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ABSTRACT The generalized multi-state-k-out-of-n: G system [named GMS(k,n,G)] model was suggested
by Huang et al. This system contains n components and is very useful for description of the practical systems
so that the components, as well as the system, take the states: 0, 1, 2, . . . , H. The GMS(k,n,G) is in state
≥ j, if kl components or more are in state ≥ l, where l is an integer and j ≤ l ≤ H. This system has
many practical applications; however, the existing methods of evaluation system-reliability with unequal
components probabilities are suitable only for some special cases. In this paper, we will suggest efficient
formulas to evaluate the exact reliability of GMS(k,n,G) with equal and unequal components probabilities.
These formulas are based on the conditional probability and are suitable for all system types: increasing,
constant, decreasing, and non-monotone k values system. Also, we will give the theoretical background,
computer codes, and various numerical examples for the suggested formulas.

INDEX TERMS k-out-of-n: systems, multi-state systems, performance measures, reliability evaluation.

NOTATION
GMS(k , n, G) generalized multi-state-k-out-of-n:

G system.
GMS(k ,n,F) generalized multi-state-k-out-of-n:

F system.
n the total number of

system components.
H maximum state for the system,

and its components.
kgj required number of components for

level j of a GMS(k ,n,G).
k fj required number of components

for level j of a GMS(k ,n,F),
k fj = n− kgj + 1.

k(kg1 , k
g
2 , . . . , k

g
H ) vector for a GMS

(k ,n,G); or (k f1 , k
f
2 , . . . , k

f
H ) vector for a

GMS(k ,n,F).
xl the state of the component

l, xl ∈{0,1,2,. . . ,H}.
x(x1), x2,. . . , (xn), vector of the components states.
φ(x) the structure function of the

system state, φ(x) ∈ {0, 1, 2, ...,H}.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiajie Fan.

pl,j Pr{xl = j},
∑H

a=0 pl,a = 1.
Ql,j Pr{xl < j},Ql,j = 1−

∑H
a=j pl,a.

pj probability that the component state
is j, when the components are i.i.d.

Qj probability that the component state
is less than j, when the components are i.i.d.

Q (Q1), Q2,. . . , (Qn).
tj number of components that in

state j, 0 ≤ tj ≤ n.
Tj number of components

that in state ≥ j, Tj =
∑H

i=j ti.
yj number of components that in

state < j.
Ai,j event that yj components in state

less than j and n-yj components in state ≥ j with
condition Tl < kg

l
for all l > j.

rj Pr{φ(x) = j}.

Fj Pr{φ(x) < j}, Fj =
∑j−1

a=0 ra.
Rj Pr{φ(x) ≥ j}, Rj = 1− Fj =

∑H
a=j ra.

r vector of rj values.
F vector of Fj values.
R vector of Rj values.
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I. INTRODUCTION
The GMS(k , n, G) is an important and widespread model
for redundancy of fault tolerant systems, especially in mil-
itary, and industrial systems. There are many examples of
these systems such as: multi display systems of the cockpit,
multi-engine systems of the airplane, and multi-transmitter
systems of the communication system [2]. Furthermore, there
are several practical systems [3], [4], such as: computer sys-
tem, electrical power generation system, fluid transmission
system, communication network, coal transmission system,
and the sensor network.

The states of binary systems, as well as components, are
only the two states, functional state or failed state. Practi-
cally, many systems, as well as the components, take the
two states and more. Such systems, are named multi-state
systems. The properties of multi-state systems make the
analysis of system reliability more difficult (than the prop-
erties of binary systems) [5]–[8], whereas in the first time
the system state is completely in working state, after some
time the system state decreases and becomes partially work-
ing state, after more time, the system state decreases again
and becomes partially failed state, finally, the system state
becomes entirely failed state. We can represent these states
as: 0, 1, 2,. . . , H , where 0 represents completely failed state,
and H represents perfect-functioning state. The multi-state
systems models are more elastic tool (than the binary systems
models) for representing systems. So that, in the last few
years, there are many models are generalized from binary
state to multi-state, such as, GMS(k , n, G) model [9]–[14],
MS consecutive (k , n, G) model [15]–[18], MS consec-
utive k-out-of-r-from-n: model [19]–[22], and MS linear
k-within-(r , s)-of-(m, n): lattice model [23], [24]. In this
article, we will evaluate the reliability of GMS(k , n, G)
model.

