IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 25, 2019, accepted March 19, 2019, date of publication April 3, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2908011

A Multi-Stage Metaheuristic Algorithm
for Shortest Simple Path Problem

With Must-Pass Nodes

ZHOUXING SU"“, JUNCHEN ZHANG, AND ZHIPENG LU

SMART, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Zhipeng Lii (zhipeng.lv@hust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61370183 and Grant 71320107001.

ABSTRACT The shortest simple path problem with must-pass nodes (SSPP-MPN) aims to find a minimum-
cost simple path in a directed graph, where some specified nodes must be visited. We call these specified
nodes as must-pass nodes. The SSPP-MPN has been proven to be NP-hard when the number of specified
nodes is more than one, and it is at least as difficult as the traveling salesmen problem (TSP), a well-known
NP-hard problem. In this paper, we propose a multi-stage metaheuristic algorithm based on multiple strate-
gies such as k-opt move, candidate path search, conflicting nodes promotion, and connectivity relaxation for
solving the SSPP-MPN. The main idea of the proposed algorithm is to transform the problem into classical
TSP by relaxing the simple path constraint and try to repair the obtained solutions in order to meet the
demands of the original problem. The computational results tested on three sets of totally 863 instances and
comparisons with reference algorithms show the efficacy of the proposed algorithm in terms of both solution
quality and computational efficiency.

INDEX TERMS Constrained shortest path, must-pass nodes, multi-stage metaheuristic algorithm, routing

problem, traveling salesman problem.

I. INTRODUCTION

The shortest simple path problem with must-pass nodes
arises in many industrial applications. For example, many
services provided by communication companies and Internet
service providers are related to routing problems in the opti-
cal network. There are some nodes with special properties,
such as relays, which need to be accessed in a lightpath
in order to meet the demand for resource, time, capacity,
and other constraints. These requirements can be empiri-
cally transformed to the must-pass constraint. In road or
railway networks, issues such as supply chain management,
sightseeing planning, and shopping routing [1] etc., can also
be reduced to the shortest simple path problem with must-
pass nodes (SSPP-MPN). Similar to the classical routing
problems, each edge between a pair of nodes is associated
with a weight. Meanwhile, there are some nodes that must
be included in the path, which distinguishes the SSPP-MPN
from the classical shortest path problem. Thus, the objective
of the SSPP-MPN is to find a minimum cost simple path that
satisfies the must-pass constraint.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huaqing Li.

Due to the significance of SSPP-MPN in terms of both
theory and practice, many researchers have studied this prob-
lem in the literature during the last decades. SSPP-MPN
was first introduced by Saksena and Kumar [2] and the
authors designed an algorithm based on optimality princi-
ple. However, Dreyfus [3] pointed out that Saksena and
Kumar’s algorithm is incorrect because some preconditions
are proven to be wrong. Dreyfus indicated that if the simple
path constraint is neglected (that is to say, there may exist
loops), the SSPP-MPN can be converted into TSP. Specifi-
cally, the shortest distance between each pair of must-pass
nodes (including the source and destination nodes) in the
SSPP-MPN can be considered as the distance of each pair
of nodes in the TSP. Then, the algorithms such as [4]-[6] for
solving the well-studied TSP can be directly used to solve
the SSPP-MPN. Ibaraki proposed a dynamic programming
algorithm and a branch-and-bound algorithm to solve the
SSPP-MPN [7], where it was pointed out that branch-and-
bound algorithm is more effective than dynamic program-
ming. Vardhan et al. [8] proposed a heuristic algorithm to
solve the SSPP-MPN. They divided the search process into
two stages. The first one is to determine all the candidate
paths between two adjacent must-pass nodes by a network

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

52142

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4794-9833
https://orcid.org/0000-0001-9185-3233

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

IEEE Access

flow algorithm and the order of must-pass nodes is given by
random arrangement or applying a depth-first search algo-
rithm from source to destination. The second stage uses back-
tracking algorithm to select paths which connect adjacent
must-pass node pairs and satisfy the simple path constraint.
Gomes et al. [9] proposed a heuristic algorithm for finding
the shortest path with must-pass nodes with a protection path.
The algorithm finds two node-disjoint paths from source to
destination simultaneously, and the first path must satisfy the
requirements of must-pass nodes. Their algorithm improves
the Saksena and Kumar’s algorithm, using the k-shortest path
algorithm to search for multiple candidate paths between
must-pass nodes, but the algorithm does not guarantee that
a feasible solution can always be obtained. Martins and
Gomes et al. [10]-[12] proposed two heuristics for the SSPP-
MPN which are Path with Specified Nodes (PSN) and Path
with Specified Nodes using Trap Avoidance (PSNTA). The
authors pointed out that PSN is more effective than PSNTA
for large scale instances.

