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ABSTRACT Limited by the number of ground observation stations, PM2.5 retrieval from the remote sensing
data is an effective complement to conventional ground observations and is a current research hotspot.
The general principle behind the remote sensing retrieval of PM2.5 is to first retrieve the aerosol optical
depth (AOD) and calculate the PM2.5 via the AOD-based statistical relationships. This method is likely to
cause error propagation, which leads to instability in the retrieval model. In this paper, we propose a PM2.5
remote sensing retrieval method via an ensemble random forest machine learningmethod to directly establish
the relationship between the moderate-resolution imaging spectroradiometer (MODIS) images and ground
observational PM2.5 to avoid retrieval errors from the atmospheric aerosol optical depths and obtain PM2.5
retrieval results with higher precision and spatial resolution. The proposed method first uses a random forest
to train and validate the MODIS images and ground observation station PM2.5 data; then, an optimal multi-
model group, according to the determination coefficient R-square (R2) index, is selected. Finally, the optimal
multi-model group is used on the wholeMODIS image to obtain the PM2.5 retrieval result for the whole area.
In an attempt to use machine learning technology to retrieve PM2.5, the experiments selected a substantial
amount of MODIS image data during four seasons in Guangdong Province for validation and compared
three performance indicators (R2, RMSE, and correlation coefficient (CC) to verify the superiority of the
proposed algorithm.

INDEX TERMS Ensemble random forest, machine learning, remote sensing based PM2.5 retrieval, Kriging
interpolation, aerosol optical depth.

I. INTRODUCTION
Increasing trends in industrialization and urbanization have
led to severe environmental pollution, which further increases
public attention and concern regarding the air quality index.
Currently, fine particle matter (PM2.5) is used as a crucial
indicator to measure air quality. Thus, a scientific method to
monitor the distributions and concentrations of PM2.5 is sig-
nificant for exploring its physical and chemical characteris-
tics, discovering the reasons that contribute to the emergence
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of haze, and proposing possible measures to enable efficient
air protection.

The state-of-the-art measures for PM2.5 monitoring mainly
include groundmonitoring and satellite-based remote sensing
monitoring [1]. It is widely agreed that ground monitoring
can produce accurate results through field investigations.
However, ground monitoring is impossible to generate mas-
sive temporally updated data with respect to PM2.5 over
large-scale areas due to a series of challenges involving high
economic costs, a limited number of monitoring stations,
and insufficient labour productivity [2], [3]. Satellite-based
remote sensing monitoring can offset some limitations of
traditional ground monitoring, which provides the capability
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to conveniently acquire data and an extensive monitoring
range. The current methods for PM2.5 retrieval mainly consist
of three sequential steps: 1) conducting the retrieval of atmo-
spheric aerosol optical depths (AODs); 2) establishing the
relationship between atmospheric AODs and field-measured
PM2.5; and 3) estimating PM2.5 values over an area where
monitoring stations are not available based on the relationship
generated by the statistical analysis. Many scholars around
the world have conducted a large number of studies using this
type of approach.

Tian et al. developed a semi-empirical model to predict
the hourly concentrations of ground-level PM2.5 that coin-
cided with a satellite overpass at a regional scale, which
corrected AOD data from moderate-resolution imaging
spectroradiometer (MODIS) by assimilating the parameters
characterizing the boundary layer and further adjusting the
corrected values according to meteorological conditions near
the ground [4]. Lee et al. proposed a new methodology
to calibrate AOD data obtained from MODIS, which was
used to predict daily ground PM2.5 concentrations in the
New England region [5]. Liu et al. proposed an empirical
model based on the regression between daily PM2.5 con-
centrations and AOD values from the multiangle imaging
spectroradiometer (MISR). The experimental results using
data from the eastern United States during 2001 showed
that the empirical model explained 48% of the variability
in PM2.5 concentrations [6]. Donkelaar et al. estimated the
ground-level PM2.5 concentrations from January 2001 to
October 2002 using space-basedmeasurements fromMODIS
and Multi-angle Imaging Spectroradiometer (MISR) satellite
instruments and additional information from a global chemi-
cal transport model (GEOS-CHEM) [7]. Song et al used the
MODIS C5 AOD products to retrieve PM2.5 concentrations
in the Pearl River Delta region [8]. Li et al. selected and
investigated two intense winter haze events in Beijing that
occurred in 2011 and 2012 using ground-based remote sens-
ing measurements and the CIMEL CE318 sun-sky radiome-
ter [9]. Chu et al. retrieved PM2.5 concentrations from an area
north of Taiwan [10]. However, errors occurred during the
retrieval of AOD,whichwere further enhancedwhen building
the statistical relationship between AOD and ground truth
PM2.5. Moreover, the errors suggested that AOD retrieval
would influence the accuracy of PM2.5 estimation.
The basic idea behind the atmospheric AOD retrieval

includes the following aspects: assuming different aerosol
modes and observing conditions to calculate the correla-
tions among the optical thickness of atmospheric aerosols,
the hemispherical reflectivity in the atmospheric boundary
layer (ABL), the atmospheric reflectivity values, the satellite
zenith angle and solar zenith angle. Based on the above rela-
tionship, a lookup table is created to obtain the AOD through
a dynamic aerosol model. Based on the assumption that the
top of the atmosphere is parallel to the surface and no clouds
exist, Griggs and Rao et.al discovered the correlation between
AOD and infrared and visible wavebands through simulation
via an atmospheric radiation transmission model [11], [12].