In [1], Huang et al. suggested a definition for the
GMS(k , n, G) model, where the required k value depends
on the system state. The GMS(k , n, G) is in state ≥ j if
kl components or more are in state ≥ l, where l is an
integer and j ≤ l ≤ H. This system is more flexible for
describing the practical systems. The GMS(k , n, G) has many
practical applications, but even so there is no any method for
non-monotone GMS(k , n, G) reliability evaluation with non
i.i.d. components, that is the general case for all the other
cases. The existing methods are suitable for some special
cases only. Many systems contain non i.i.d. components.
Evaluating the reliability of such systems is more complex.
All systems that contain i.i.d. components are special cases
of these systems. Therefore, it is very important to evaluate
the reliability of the systems that have non i.i.d. components.
Some recent papers generalized many traditional models to
the case where components are non i.i.d. For example, the
paper [25] generalized the phased mission parallel systems
to the case where each component has different capacity.
Also, the paper [26] generalized the traditional linear con-
secutive system to the case where there are three types of
components.

In this article, we will suggest efficient formulae to eval-
uate the exact reliability of GMS(k , n, G), whether in the
case of i.i.d. components or non i.i.d. components. These
formulae are based on the conditional probability and are
suitable for all system types: increasing, constant, decreasing,
and non-monotone k values system. Furthermore, we will
give the theoretical background and computer codes for the
suggested formulae. And so, various numerical examples of
the proposed formulae will be given.

II. THE DESCRIPTION OF GMS(k, n, G) AND GMS(k, n, F )
We consider the GMS(k , n, G) discussed in [1]. The gener-
alized multi-state-(kg

1
, kg2 , . . . , k

g
H
)-out-of-n: G system equiv-

alents to generalized multi-state-(k f
1
, k f2 , . . . , k

f
H
)-out-of-n: F

system, such that k fj = n − kgj + 1 for all 1 ≤ j ≤ H . The

GMS(k , n, F) is in state < j if at least k fl components in state
< l, where l is an integer number and j ≤ l ≤ H.

The values of k vector categorized GMS(k , n, F) into
4 cases:
Case 1: when k f

1
≥ k f

2
≥ . . . ≥ k f

H
, the system is called a

decreasing GMS(k , n, F).
Case 2: When k f

1
≤ k f

2
≤ . . . ≤ k f

H
, the system is called an

increasing GMS(k , n, F).
Case 3: when k f

1
= k f

2
= . . . = k f

H
, the system is called a

constant GMS(k , n, F).
Case 4: when the values of k vector cannot be ordered in an

ascending, constant, or descending order, the system is called
a non-monotone GMS(k , n, F).
Note that, the decreasing GMS(k , n, F) and the increasing

GMS(k , n, G) are equivalent. And so, the increasing GMS(k ,
n, F) and the decreasing GMS(k , n, G) are equivalent too.
In decreasing and constant GMS(k , n, F), if at least

k fj components are in state < j, then the system is in
state < j. In these cases, if the system cannot meet the
requirements of level j, it also cannot meet the require-
ments of any higher level. So that, the methods used
for evaluation the binary system reliability [2], [27] can
be applied with consideration the system and its com-
ponents function for state ≥ j and failed for state < j.
For other cases, increasing and non-monotone GMS(k , n, F),
we should use other methods those are suitable with their
complex requirements.

III. THE PROPOSED FORMULAE OF GMS(k,n,G)
RELIABILITY
Huang et al. [1] and Zuo and Tian [9] gave algorithms for
evaluation the reliability of GMS(k , n, G) for some special
cases: increasing, constant, and decreasing. Suprasad [28]
andMo [13] suggested an algorithm for evaluation of the reli-
ability of GMS(k , n, G) when the components are i.i.d. There
is no any algorithm for non-monotone system reliability when
the components are not i.i.d. So that, in this section we will
suggest efficient formulae to evaluate the exact reliability
of GMS(k , n, G) for all system types: increasing, constant,
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decreasing, and non-monotone with equal and unequal com-
ponents probabilities.

