1.25% and 2.76% respectively. The average errors of
US06 working condition are 1.17% and 3.83% respectively.

The result of the EUDC working condition is shown
in Fig. 17 (a)-(d). Fig. 17 (a) displays the current profile of the
working condition, which is less dynamic than the other three
working conditions. As can be clearly seen in Fig. 18 (b),
the terminal voltage is tracked accurately during the whole
working condition. Fig. 17 (c) indicates that there is a good
fitness of the SOC estimation using the proposed PAFFRLS
method. The average errors of PAFFRLS and EKF are 1.26%
and 2.84%, respectively. The error of the SOC estimation is
displayed in Fig. 17 (d).

Table 7 displays the comparison of the SOC estimation
results using the proposed PAFFRLS under mentioned work-
ing conditions. The peak errors are all less than 5% and the
average errors are all less than 1.3%. As can be clearly seen
in Fig. 14-17 (d) that the SOC estimation errors are larger and
show fluctuations in the voltage platform, which is related
to the inaccuracy of OCV-SOC look-up table in the platform
period. In addition, the peak errors are all less than 3% while
DOD are higher than 90%, which indicates that the proposed
PAFFRLS shows better SOC estimation effect under high
dynamic working conditions and high DOD.

Fig. 18 (a)-(d) show the SOC estimation results under
UDDS working condition at different temperatures. As can
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FIGURE 17. Result of NCM cells SOC estimation under EUDC working condition. T = 15◦C.

FIGURE 18. Result of NCM cells SOC estimation at different temperatures.
(a)-(b): −15◦C, (c)-(d): 35◦C.

TABLE 8. Error of SOC estimation.

be clearly seen in Table 8 that average errors are all less than
2% as well as peak errors are all less than 5%. However, as the
temperature decreases, the error of SOC estimation by the
PAFFRLS method increases. The method shows the largest
error when the temperature is −15◦C, which displays the
same changes as Fig. 10. the peak error is 4.43% and average
error is 1.91% at −15◦C. Since the internal resistance of the
battery at low temperature is large, especially while the DOD
is high, which causes a steeper voltage change. Thus, the SOC
estimation accuracy of the proposed PAFFRLS is degraded at
low temperatures.

The applicability of the proposed method under different
ECMs and combination working conditions will be studied
in the future work.

VI. CONCLUSION
This paper proposes a SOC estimation method using a nov-
elPAFFRLS, which improves the dynamic tracking accuracy
of parameters. The proposed method adjusts the forgetting
factors based on the own physical properties of each param-
eter in the ECM to accommodate to greatly changing of the
parameters under deep-discharging range and highly dynamic
working conditions. Gain matrix in the proposed method is
split to update independently according to each parameter,
which reduces the computational load caused by adaptive
process of forgetting factors.

The validity of the PAFFRLS has been established with
numerous experimental tests. The accuracy of parameters
estimation in ECM is verified at different temperatures and
different discharge rates. The accuracy of the proposed
PAFFRLS for Uoc estimation is less than 3mV while the
discharge rate is 1C and the temperature is within the temper-
ature range of−15◦C to 35◦C. The error of internal resistance
estimation is less than 1m�.

Furthermore, the average errors of the SOC estimation
under four different kinds of working conditions including
DST, UDDS, US06 and EUDC, are all less than 1.3% as
well as the peak errors are all less than 5%. In addition,
the peak errors are all less than 3% while the DOD are
higher than 90%, which illustrates the effectiveness of the
proposed method in the case of deep-discharging Li-ion
battery.

The proposed PAFFRLS shows good performance on
online deep-discharging Li-ion battery SOC estimation under
complicated working conditions at different temperatures,
which provides a better guidance to the design of BMSin
EVs.
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