Levy et al. integrated the aerosol information of the middle
infrared waveband into the retrieval process and updated
the previous lookup table to access the retrieval relationship
between AOD and atmospheric aerosol modes [13], [14].
In addition to MODIS data, other remote sensing data have
also been used to support the retrieval of optical thick-
nesses of atmospheric aerosols. Holben et al. [15] retrieved
the AOD in the Mali Sahel region using Advanced Very
High-Resolution Radiometer (AVHRR) data with an error of
approximately 0.1. Isakov et al. [16] used Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) data to estimate
the AOD in Oklahoma and Rapid City, South Dakota. The
aforementioned retrieval methods have achieved good results
in practical application, but due to the use of auxiliary data,
the calculation accuracy is difficult to control. In addition,
the AOD data itself have errors in the retrieval process; hence,
the above methods cannot avoid error propagation [17].
Therefore, determining how to reduce error propagation and
obtain a higher retrieval accuracy has been a hot topic in
recent research [18], [19].

The overall processes of PM2.5 retrieval based on remote
sensing images generally consists of retrieving AODs, build-
ing a statistical relationship between AOD and PM2.5, and
using the developed relationship to predict PM2.5 values
in areas where ground-observed data are not available.
The above mentioned processes are designed based on the
assumption that there is a stable relationship between AOD
and PM2.5. Hence, the high accurate AOD is the key factor
of the above processes. Thus, a majority of existing studies
have focused on increasing the accuracy of AOD retrieval via
improved estimation of surface reflectance and assumptions
of aerosol models, as well as importing several corrections,
adding auxiliary data, and integrating numerical prediction
models.

However, several challenges still remain for the above
processes:

(1) Stability in the relationship between AOD and PM2.5.
This is the basic assumption for retrieving PM2.5 from AOD.
A number of studies have proven that although a statistical
relationship can be discovered between AOD and PM2.5, this
relationship varies across different areas and times. Thus,
the stability of this relationship at a specific location and time
is critical to PM2.5 retrieval.

(2) Error propagation process. Although fine physical
models can increase the accuracy of AOD retrieval and sup-
port the accurate retrieval of PM2.5, these models cannot
avoid error propagation. At present, there is no one phys-
ical model can exactly simulate the atmospheric motion.
Hence, the error will occur when inventing any atmospheric
parameter. More parameters are invented, more errors will
propagate and accumulate together. The errors included in the
AOD retrieval will have influence on the result from PM2.5
retrieval. Thus, error propagation may reduce the accuracy
of PM2.5 retrieval in some regions. More auxiliary data are
used, more uncertainties will be introduced. Currently, many
researchers use daily average values, monthly average values,
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seasonal average values and annual average values to study
the relationship between AOD and PM2.5, which could elim-
inate the uncertainty caused by error propagation to a certain
degree. However, the influence of error propagation might be
much greater at a specific time scale, for example, the hourly
scale.

(3) Usability of the model. Although operations, includ-
ing importing multiple corrections, adding auxiliary data
and integrating numerical models, can increase the accuracy
of AOD retrieval, importing more parameters increases the
probability of producing more uncertainties, which weakens
the usability of a model. Thus, since all the introduced aux-
iliary data are strongly related with the local environmental
conditions, a model that integrates auxiliary data can fit for a
study area, but may be incompetent for another area. That
is, it may be difficult to transfer a fitted model to another
region.

To address the above challenges, in this paper, we try
another approach based on the following considerations:
since the remote sensing derived parameters will introduce
uncertainty and propagate errors, and the original image
actually contains the atmospheric information when imag-
ing (although many atmospheric components are mixed
together), maybe we can establish the relationship between
original spectral information and PM2.5 so as to bypass the
error propagation process usingmachine learning technology.
Therefore, this paper proposes a PM2.5 retrieval approach
by integrating ensemble random forest machine learning and
MODIS imagery. Compared with the other machine learning
technologies, such as support vector machine [20], relevance
vector machine [21], sparse representation [19] and so on,
the random forest usually could provide better performance,
and it could deal with very high dimensional data without
feature selection [22], [23]. Based onMODIS remote sensing
images, the proposed approach tries to establish a relation-
ship between satellite imagery and PM2.5 with the machine
learning technique directly. Although the basic idea of the
proposed method is simple, and lacks some strict physical
meanings, the experimental results show that the proposed
method can produce better retrieval results with a higher
spatial resolution. As a simple approach and an attempt to
address the previous mentioned challenges, there are much
rooms for further improvement.

The remainder of this paper is organized as follows.
Section 2 reviews the AOD retrieval algorithms of MODIS.
Section 3 discusses the proposed ensemble random forest
for PM2.5 retrieval using MODIS data. Section 4 describes
the experimental results with real images and compares
the proposed results with the existing AOD-based results.
Section 5 provides the discussion and last section is the
conclusion.

II. MODIS-BASED AOD RETRIEVAL
Terra and Aqua are two substantial satellites of the Earth
Observation System (EOS). The MODIS, which is utilized
in these two satellites, provides products with 36 spectral

bands ranging from 0.4 µm to 14 µm and spatial resolutions
ranging from 250 m to 1 km. The scanning width of MODIS
is 2330 km. Thus, the advantages of MODIS, such as high
spatial and temporal resolutions, multi-channels, and broad
coverage, make it popularly to retrieve AOD.