The state of GMS(k , n, F) can be redefined as follow:
φ(x) < j if there is existed yj (k fj ≤ yj ≤ n) components
in state less than j and n − yj components in state ≥ j with
condition Tl < kg

l
for all l > j.

Fj =
n∑

i=k fj

Pr(Ai,j), forall 1 ≤ j ≤ H , (1)

where Pr(Ai,j) is probability that yj components in state less
than j and n− yj components in state≥ j with condition Tl <
kg
l
for all l > j. Therefore,

Pr(Ai,j) = Pr{yj = i,Tj = n− i|Tl ≤ kgl − 1; ∀l > j} (2)

The value of Tj in eq. (2) depends on the value of yj, so
that:

Pr(Ai,j) = Pr(yj = i)

×Pr(Tj = n− i|yj = i,Tl ≤ kgl − 1; ∀l > j) (3)

The last condition in eq. (4) can be written as follows

{Tl ≤ kl − 1; ∀l > j} =



TH ≤ kgH − 1,
TH−1 ≤ kgH−1 − 1,
TH−2 ≤ kgH−2 − 1,
...

Tj+1 ≤ kgj+1 − 1


(4)

But, tH ≤ tH + tH−1 ≤ . . . ≤ tH + tH−1 + . . . + tj+1 , i.e.
TH ≤ TH−1 ≤ . . . ≤ Tj+2 ≤ Tj+1, then

{Tl ≤ kl − 1; ∀l > j}

=


TH ≤ min(kg

H
− 1, . . . , kg

j+1
− 1),

TH−1 ≤ min(kg
H−1
− 1, . . . , kg

j+1
− 1),

...

Tj+1 ≤ kgj+1 − 1

 (5)

Using eq(5), the last probability in eq(3) becomes

Pr{Tj = n− i|yj = i,Tl ≤ kgl − 1; ∀l > j}

= Pr



TH ≤ min(kg
H
− 1, . . . , kg

j+1
− 1, n− i),

TH−1 ≤ min(kg
H−1
− 1, . . . , kg

j+1
− 1, n− i),

...

Tj+1 ≤ min(kg
j+1
− 1, n− i),

Tj = n− i


(6)

Putting ml = min(kg
l
− 1, . . . , kg

j+1
− 1); ∀l > j, then eq.(6)

can be reduced to

Pr{Tj = n− i|yj = i,Tl ≤ kgl − 1; ∀l > j}

= Pr



TH ≤ min(n− i,mH ),
TH−1 ≤ min(n− i,mH−1),
...

Tj+1 ≤ min(n− i,mj+1),
Tj = n− i



= Pr



tH ≤ min(n− i,mH ),
tH−1 + TH ≤ min(n− i,mH−1),
...

tj+1 + Tj+2 ≤ min(n− i,mj+1),
tj + Tj+1 = n− i



= Pr



tH ≤ min(n− i,mH ),
tH−1 ≤ min(n− i,mH−1)− TH ,
...

tj+1 ≤ min(n− i,mj+1)− Tj+2,
tj = n− i− Tj+1


= Pr(t1 ≤ min(n− i,mH )|yj)

×Pr(t2 ≤ min(n− i,mH−1)− TH |yj, t1)

×Pr(t3 ≤ min(n−i,mH−2)−TH−1|yj, t1, t2)
...

×Pr(tj+1 ≤ min(n−i,mj+1)− Tj+2|yj, t1, . . . , tj+2)

×Pr(tj = n− yj − Tj+1|yj, t1, . . . , tj+1) (7)

By substituting form eq7 in eq(3), then

Pr(Ai,j)

= Pr(yj = i)× Pr(t1 ≤ min(n− i,mH )|yj)

×Pr(t2 ≤ min(n− i,mH−1)− TH |yj, t1)

×Pr(t3 ≤ min(n− i,mH−2)− TH−1|yj, t1, t2)
...

×Pr(tj+1 ≤ min(n− i,mj+1)− Tj+2|yj, t1, . . . , tj+2)

×Pr(tj = n− yj − Tj+1|yj, t1, . . . , tj+1)

= Pr(yj = i)× Pr(0 ≤ t1 ≤ min(n− i,mH )|yj)

×Pr(0 ≤ t2 ≤ min(n− i,mH−1)− TH |yj, t1)

×Pr(0 ≤ t3 ≤ min(n− i,mH−2)− TH−1|yj, t1, t2)
...