Andrade [13], [14] proposed several mathematical formu-
lations for the SSPP-MPN. First, he proposed a 02 model
based on spanning tree polygons, followed by an analysis
of the compact model Q3 based on the duality principle.
Another commodity flow based formulation called Q4 is also
presented, and it is able to produce better lower bound than
02 and Q3. The author tests these formulations on a set
of randomly generated instances and instances transformed
from TSPLIB. Experiments demonstrate that O3 outperforms
Q2 in most cases.

In this paper, we propose a multi-stage metaheuris-
tic (MSM) algorithm based on a classical TSP algorithm for
solving the SSPP-MPN. The proposed MSM algorithm inte-
grates several distinguishing features, such as using the LKH
algorithm with k-opt moves to determine the order of must-
pass nodes, a method to generate candidate paths in order
to minimize the number of conflicting nodes, a conflicting
nodes promotion strategy to enforce repeatedly visited nodes
to be virtual must-pass nodes and a connectivity relaxation
technique for repairing feasibility. Our MSM algorithm is
tested on three sets of totally 863 benchmark instances in
the literature and shows its efficacy in terms of both solution
quality and computational efficiency.

The remainder of the paper is organized as follows. The
problem definition and mathematical formulation of the prob-
lem are presented in Section II. The proposed multi-stage
metaheuristic algorithm is presented in Section III. Experi-
mental results and the analysis are described in Section IV,
before concluding the paper in Section V.

Il. PROBLEM DESCRIPTION AND

MATHEMATICAL FORMULATION

A. PROBLEM DESCRIPTION

The SSPP-MPN can be described as follows: Let G = (V, E)
be a directed graph, V = {1, 2, ..., n} be the set of nodes and
E ={@G,)|l <i<n,1 <j<n}be the set of edges, where
each edge is associated with a positive weight D;;. Given a set

VOLUME 7, 2019

of must-pass nodes V,,, C V, and the source node s and the
destination node #, the problem aims to find a simple path P =
(v, 01, v2), oo i DIV = U i, Vi C V! S V)
of minimum cost in graph G from the source node s to the
destination node ¢, where each node in V,, must be visited.

If the set of must-pass nodes contains all the other nodes
except for the source and destination nodes, i.e., |V,,| = n—2,
then all the nodes should be visited, and the problem is
equivalent to a TSP by merging the destination node ¢ and
the source node s into a single node. As a classical NP-hard
problem, TSP aims to find a minimum cost Hamiltonian
circuit [15]. On the other hand, if the set of must-pass nodes
is empty, namely |V,,| = 0, SSPP-MPN becomes the shortest
path problem from s to . However, if the number of must-
pass nodes is more than 1, the SSPP-MPN is at least as hard
as TSP with |V,,| 4+ 1 dimensions.

B. MATHEMATICAL FORMULATION

In this section, we show three integer programming math-
ematical formulations for the SSPP-MPN. Inspired by the
TSP formulation [16], the mathematical formulations of the
SSPP-MPN are closely related to that of TSP [14].

Before introducing these models, we define some common
constraints for different formulations as below. Let x;; be a
boolean decision variable which denotes that edge (i, j) exists
in the solution if x;; = 1, otherwise it is not visited.

i€V jev j#i
subject to Z Xjj— Z Xji
jeviy jev—{i)
-1 i=t
=10 YiC N —{s,t})
1 i=s
Y xj=1 VieV, (3)
jev—1i)
doxp<1 VieV -V, 4
jev—1i)

This is the basic model for the SSPP-MPN. Objective
(1) aims to minimize the total distance of the path. Constraint
(2) ensures the path connectivity that the in-degree and out-
degree must be consistent at each node except for s and 7,
i.e., there will always be a pair of incoming edge and outgoing
edge for each visited node. Constraint (3) guarantees that each
must-pass node should be visited exactly once. Constraint (4)
is the simple path constraint which makes sure that each node
will never be visited more than once.

However, this basic model is not complete. If we only apply
constraints (2)—(4), the solutions may contain some cycles
called sub-tours which break the path connectivity. In order to
make this basic model complete, constraints for eliminating
sub-tours should be added. Here, we present three different
ways to conduct the sub-tour elimination.