After a number of improvements, the latest MODIS AOD
was updated to the C6.1 version. The C5 version of MODIS
AOD, which was released in 2008, provides a dark tar-
get (DT) algorithm and a deep blue (DB) algorithm to retrieve
dark target areas and light target areas, respectively. It offers
AOD products with a 10 km spatial resolution, and the inte-
gration of the DT and DB retrieval results is not available.
In 2012, the C6 version of MODIS AOD supported the
integration of the results generated from the DT and DB
algorithms. Additionally, the spatial resolution of the C6.1
product generated by DT of the C6.1 version reached 3 km.

A. DARK TARGET (DT) ALGORITHM
The C6 version of the DT algorithm [24] shares the same
principles as the C5 version [13] and inherits from the
original Kaufman implementation. The algorithm consists
of the following steps: (1) Based on images with a spatial
resolution of 500 m, pixels with an atmospheric reflectance
(TOA) between 0.01 and 0.25 are selected. A 20 ∗ 20 pixel
calculation window box is set and the inappropriate surface
pixels such as clouds, desert, snow, ice, inland water, and
so on are removed. (2) Some of the brightest and dark-
est pixels are discarded. Specifically, the 20% darkest and
50% brightest pixels from the calculation window box are
discarded. Then more than 50 pixels from the remaining
120 pixels for the highest quality guaranteed aerosol retrieval
(QAF = 3) are chosen. For QAF = 0, 1 and 2 retrieval,
at least 12, 20 and 30 pixels should be selected. (3) Based on
the assumed spectral/directional relationship, the short-wave
infrared TOA reflectance is related to the surface reflectance
in the visible bands of 470 nm and 650 nm. The fine-mode and
the coarsemode (dust) dominated aerosol model are weighted
by matching the average TOA reflectance over these bands,
thereby applying this hypothetical relationship to the total
AOD retrieval.

Recently, the aerosol product of the C6.1 algorithm has
been released, and compared with the C6 retrieval, the fol-
lowing improvements have been made: For Land regions,
if there are more than 50% coastal pixels or 20% of water
pixels in 10×10 km box, the quality of retrievals is degraded
to zero. When the percentage of urban area is larger than
20%, the algorithm for Aerosol retrieval over land surface
is modified using a revised surface characterization using
MYD09 spectral surface reflectance product.

B. DEEP BLUE (DB) ALGORITHM
Hsu et al. improved and extended the original DB algorithm
to form a newDB algorithm, i.e., theMODISC6 version [25].
The new DB algorithm retrieves the cloudless and snowless
pixels on 1∗1 km spatial resolution image, calculates the sur-
face reflectance on the 0.412, 0.470, and 0.650 µm channels,
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FIGURE 1. Study area.

and then re-aggregates to a resolution of 10 ∗ 10 km. At the
same time, in addition to the surface of the vegetation, it is
also retrieved on the surface of bright cities and deserts.
Surface reflectance calculation depends on location, sea-
son and land cover type. There are three options available:
(1) Surface reflectance database based on location, season,
scattering angle and normalized difference vegetation index;
(2) an empirical model derived from a bidirectional reflec-
tion distribution function for a particular region and season;
(3) a spectral/direction relationship determined by the type
of surface classification. The choice of these options depends
on the TOA reflectivity in the 2.1 µm band and NDVI. For
the hypothetical aerosol optical model, AOD was separately
retrieved on the 470 nm, 412 nm, and 650 nm bands and then
combined to determine the AOD at 550 nm.

For the newly released C6.1 version, the basic principle is
consistent with C6, but further improvements have beenmade
on the C6 version, including: (1) The internal smoke detection
masks are improved to distinguish true cloud contamination.
(2) The surface reflectance modelling for heterogeneous ter-
rain surface is improved, and the QA tests to identify artefact
pixels is also improved. (3) New surface reflectance models
are developed for elevated terrain types to remove the sys-
tematic biases. (4) The assumed aerosol optical models in
some areas are updated based on biases identified from the
C6 validation work.

C. MERGED DT/DB
Due to differences in assumptions and algorithms, the results
of DT and DB algorithms have large differences in AOD
coverage and spatial resolution. Therefore, a merged strat-
egy is provided in the merged scientific data set (SDS),
which combines the advantages of DT and DB to make new
products which can increase the spatial coverage of AOD
retrieval while ensuring good retrieval quality. The basic
strategy of integration is to use MODIS’s NDVI climate
dataset (MYD13C2 dataset) to generate NDVI data with a
spatial resolution of 0.25◦ per month for one year. Based on

this, the merged AOD product is generated in three cases.
(1) When the NDVI is less than or equal to 0.2, the merged
SDS is filled with DB data; (2) When the NDVI is greater
than or equal to 0.3, it is filled with DT data; (3) When the
NDVI is between 0.2 and 0.3, the surface is at the transition
zone between arid and vegetation, at this time, a product
with a higher QA value is selected. If the QA values of both
DT and DB are equal to 3, the average of the two is used.
For marine areas, it is populated directly using the ocean
algorithm. The new C6.1 version has the same integration
strategy as the C6 version, but due to the update of the DT
and DB algorithms in C6.1, the C6.1 merged data is different
from C6.