×Pr(0 ≤ tj+1<min(n− i,mj+1)− Tj+2|yj, t1, . . . , tj+2)

×Pr(tj = n− yj − Tj+1|yj, t1, . . . , tj+1) (8)

Now after determination numbers of components those are
in state < j (k fj ≤ yj ≤ n), numbers of components that in
state > j (0 ≤ tl < min(n− yj,ml)− Tl+1; ∀j+ 1 ≤ l ≤ H ),
and numbers of components that in state j (tj = n−yj−Tj+1),
we can find easily Fj as follows:
Firstly, when the components have equal probabilities:

Fj =
n∑

y=k fj

(
n
y

)
Qyj βy,j, forall j < H ,

βy,j =

min(n−y,mH )−TH+1∑
tH=0

(
n− y− TH+1

tH

)
ptHH

. . .

min(n−y,mj+1)−Tj+2∑
tj+1=0

(
n− y− Tj+2

tj+1

)
p
tj+1
j+1.p

n−y−Tj+1
j

ml = min(kg
l
− 1, . . . , kg

j+1
− 1); ∀l > j
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Tl =
H∑
a=l

ta; ∀j < l ≤ H , TH+1 = 0. (9)

For j = H , eq. (9) is reduced to:

FH =
n∑

y=k fH

(
n
y

)
QyH .p

n−y
H (10)

Secondly, when the components have unequal probabili-
ties:

Fj =
n∏
i=1

1∑
xi=vi

Qxii,j.Ci,j, for all j H ,

vi = max(0, k f
j
− (n− i)−

i−1∑
a=1

xa),

Ci,j = Ci,j(xi,Ti,j+1, . . . ,Ti,H )

=

min(T ∗i,H ,Ti,H ,...,Ti,j+1)∑
ti,H=0

pti,Hi,H . . .

min(T ∗i,j+1,Ti,j+1)∑
ti,j+1=0

p
ti,j+1
i,j+1.p

T ∗i,j
i,j

T ∗
i,l
= 1− xi −

H∑
b=l+1

ti,b,

Ti,l = kgl − 1−
i−1∑
a=1

H∑
b=l

ta,b. (11)

For j = H , eq. (11) is reduced to:

Fj =
n∏
i=1

1∑
xi=vi

Qxii,j.p
1−xi
i,j ,

vi = max(0, k f
j
− (n− i)−

i−1∑
a=1

xa). (12)

Further, we can find rj, and Rj, for all 0 ≤ j ≤ H , from the
following equations:

rj = Fj+1 − Fj;F0 = 0, FH+1 = 1 (13)

Rj = 1− Fj =
∑H

a=j
ra. (14)

IV. NUMERICAL EXAMPLES
We obtained the numerical results for evaluation the reliabil-
ity of GMS(k,n,G) using MATLAB codes which are given
in the appendix. These codes were executed on Core i5 CPU
with 2.3 GHz underWindows 10 operating system.We calcu-
lated CPU times per seconds using cputime function. In order
to demonstrate the validity of the proposed equations and
MATLAB codes, we calculated the reliability of GMS(k,n,G)
for some published examples as shown in examples 1-4. All
obtained results in these examples using our method match
the published results. The proposed equations are illustrated
by examples 1 and 2. The examples 5 and 6 are given for
evaluation the reliability of non-monotone GMS(k,n,G) type
with unequal components probabilities, that are given by
table 1.

Illustrated Example 1. Consider example 4 from [28].
Given n = 4, H = 4, k f = (2, 3, 3, 1), i.e. kg = (3, 2, 2, 4),
and p = (p0, p1, p2, p3, p4) = (0.1, 0.2, 0.1, 0.4, 0.2). Then
Q = (0.1, 0.3, 0.4, 0.8). Using equations (9) and eq(10) we
have
For state 4.

F4 =
4∑

y=1

(
4
y

)
Qy4.p

4−y
4

=

(
4
1

)
(0.8)(0.2)3 +

(
4
2

)
(0.8)2(0.2)2

+

(
4
3

)
(0.8)3(0.2)+

(
4
4

)
(0.8)4

= 0.9984

For state 3.