III. PROPOSED METHOD
A. STUDY AREA
Guangdong Province is located in the southernmost region
of mainland China. It borders Fujian to the east, Jiangxi
and Hunan to the north, Guangxi to the west, and the
South China Sea to the south. The east and west sides
of the Pearl River estuary are bordered by Hong Kong
and the Macao Special Administrative Region, respectively.
The southwestern Leizhou Peninsula faces Hainan Province
across the Qiongzhou Strait. The entire area is located
between 20◦13’-25◦31’N and 109◦39’-117◦19’E. It spans
approximately 800 km from east to west and approximately
600 km from north to south. The land area of the province is
179,800 square km. Guangdong Province belongs to the East
Asian monsoon region; from north to south are the tropical
regions of central Asia and South Asia, which have tropical
climates and are some of the most abundant areas of light,
heat and water resources in China. The Pearl River Delta
region, which is primarily in Guangzhou Province, is one
of the regions with the fastest urbanization in China, and
the accompanying air pollution problems are also prominent.
Figure 1 illustrates the study area. The triangular points rep-
resent the 102 observation stations, which offer hourly PM2.5
ground truth data.
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B. RANDOM FOREST
The random forest (RF) is an extended version of the par-
allel ensemble learning method. A RF is based on a deci-
sion tree and introduces random attribute selection into the
training process of the decision tree. It uses the bootstrap
resampling technique (i.e., bootstrapping) to generate new
training sample sets by randomly selecting k samples via
the replacement of N in the original training set, which
generates k classification trees in the combined random for-
est. The classification results are determined based on the
scores received from the votes given by all classification trees.
Essentially, a random forest is an improved decision tree
algorithm.Multiple decision trees are combined together. The
creation of each tree depends on an independently selected
sample. Every tree in the forest has the same distribution. The
classification error depends on the capability of every tree
and the correlations among them. During the feature selec-
tion procedure, every node is split randomly to obtain errors
under different conditions. The number of selected features
is determined by the estimation error, classification capacity
and relativity. Although the classification ability of a single
tree may be low, after randomly generating many decision
trees, a test sample could be assigned to the most expected
class via the statistical results of the classification for every
tree. Particularly, when dividing the attributes, traditional
decision trees select an optimal attribute from the attribute
set of a current node (assuming that there are d attributes).
For each node in the original decision tree, the RF randomly
selects a subset with k attributes from the attribute set of
one node; then, it selects an optimal attribute for division.
The parameterkcontrols the degree of randomness, which
generally equals log2d.
There are two main ideas in a RF:
(1) Bagging: A total of K training sample sets (Tk , k =

1, 2, . . . ,K ), which are of the same size, are randomly
selected from the original sample set X using random sam-
pling with a replacement strategy. Approximately 37% of the
samples are not selected each time. Then, a corresponding
decision tree is created based on each training sample set.

(2) Featured subspace: When splitting each node in a
decision tree, a featured subset is randomly selected from
all features (generally, the number of selected features is
log2(M ) + 1, where M represents the total number of fea-
tures); then, an optimal feature is selected from this featured
subset to split the node.

While building each decision tree, the process of random
selection for the training sample set and the feature subset
is independent. It is a sequence comprising the independent
and identical distribution of random variables. The training
process in a RF is a process that trains each individual deci-
sion tree. Since the training process for each decision tree
is mutually independent, parallel processing is suitable for
substantially improving the efficiency of model generation.
Then, a RF is generated by combining K trained decision
trees.

C. THE PROPOSED APPROACH
The proposed method uses the RF machine learning algo-
rithm to build the relationship between PM2.5 and MODIS
satellite images directly without retrieving the AOD. The
following presents the details of each step.

1) SAMPLE SELECTION
There are 102 PM2.5 ground observation stations in the study
area. The PM2.5 datasets from these 102 stations are ran-
domly assigned as training samples, validation samples, and
test samples at a ratio of 4:4:3. First, we randomly select
32 stations as test samples and randomly divide the remaining
stations into 40 training samples and 30 validation samples.
Moreover, the influence of clouds is considered when gener-
ating the training samples (i.e., by overlapping a cloud mask
on the MODIS dataset); if a cloud exists in a point over an
observation station, the pixel encompassing this point in the
MODIS image is not be selected as a training sample. The
structure of the training data from the i-th observation station
is as follows if there are no clouds over the station:

〈x1, x2, . . . , x16, x17, . . . , x38, x39, . . . x60〉i, yi (1)

where x1-x16 represent the 16 emissivity wavebands, x17-x38
represent the 22 radiance wavebands, and x39-x60 represent
the 22 reflectance wavebands. yi denotes the PM2.5 ground
truth data at the i-th observation station.

To improve the robust predictivity of themodel, we enabled
some enhanced pre-processing on the training data. The new
training samples include not only the pixel corresponding
to the observation station but also all pixels in the 5 ∗ 5
neighborhood of the station. Then, new training samples are
created, including the pixels and their corresponding PM2.5
ground truth data after interpolation. This enhancement is
reasonable due to the first law of geography: ‘‘all attributed
values on a geographic surface are related to each other, but
closer values are more strongly related than more distant
ones’’ [26]. Hence, the data within a 5 ∗ 5 neighborhood of
an observation station have great confidence when treated as
ground truth data. Thus, there are up to 25 training samples
at one observation station which is not covered by clouds.

Otherwise, only pixels corresponding to an observation
station are selected as the validation and test samples. Thus,
there are up to 30 validation samples and 32 test samples
when the condition that clouds don’t exist is met.