F3 =
4∑

y=3

(
4
y

)
Qy3βy,3 =

(
4
3

)
(0.4)3β3,3

+

(
4
4

)
(0.4)4β4,3

F3 = (4)(0.4)3(p3 + p4)+ (0.4)4

= (4)(0.4)3(0.4+ 0.2)+ (0.4)4

= 0.1792

where,

β3,3 =

1∑
t4=0

(
1
t4

)
pt44 p

1−t4
3 = p3 + p4,

β4,3 = 1.

For state 2.

F2 =
4∑

y=3

(
4
y

)
Qy2βy,2 =

(
4
3

)
(0.3)3β3,2

+

(
4
4

)
(0.3)4β4,2

= (4)(0.3)3(p2 + p3 + p4)+ (0.3)4

= (4)(0.3)3(0.1+ 0.4+ 0.2)+ (0.3)4

= 0.0837

where,

β3,2 =

1∑
t4=0

1−t4∑
t3=0

(
1
t4

) (
1− t4
t3

)
pt44 p

1−t4
3 p1−t4−t32

= p2 + p3 + p4
β4,2 = 1.

For state 1.

F1 =
4∑
y=2

(
4
y

)
Qy1βy,1 = (6)(0.1)2β2,1

+(4)(0.1)3β3,1 + (1)(0.1)4β4,1
= (6)(0.1)2(p21 + 2p2p1 + 2p3p1 + 2p4p1)
+ (6)(0.1)3(p1 + p2 + p3 + p4)+ (0.1)4
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= (6)(0.1)2((0.2)2 + 2(0.1)(0.2)+ 2(0.4)(0.2)
+ 2(0.2)(0.2))+ (4)(0.1)3(0.2+ 0.1+ 0.4+ 0.2)
+ (0.1)4 = 0.0229

where,

β2,1 =

1∑
t4=0

1−t4∑
t3=0

1−t4−t3∑
t2=0

(
2
t4

)(
2− t4
t3

)(
2− t4 − t3

t2

)
pt44

×pt33 p
t2
2 p

2−t4−t3−t2
1

= p21 + 2p2p1 + 2p3p1 + 2p4p1

β3,1 =

1∑
t4=0

1−t4∑
t3=0

1−t4−t3∑
t2=0

(
1
t4

)(
1− t4
t3

)(
1− t4 − t3

t2

)
pt44

×pt33 p
t2
2 p

1−t4−t3−t2
1

= p1 + p2 + p3 + p4
β4,1 = 1

Then

F = (0.0229, 0.0837, 0.1792)

r = (0.0299, 0.0608, 0.0955, 0.8192, 0.0016)

R = (0.9771, 0.9163, 0.8208, 0.0016)

CPU = 5.8462× 10−5seconds

Illustrated Example 2. Consider example 8 from [1]. Given
n = 3, H = 3, k f = (1, 2, 2), i.e. kg = (3, 2, 2), and pi,j = 0.1 0.2 0.3 0.4
0.1 0.1 0.2 0.6
0.1 0.2 0.4 0.3

, therefore, Qi,j =

 0.1 0.3 0.6
0.1 0.2 0.4
0.1 0.3 0.7

.
Using equations (11) and (12) we have

For state 3:

F3 =
1∑

x1=0

1∑
x2=1−x1

1∑
x3=2−x1−x2

Qx11,3.Q
x2
2,3.Q

x3
3,3

×p1−x11,3 .p1−x22,3 .p1−x33,3

= p1,3.Q2,3.Q3,3 + Q1,3.p2,3.Q3,3 + Q1,3.Q2,3.p3,3
+Q1,3.Q2,3.Q3,3

= (0.4)(0.4)(0.7)+ (0.6)(0.6)(0.7)+ (0.6)(0.4)(0.3)

+ (0.6)(0.4)(0.7) = 0.604

For state 2:

F2 =
1∑

x1=0

1∑
x2=1−x1

1∑
x3=2−x1−x2

Qx11,2.Q
x2
2,2.Q

x3
3,2

×C1,2.C2,2.C3,2

= p1,2 .Q2,2 .Q3,2 + p1,3 .Q2,2 .Q3,2 + Q1,2 .p2,2 .Q3,2

+Q1,2 .p2,3 .Q3,2 + Q1,2 .Q2,2 .p3,2 + Q1,2 .Q2,2 .p3,3
+Q1,2 .Q2,2 .Q3,2

= (0.3)(0.2)(0.3)+ (0.4)(0.2)(0.3)+ (0.3)(0.2)(0.3)

+(0.3)(0.6)(0.3)+ (0.3)(0.2)(0.4)+ (0.3)(0.2)(0.3)

+(0.3)(0.2)(0.3)

= 0.174

where,

C1,2 =

min(1−x1,1)∑
t1,3=0

p
t1,3
1,3 .p

1−x1−t1,2
1.2

C2,2 =

min(1−x2,1−t1,3)∑
t2,3=0

p
t2,3
2,3 .p

1−x2−t2,3
2,2

C3,2 =

min(1−x3,1−t1,3−t2,3)∑
t3,3=0

p
t3,3
3,3 .p

1−x3−t3,3
3,2

For state 1:

F1 =
1∑

x1=0

1∑
x2=0

1∑
x3=max(0,1−x1−x2)

×Qx11,1.Q
x2
2,1.Q

x3
3,1.C1,1.C2,1.C3,1,

= p1,1 .p2,1 .Q3,1 + p1,1 .p2,2 .Q3,1 + p1,1 .p2,3 .Q3,1

+ p1,1 .Q2,1 .p3,1 + p1,1 .Q2,1 .p3,2 + p1,1 .Q2,1 .p3,3
+ p1,1 .Q2,1 .Q3,1 + p1,2 .p2,1 .Q3,1 + p1,2 .Q2,1 .p3,1
+ p1,2 .Q2,1 .Q3,1

+ p1,3 .p2,1 .Q3,1 + p1,3 .Q2,1 .p3,1 + p1,3 .Q2,1 .Q3,1

+Q1,1 .p2,1 .p3,1
+Q1,1 .p2,1 .p3,2 + Q1,1 .p2,1 .p3,3 + Q1,1 .p2,1 .Q3,1

+Q1,1 .p2,2 .p3,1
+Q1,1 .p2,2 .Q3,1 + Q1,1 .p2,3 .p3,1 + Q1,1 .p2,3 .Q3,1

+Q1,1 .Q2,1 .p3,1
+Q1,1 .Q2,1 .p3,2 + Q1,1 .Q2,1 .p3,3 + Q1,1 .Q2,1 .Q3,1

= (0.2)(0.1)(0.1)+ (0.2)(0.2)(0.1)+ (0.2)(0.6)(0.1)

+ (0.2)(0.1)(0.2)+ (0.2)(0.1)(0.4)+ (0.2)(0.1)(0.3)

+ (0.2)(0.1)(0.1)+ (0.3)(0.1)(0.1)+ (0.3)(0.1)(0.2)

+ (0.3)(0.1)(0.1)+ (0.4)(0.1)(0.1)+ (0.4)(0.1)(0.2)

+ (0.4)(0.1)(0.1)+ (0.1)(0.1)(0.2)+ (0.1)(0.1)(0.4)

+ (0.1)(0.1)(0.3)+ (0.1)(0.1)(0.1)+ (0.1)(0.2)(0.2)

+ (0.1)(0.2)(0.1)+ (0.1)(0.6)(0.2)+ (0.1)(0.6)(0.1)

+ (0.1)(0.1)(0.2)+ (0.1)(0.1)(0.4)+ (0.1)(0.1)(0.3)

+ (0.1)(0.1)(0.1) = 0.11

where,

C1,1 =

min(1−x1,1,1)∑
t1,3=0

min(1−x1−t1,3,1)∑
t1,2=0

p
t1,3
1,3 .p

t1,2
1,2 .p

1−x1−t1,2−t1,3
1,1

C2,1 =

min(1−x2,1−t1,3,1−t1,2−t1,3)∑
t2,3=0

min(1−x2−t2,3,1−t1,2−t1,3)∑
t2,2=0

p
t2,3
2,3

×p
t2,2
2,2 .p

1−x2−t2,2−t2,3
2,1
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TABLE 1. pi,j for the components.