2) MODEL TRAINING
Generally, evenly distributed training samples are the most
representative. In addition to the first randomly selected
32 test samples, the remaining 70 are randomly divided into
40 training samples and 30 validation samples. To enhance
the even distribution of training samples, 150 different sets
of training and validation samples are randomly generated.
Then, based on 150 sets of training and evaluation sam-
ples, 150 training models are generated using the RF algo-
rithm. The performance of each model is evaluated based on
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the determination coefficient defined as R-squared (R2) and
refers to the ratio between the sum of squares of dependent
variable X and the sum of squares of independent variable
Y . Thus, the value of R2 determines the relative degree of
closeness. When R2 is close to 1, the determined equation
has a higher reliability. Otherwise, when R2 is closer to 0, the
determined equation has lower liability. In this paper, R2, root
mean square error (RMSE) and correlation coefficient (CC)
are computed by the following equations,

R2j =

∑Nj
i=1 (y

′
j,i − yj)

2∑Nj
i=1 (yj,i − yj)

2

RMSEj =

√∑Nj

i=1

(y′j,i − yj,i)
2

Nj − 1

CCj =

∑Nj
i=1 (y

′
j,i − yj)(yj,i − yj)√∑Nj

i=1 (y
′
j,i − yj)

2
√∑Nj

i=1 (yj,i − yj)
2

(2)

where j represents the number of training sets (in this paper,
j = 150), Nj represents the number of valid validation sam-
ples in the j-th model, y′j,i and yj,i represent the predicted and
ground truth values, respectively, yj represents the average of
the ground truth data.

Then, a histogram of all R2 values in the 150 models is
obtained using a 0.1 interval. Based on the interval with the
highest frequency, all models corresponding to the R2 values
in this interval are selected to build an optimized multi-model
group.

3) MODEL TESTING
Every model in the previous multi-model group is used to test
the samples, and the corresponding prediction is obtained.
Then, the weighted integration of the prediction result for
each model is applied based on its R2 value using the follow-
ing weighted process to obtain the final prediction values:

PM (i) =
n∑

k=1

wk × PM (i)k =
n∑

k=1

R2k
n∑

p=1
R2p

× PM (i)k (3)

where n represents the number ofmodels in the optimalmulti-
model group, PM (i)k represents the prediction value of the
i-th test sample generated by the k-th model. R2k refers to the
R2 value of the k-th model. The R2 value, RMSE, CC and
other indices are calculated to validate the performance of the
trained model.

4) MODEL APPLICATION
Every model in the previous multi-model group is used to
identify the cloudless areas in the entire MODIS image, and
the corresponding prediction is obtained using the similar
weighted integration:

PM (i, j) =
n∑

k=1

wk × PM (i, j)k =
n∑

k=1

R2k
n∑

p=1
R2p

× PM (i, j)k

(4)

where n represents the number ofmodels in the optimalmulti-
model group, PM (i, j)k represents the prediction value of a
pixel located in (i, j) generated by the k-th model. R2k refers
to the R2 value of the k-th model. PM represents the final
retrieved result with the same spatial resolution as the original
MODIS image (1 km), which is much higher than that of the
AOD (3 km).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET
TheMODIS datasets covering the study area are used to eval-
uate the proposed method for PM2.5 retrieval. The dataset is
collected from NASA (https://ladsweb.modaps.eosdis.nasa.
gov/). The MODIS datasets provide 16 emissivity bands,
22 radiance bands and 22 reflectance bands. The com-
pared data derive from the AOD products in the MODIS
datasets with a 3 km resolution, which is accessible from
http://modis-atmos.gsfc.nasa.gov/products.html and applies
the C6.1 version product of the DT algorithms. Moreover,
Weka [27] is used to implement the RF machine learn-
ing algorithm, which is available through the given link
(https://www.cs.waikato.ac.nz/ml/weka/index.html).

Due to the characteristics of the atmosphere and environ-
ment in Guangdong Province, the MODIS datasets are gen-
erally covered by clouds, which results in missing data in the
AOD products. Thus, this paper applies kriging interpolation
to designate values for the missing data. Although a number
of approaches have been proposed for AOD retrieval, these
approaches generally import auxiliary data and specific oper-
ations to improve retrieval accuracy. To avoid the influences
from other factors, we only use the AOD products at the
highest spatial resolution (C6.1 version, 3 km) to retrieve
PM2.5 with a classic linear regression:

Y = xTi α + βi, i = 1, 2, . . . . . .n (5)

where Y represents the dependent variable, xi represents the
i-th explanatory variable, α is the estimating coefficient, and
βi is a constant.
Since the study area is usually covered by clouds, we select

data that have few clouds in 2015 and 2016. The experi-
mental ground observational data for PM2.5 derives from 102
environmental monitoring stations in Guangdong Province.
Thirty-two stations are randomly selected for testing, and the
remaining 70 stations are randomly divided into 40 training
stations and 30 verification stations. At the same time, the
coefficient of determination (R2) and the root mean square
error (RMSE) are used as evaluation indicators to compare
the retrieval effects.

B. SPATIAL-TEMPORAL MATCHING DURING
PRE-PROCESSING FOR AOD-BASED RETRIEVAL
As mentioned previously, the satellite dataset used in this
paper is MOD021KM, which provides 16 emissivity bands,
22 radiance bands and 22 reflectance bands at a 1 km resolu-
tion. The AOD dataset is the MODIS version C6.1 DT prod-
ucts at a 3 km resolution. The PM2.5 ground truth datasets
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FIGURE 2. Experimental result on 2015.08.25. (a) Original emissivity data composed with 1, 2 and 3 wavebands. (b) Original
reflectance data composed with 1, 2 and 3 wavebands. (c) Original radiance data composed with 4, 5 and 6 wavebands. (d) Original
AOD data with lacking data in black. (e) AOD Kriging interpolation data. (f) PM2.5 observational data without clouds. (g) PM2.5 data
retrieved by AOD. (h) PM2.5 data retrieved by RF.

comprise hourly observation data from 102 observation
stations.