C3,1 =

min(1−x3,1−t1,3−t2,3,1−t1,2−t1,3−t2,2−t2,3)∑
t3,3=0

min(1−x3−t3,3,1−t1,2−t1,3−t2,2−t2,3)∑
t3,2=0

×p
t3,3
3,3 .p

t3,2
3,2 .p

1−x3−t3,2−t3,3
3,1

Then

F = (0.11, 0.174, 0.604)

r = (0.11, 0.064, 0.43, 0.396)

R = (0.89, 0.826, 0.396)

CPU = 3.5784× 10−4seconds

Example 3. Consider example 2 from [9]. Given n =

10, H = 3, k f = (3, 6, 8), i.e. kg = (8, 5, 3), and
p = (p0, p1, p2, p3, p4) = (0.1, 0.3, 0.4, 0.2). Then Q =
(0.1, 0.4, 0.8). Using the suggested method, we get

F = [0.0308, 0.1523, 0.6778]

r = [0.0308, 0.1214, 0.5255, 0.3222]

R = [0.9692, 0.8477, 0.3222]

CPU = 6.1387× 10−5seconds

Example 4. Consider example 6 from [10]. Given n = 100,
H = 7, k f = (10, 15, 20, 25, 30, 35, 40) and pj = 0.125 for
all j = 0, 1, 2, . . . , 7. Then kg = (91, 86, 81, 76, 71, 66, 61)
and Q = (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875). Using
the suggested method, we get

F = [0.81596, 0.99457, 0.99995, 1, 1, 1, 1]

r = [0.81596, 0.17861, 0.00538, 0.00005, 0, 0, 0, 0]

R = [0.18404, 0.00543, 0.00005, 0, 0, 0, 0]

CPU = 3.0542seconds

Example 5. Consider n = 20, H = 3, k f = (10, 15, 20) and
pi,j given in table 1. Using the suggested method, we get

F = [0, 0.012982, 0.471272],

r = [0, 0.012982, 0.45829, 0.528728],

R = [1, 0.987018, 0.528728].

CPU = 0.0324seconds

Example 6. Consider n = 10, H = 3, k f = (3, 8, 6) and pi,j
given in table 1. Using the suggested method, we get

F = [0.001402, 0.00233, 0.763398]

r = [0.001402, 0.000928, 0.761067, 0.236602]

R = [0.998598, 0.99767, 0.236602]

CPU = 7.5342× 10−4seconds

V. CONCLUSION AND FUTURE WORK
In this article, we suggested a general method to calculate the
exact reliability of GMS(k , n, G). Also, we given the theo-
retical background for this method. The proposed method is
suitable for all system cases: increasing, constant, decreasing,
and non-monotone k values system, whether in the case of
equal or unequal components probabilities. The main result
in this paper is evaluation the reliability of non-monotone
GMS(k , n, G) with unequal components probabilities. This
type is the general case for all the other cases. The reliability
of this type is not found previously, and is more complex.
So that, all the published results are considered as special
cases by our results. Furthermore, complete MATLAB codes
for evaluating of system reliability are given. The validity of
the proposed method and MATLAB codes can be examined
by published examples, when available.

As an extension of our results, we will generalize these
results for evaluation the reliability of other models that
are more general. Such as multi-state consecutive k-out-of-
r-from-n: G system model [19]–[22] and multi-state linear
k-within-(m, s)-of-(m, n):G lattice system model [23], [24].

APPENDIX
A. MATLAB CODES FOR GMS( k,n,G) RELIABILITY WITH
i.i.d. COMPONENTS

1) %%%%%%% Inputs for example 4 from [28]
2) n = 4; H = 4; kf = [2 3 3 1];
3) p = [0.1 0.2 0.1 0.4 0.2];
4) %%%%%%% Derived inputs & Boundary values
5) kg = n-flip(kf); Q = cumsum(p); F(H+1) = 1;
6) %%%%%%% System Reliability Evaluation
7) for j = H: − 1: 1
8) F(j) = 0; T = 0; T1 = 0;
9) for L = 1: H−j
10) T1(L) = min(kg(L:H−j));
11) end
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12) for y = kf(j): n
13) Pr(1:H−j+1) = nchoosek(n,y) ∗ (Q(j)^y);
14) F(j) = F(j) + Pr(1) ∗ (p(j+1)^(n-y));
15) t(1:H−j+1) = 0;
16) T(2:H−j+1) = min(n-y,T1)- cumsum(t(1:H−j));
17) while isequal(T,t) == 0
18) for g = H−j+1: −1: 2
19) if t(g) < T(g)
20) t(g) = t(g)+1;
21) t(g+1:H−j+1) = 0;
22) Pr(g:H−j+1) = Pr(g−1) ∗ (nchoosek(n-y-sum

(t(1:g−1)),t(g))) ∗(p(H−g+3)^t(g));
23) F(j) = F(j) + Pr(g) ∗ (p(j+1)^(n-y-sum(t(2:H-j+1))));
24) break
25) end
26) end
27) T(2:H−j+1) = min(n−y,T1)- cumsum(t(1:H−j));
28) end
29) end
30) r(j) = F(j+1)-F(j);
31) end
32) %%%%%%% the Results
33) r = [F(1),r], F = F(1:H), R(1:H) = 1-F(1:H)

B. MATLB CODES FOR GMS( k,n,G) RELIABILITY
EVALUATION WITH NOT i.i.d. COMPONENTS
1) %%%%%%% Inputs for example 8 from [1]
2) n = 3; H = 3; kf = [1 2 2];
3) p = [0.1 0.2 0.3 0.4; 0.1 0.1 0.2 0.6; 0.1 0.2 0.4 0.3];
4) %%%%%%% Derived inputs & Boundary values
5) kg = n-flip(kf); F(H+1)= 1; y = 0; Pr(1)= 1;
6) for i = 2: n+1
7) Q(i,1:H) = cumsum(p(i,1:H));
8) end
9) %%%%%%% System Reliability Evaluation
10) for j = H: −1: 1
11) for i = 2: n+1
12) y(i) = max(0, kf(j)−n+(i−1)-sum(y(2:i−1)));
13) t(i, H−j+2)= 1-y(i);
14) Pr(i) = Pr(i-1) ∗ (Q(i,j)^y(i)) ∗ (p(i,j+1)^t(i,H−j+2));
15) end
16) t(1:n+1,1:H−j+1) = 0;
17) F(j) = F(j) + Pr(n+1);
18) while sum(y) < n
19) for e = n+1: −1: 2
20) if y(e) == 1
21) continue
22) end
23) Cht = 0;
24) C = cumsum(t(1:e−1, 1:H−j+1));
25) D(e-1,2:H−j+1)= kg(1:H-j) - cumsum(C(e-1,

2:H−j+1));
26) for g = H−j+1: −1: 2
27) if (1-y(e)-sum(t(e,2:g))) > 0 & min(D(e-1,g:H−j+1))

> 0
28) Cht = 1;

29) t(e,H−j+2) = 0;
30) t(e:n+1,1:H−j+1) = 0;
31) t(e,g) = 1;
32) Pr(e) = Pr(e-1) ∗ p(e, H−g+3 );
33) for i = e+1: n+1
34) y(i) = max(0, kf(j)−n+(i−1)-sum(y(2:i−1)));
35) t(i,H−j+2) = 1−y(i);
36) Pr(i) = Pr(i-1) ∗ (Q(i,j)^y(i)) ∗ (p(i,j+1)^t(i,H−j+2));
37) end
38) break
39) end
40) end
41) if Cht ==1
42) break
43) end
44) y(e) = 1;
45) Pr(e) = Pr(e-1) ∗ Q(e, j );
46) t(e,H−j+2) = 0;
47) for i = e+1: n+1
48) y(i) = max(0, kf(j)−n+(i−1)-sum(y(2:i−1)));
49) t(i,H−j+2) = 1-y(i);
50) Pr(i) = Pr(i-1) ∗ (Q(i,j)^y(i)) ∗ (p(i,j+1)^t(i,H−j+2));
51) end
52) t(e:n+1,1:H−j+1) = 0;
53) break
54) end
55) F(j) = F(j) + Pr(n+1);
56) end
57) r(j) = F(j+1)−F(j);
58) end
59) %%%%%%% The Results
60) r = [F(1),r], F = F(1:H), R(1:H) = 1−F(1:H)
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