The timewhen theMODISTerra satellite starts to pass over
the study area is 10:30 am. To unify the data generation time,

we select the average value of the PM2.5 observational data
achieved from 10 am to 11 am as the ground truth data.

The spatial resolution of the AOD dataset and MODIS
images are 3 km and 1 km, respectively. Thus, spatial
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FIGURE 3. Experimental results on 2015.08.25. (a) RMSE histogram distribution of AOD-based retrieval in training and validating procedure. (b) RMSE
histogram distribution of RF-based retrieval in training and validating procedure. (c) R2 histogram distribution of AOD-based retrieval in training and
validating procedure. (d) R2 histogram distribution of RF-based retrieval in training and validating procedure.

matching of these two datasets is required based on geograph-
ical coordinates. To display the spatial distribution of the
ground truth PM2.5, we convert the PM2.5 observational data
from all 102 stations into a new dataset with a 1 km spatial
resolution via kriging interpolation. Moreover, AOD datasets
usually lack data due to the influence of clouds and other
factors. Thus, we also use kriging interpolation to regenerate
missing data.

C. RETRIEVAL RESULTS AND COMPARISONS
ON 2015.08.25
Figure 2 shows the MOD021KM data taken on 8/25/2015.
The images visualize emissivity and radiance by combin-
ing wavebands No. 1, 2 and 3 and reflectivity by com-
bining wavebands No. 4, 5 and 6. We use the cloud
detection function in the MODIS dataset to create masks
for the cloud pixels, which are shown as black regions in
Figures 2(a), (b), (c) and (h). Moreover, there are many data
lost in the AOD product. A large black block can be observed

in Figure 2(d). Thus, we apply kriging to interpolate the
original AOD dataset, and the interpolation results are shown
as a pseudo-colored map in Figure 2(e), which also shows
clear blocking effects. The original PM2.5 dataset is the point
data. We apply kriging interpolation to convert the point data
into area data, which are shown in Figure 2(f). Figure 2(g)
shows the PM2.5 retrieval results generated by the linear
regression on AOD data after the kriging interpolation, and
Figure 2(h) shows the proposed result. The redder the color,
the greater the concentration of PM2.5; the bluer the color,
the lower the concentration of PM2.5.

From Fig. 2(f) we can see that the central and southwest
areas have high PM2.5 concentrations, and the east areas
have lower PM2.5 concentrations. The retrieval result based
on the AOD data (Fig. 2(g)) is much different than that
from the PM2.5 ground observation data, which is mainly due
to the missing data in the AOD dataset. Otherwise, the results
generated by our proposed approach are similar to the ground
observation data in general, with higher PM2.5 concentrations
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FIGURE 4. Experimental results on 2015.08.25. (a) Prediction results of AOD optimal multi-models group. (b) Prediction results of
RF optimal multi-models group. (c) AOD-based prediction scatter and statistical result. (d) RF-based prediction scatter and
statistical result.

in the central and southwest areas and lower PM2.5 concen-
trations in the eastern areas.

Figure 3 shows a histogram distribution of the RMSE and
R2 for 150 models. The horizontal axis represents the range
of values and the interval of the RMSE histogram (0-10 for
range and 1 for interval), and those of the R2 histogram
(0-1 for range and 0.1 for interval), respectively. The vertical
axis represents the frequencies of RMSE and R2 located at
specific intervals (i.e., the number of models).

From the histogram representing AOD retrieval, a majority
of RMSE and R2 values are distributed in ranges of 8-9 and
0-0.1, respectively. Otherwise, based on the histogram distri-
bution of RF retrieval, a majority of RMSE and R2 values
are distributed in ranges of 5-6 and 0.6-0.7, respectively. This
proves that the RF retrieval outperforms the AOD retrieval.
Since the training and validation data for 150 models are
randomly selected from 70 stations, when the observation
stations are not distributed evenly, higher RMSE values and
lower R2 values might be observed. Thus, we select the

models with the highest frequency as those in the optimized
multi-model group. A total of 142 models are selected from
the AOD model in the interval 0-0.1, and 50 models are
selected from the RF model in the interval 0.6-0.7.

Due to the influence of cloud coverage, the data of
only 21 test observation stations are available. Figure 4
shows the statistical results of 21 observation stations.
Figures 4(a) and (b) show the prediction results of 21 obser-
vation stations generated by the AOD model and RF model,
respectively. The thick black line denotes the ground truth
values, and the colored thin lines refer to the results generated
by the every selectedAODandRFmodel. Figures 4(c) and (d)
shows the prediction results in a scatterplot, where the RMSE
value, R2 value and CC of the 21 observation stations are
generated by the optimized AOD multi-model group and
optimized RF multi-model group, respectively.

From Figs. 4(a) and (b), the prediction results generated
by the AOD optimal multi-model group have significant
differences from those of the ground truth data, while the
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FIGURE 5. Experimental result on 2015.08.26. (a) Original emissivity data composed with 1, 2 and 3 wavebands. (b) Original
reflectance data composed with 1, 2 and 3 wavebands. (c) Original radiance data composed with 4, 5 and 6 wavebands. (d) Original
AOD data with lacking data in black. (e) AOD Kriging interpolation data. (f) PM2.5 observational data without clouds. (g) PM2.5 data
retrieved by AOD. (h) PM2.5 data retrieved by RF.

RF-based prediction results are similar to the ground truth
data. From Figures 4(c) and (d), after the weighted integra-
tion, the RMSE, R2 and CC by the RF-based approach are

approximately 4, 0.82 and 0.9, respectively, which shows a
strong correlation. These indicators prove that the RF-based
approach outperforms the AOD-based method. Moreover, it
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FIGURE 6. Experimental results on 2015.08.26. (a) RMSE histogram distribution of AOD-based retrieval in training and validating procedure. (b) RMSE
histogram distribution of RF-based retrieval in training and validating procedure. (c) R2 histogram distribution of AOD-based retrieval in training and
validating procedure. (d) R2 histogram distribution of RF-based retrieval in training and validating procedure.

shows that missing AOD data have a significantly negative
influence on the PM2.5 retrieval.

D. RETRIEVAL RESULTS AND COMPARISONS
ON 2015.08.26
Figure 5 shows the experimental results from another dataset
with fewer clouds. The black areas represent masks that
are provided by the cloud detection product in the MODIS
dataset. Although the degree of missing AOD data is slightly
smaller than the previous one, many missing data are still
observed in Fig. 5(d), which also produces blocking effects
after the kriging interpolation in Fig. 5(e). Fig. 5(f) represents
the kriging interpolated ground observational values, and
Figs. 5(g) and (h) show the retrieval results by the AOD
method and our proposed method, respectively.

Based on the kriging interpolated ground observational
results, it can be seen that the concentrations of PM2.5 in the
central and southwest regions are relatively large, and those in
the east are relatively small. The results of the AOD retrieval
are obviously large for the whole region, especially in the

eastern region. However, the proposed RF-based method still
shows obvious consistency with the ground observations.
Because the clouds are mainly concentrated over mountains
in the study area, 32 stations are randomly selected.

Figure 6 shows a histogram of the RMSE and R2 for the
validation samples in 150 models via the AOD and RF-based
approaches. The representations of horizontal and vertical
axis are the same as that of Fig.3. The RMSE is distributed
across the 0-11 range at an interval of 1, and R2 is distributed
across the 0-1 range at an interval of 0.1.

Based on the RMSE results in Fig. 6, the RMSEs
of the 150 AOD-based retrieval models are concentrated
between 5-6, while those via the RF model are concentrate
between 2-3. Based on the R2 results, the AOD retrieval
results are relatively concentrated from 0.4-0.5, and the
RF-based results are clearly concentrated from 0.8-0.9. From
the above results, it can be seen that most models via the
RF-based method in this paper can obtain good prediction
results regarding the validation set, while the AOD-based
method has a relatively weak prediction capability.
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FIGURE 7. Experimental results on 2015.08.26. (a) Prediction results of AOD optimal multi-models group. (b) Prediction results of
RF optimal multi-models group. (c) AOD-based prediction scatter and statistical result. (d) RF-based prediction scatter and
statistical result.

Figure 7 shows the performances of the optimal multi-
model group of the AOD and RF methods on the tested sam-
ples. The AOD optimal multi-model group has 36 members,
while that of the RF has 93 members, indicating that the RF
multi-model group has a better stability performance.

From Figs. 7(a) and (b), it can be seen that there are
significant differences between the effects of the AOD-based
prediction results and the ground observational data on the
test samples. However, the trend in the RF-based method
in this paper is consistent with that of the ground obser-
vational data, and there are only certain differences among
a few stations. From the statistical indicators in the prediction
results, the RMSE of the AOD-based method exceeds 6,
the R2 is only 0.14, and the CC is only 0.37. However, the
statistical performance of the RF-based method in this paper
is much better than that of the AOD-basedmethod, as it shows
a clear linear relationship.

E. MORE EXPERIMENTAL RESULTS
This subsection provides the experimental results based
on other datasets examined on 2015.04.15, 2015.04.17,

2015.08.08, 2015.10.15, 2015.10.17, 2015.12.20, 2016.02.6,
2016.02.9 and 2016.03.20, and data from each of the four
seasons are included. Figure 8 only shows the experimen-
tal results of the datasets examined on 2015.10.15 and
2016.03.20.

From Fig. 8, the prediction results generated by the AOD
optimal multi-model group are significantly different from
those of the ground observational data, but the RF-based
prediction results are similar to those of the ground observa-
tional data. Moreover, the results produced by our proposed
method have a higher spatial resolution. Table 1 lists the
RMSE and R2 indices for the retrieval results from different
datasets.

From the above table, we can see that the R2 value of the
proposed method is larger than that of the AOD method, and
the RMSE is lower, indicating that the proposed method has
obvious advantages. Cloud coverage and missing AOD data
are two main reasons for the variations in R2 and RMSE.
There are a number of AOD data that are missing in the study
area, and the data resulting from kriging interpolation cannot
precisely represent the true distribution of AOD values.
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FIGURE 8. More retrieval results. (a)(c)(e) are the Kriging interpolated PM2.5 ground observational data, AOD-based retrieval result
and RF-based retrieval result on 2015.10.15. (b)(d)(f) are the Kriging interpolated PM2.5 ground observational data, AOD-based
retrieval result and RF-based retrieval result on 2016.3.20.

TABLE 1. Assessment results for more experiments.

V. DISCUSSION
This paper considers the error propagation process in the
existing PM2.5 retrieval method, and proposes a direct
retrieval method of PM2.5 based on random forest machine

learning. It tries to skip the error propagation process and
directly learn PM2.5 characteristics from the original image
to enable high-precision retrieval of PM2.5. The experimental
results show that the method is more accurate than the AOD
product based retrieval. However, as a basic and simplest
attempt, there are still some issues to be explored in this paper.

The ground PM2.5 monitoring station is relatively rare.
Therefore, in order to obtain the PM2.5 concentration dis-
tribution on the surface, the Kriging interpolation technique
is used. The PM2.5 concentration after Kriging interpolation
is not only used to establish the relationship between AOD
and PM2.5 in the conventional method, but also used in
the enhanced pre-processing of the training samples in the
proposed method. The choice of interpolation method will
have a certain impact on the final retrieval results. At the
same time, the terrain is also one of the factors affecting the
PM2.5 concentration distribution. In this paper, the interpo-
lation process does not consider the terrain. For one reason,
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the physical influence mechanism of terrain on PM2.5 is
not so clear [28]–[30], which may increase the uncertainty
of PM2.5 concentration distribution after interpolation; for
another reason, it is limited by spatial resolution, i.e., at
3 km or 1 km spatial resolution, the terrain influence may
not be as big. The goal of this paper is an attempt, so only
the most conventional Kriging interpolation is used. In the
later research, we will study the influence of terrain on PM2.5
retrieval to further improve the retrieval accuracy.

As mentioned above, most of the existing PM2.5 retrieval
methods firstly use the atmosphere transmissionmodel, accu-
rately invert AOD, and then establish the relationship between
AOD and PM2.5. There are a lot of research results, introduc-
ing a large number of methods using physical or chemical
principles, and various auxiliary data to improve the accu-
racy of AOD retrieval. In the process, introducing an addi-
tional data will increase uncertainty at the same time. These
methods are based on certain reasonable physical or chem-
ical assumptions, reflecting to some extent the true trans-
mission process of the atmosphere. In fact, the atmosphere
transmission process is very complex. There is currently no
physical or chemical model which can accurately simulate
the effects of various components of the atmosphere and
various meteorological conditions on PM2.5 distribution. Any
approximation process is error-prone. In the imaging process
of remote sensing images, the effects of various components
of the surface, atmosphere and meteorological conditions are
fixed in the spectral information of the pixels. Although the
influence of each surface and atmospheric component cannot
be accurately distinguished from the spectral information of
a single pixel, from a holistic point of view, the spectral
information of the pixel also reflects the influence of the
surface and atmosphere to a certain extent, and the PM2.5 of
different concentrations is correspondingly reflected in the
spectral information. Based on this assumption, this paper
uses machine learning techniques to directly learn the rela-
tionship between surface and atmosphere and PM2.5 from
spectral information to attempt to retrieval PM2.5. Although
the physical or chemical mechanism of the method is not
clear, the results show that the method is still feasible. At the
same time, the use of spectral information directly in this
paper is still too simple. Further pre-processing of the spectral
information, for example, extracting more specific features,
may be beneficial for improving PM2.5 retrieval accuracy.
The atmospheric environment is complex and unpre-

dictable, especially in the coastal areas of South China, where
atmospheric convection is very frequent and atmospheric
instability effect is obvious. Under this condition, trying to
build a generic generalized model to retrieval the daily PM2.5
concentration is obviously very difficult. Based on this con-
sideration, the machine learning-based method proposed in
this paper, for each day’s PM2.5 concentration retrieval, uses
only the image of the day and the corresponding observed
PM2.5 concentration for training. The trained model is only
valid for the day. The data of some observation stations are
trained, and the model obtained by the training is used to

generate the PM2.5 concentration of other areas without the
stations, thereby realizing the PM2.5 concentration retrieval
on a wide range. Through this kind of thinking, the changes
in the daily atmospheric environment do not have much influ-
ence on the method proposed in this paper, because the daily
training data will change with the changes of the atmospheric
environment, and the trained model can also adapt to the
daily atmospheric instability effect. However, finding a more
generalized model is still the focus of future research. Using
more powerful machine learning methods, for example, deep
learning, to learn the laws of atmospheric change may be one
of the ways to improve the generalization ability of themodel.

VI. CONCLUSION
Improvements on the MODIS AOD algorithm have produced
more precise AOD products. However, these methods can-
not avoid errors during the process of AOD retrieval. This
paper integrates an ensemble RF machine learning algorithm
and remote sensing images to directly build a relationship
between remote sensing data and ground observation PM2.5
data, which effectively reduces the error propagation. The
experimental results at a 3 km resolution via the AOD prod-
ucts in MODIS and the PM2.5 data from 102 observation
stations in Guangdong Province indicate that our proposed
approach can better produce PM2.5 retrieval results. In addi-
tion, the spatial resolution of PM2.5 retrieval result derived
from AOD products in MODIS is 3 km, while the proposed
result could achieve 1 km spatial resolution, which is the same
as the spatial resolution of MODIS image itself. This work
attempts to directly establish the relationship between satel-
lite images and ground truth PM2.5 using ensemble machine
learning technology, and the experimental results have proven
the effectiveness of the proposed approach, although the pro-
posed method is simple. Therefore, future work will focus
on improving the robustness of our proposed approach by
extending the size of the study area and using more datasets.
The integration of other machine learning methods to build
new retrieval models will also be a key point in future works.
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