52143

IEEE Access

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

1) CONVENTIONAL FORMULATION (CF)

We add constraint (5) to the basic model to obtain a com-
plete formulation of the SSPP-MPN. The idea comes from
conventional model of TSP in [17]. Constraint (5) indicates
that there must be at least one absent edge in each sub-tour,
denoted as S, which can be either a cycle or a path that does
not include all the must-pass nodes. Note that the number of
constraint (5) is exponential.

dow<ISI=1 ¥YSCV.2<|S|<n)
(i.)es

2) SEQUENTIAL FORMULATION (SF)

We introduce a continuous decision variable y;, representing
the sequence of visit to node i. Constraint (6) restricts that if
edge (i, j) is in the solution, node i should be visited before j,
i.e., y; < y;. If sub-tour exists and edge (i, j) is contained in
the cycle, then y; < y; should also be true since there is a
path from j to i in the cycle, which means that at least one of
yi < yjandy; < y; must be violated. Thus, no sub-tour could
appear in the solution without breaking constraint (6).

vi—yitmg<n—1 ¥i,jeV—ishi#j (©
3) COMMODITY FLOW BASED FORMULATION (CFF)
Intuitively, we can consider the SSPP-MPN as a problem of
sending some units flow from source node s to sink node .
By restricting that every node on the path consumes one
unit of the flow, there will be no sub-tours if there are non-
negative amount of flow along the path, since the source
which produces the initial flow is not on the sub-tours. We
introduce a continuous decision variable z;;, representing the
flow on edge (i, j). Constraint (7) restricts that the flow only
goes through the edges in the path, constraint (8) guarantees
that only n — 1 units flow come out from source s, and
constraint (9) requires that every node in the solution except
s consumes one unit of flow.

zjp = =Dy Vi,jeV,i#Fj (1)

Y zg=n—1 ®)

jev—is)
o= Y m= Y x VjeV—{(s (9
ieV—{j} keV—{j} ieV—{j}

Compared with the CF model, the SF and CFF formula-
tions are more compact, because they only have polynomial
number of constraints.

IIl. MULTI-STAGE METAHEURISTIC ALGORITHM

We propose a multi-stage metaheuristic (MSM) algorithm
that integrates several strategies based on a mutli-stage search
framework, such as a TSP solver to determine the order of
must-pass nodes and other sophisticated strategies to elimi-
nate loops. Our algorithm consists of three main stages. The
first stage is to determine the order of the must-pass nodes
by employing a TSP solver. The second stage is to minimize
the total number of conflicting nodes, i.e., the repeatedly

52144

visited nodes, as well as the distance of the path between
adjacent must-pass nodes. The last stage aims to obtain a valid
solution by promoting conflicting nodes to must-pass ones.
MSM algorithm terminates at any stage if a valid solution
is obtained. Besides, there is a post-processing procedure to
search for a feasible solution in case that all of the three above
mentioned main stages fail.

Algorithm 1 The Main Framework of the MSM Algorithm

Input: Graph G, must-pass node set V;,,, source node s, target
node ¢
QOutput: Path with least conflicting nodes and minimum
cost P*
1. P <o
2: repeat
3: G <~
Section III-A
4 T < SolveTSP(G")
5: P <« SearchCandidatePath(G, T)
6: if ConflictNodes(P) = & then
7
8
9

TransformProblem(G, V,,,, s, t) //

// Section I11-B
// Section III-C

return P
end if
. if P is better than P* then
10 P* <P
11: endif
122V, <« PromoteNodes(ConflictNodes(P), V;,,) //

Section III-D
13: until Stop condition is met
14; P* <« RelaxConnectivity(G, V,,, s, t, P*) /!
Section III-E
15: return P*;

The pseudocode of our MSM algorithm is given in
Algorithm 1. First of all, the original graph G is converted
to a new graph G’ by just considering the must-pass nodes
(including s and 7) and the shortest paths between each pair of
must-pass nodes (including s and) in G as its edges (line 3).
Then, a TSP solver is launched to find a Hamiltonian cycle
P with the minimum cost in G’ (line 4). Obviously, a simple
path in G’ may be transformed back to a path with loop in G.
If the conflicting number of the path P is equal to zero, then a
feasible solution is obtained, where the conflicting number
of the path P is equal to the number of nodes visited for
multiple times in the original graph G. Otherwise, a candidate
path search procedure is used to optimize the conflicting
node number of the path P (line 5). If it is unsuccessful,
anode promoting procedure is employed to virtually treat the
multi-visited nodes as must-pass nodes (line 12). The above
procedures are repeated until a feasible solution is obtained
or the stop condition is met (lines 2—13). If the best path is
still infeasible, a repairing procedure is invoked as double
insurance (line 14).

The main challenge of the SSPP-MPN lies in determining
the order of the must-pass nodes. After determining the order
of these specified nodes, path selection between adjacent

VOLUME 7, 2019

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

IEEE Access

must-pass nodes is employed to obtain a shortest path without
repeatedly visited nodes. These two stages interact with each
other. Adjusting the order of the must-pass nodes can opti-
mize the path distance. However, the simple path constraint
may be violated with the new order. Since this problem is
closely related to the TSP, we may use the TSP solver to
tackle this subproblem. In [3], Dreyfus pointed out that the
SSPP-MPN without simple path constraints can be trans-
formed into TSP, where must-pass nodes are connected via
their shortest path between them.

A. PROBLEM TRANSFORMATION

AND TOUR RESTORATION

Since our MSM algorithm employs a TSP solver to tackle the
subproblem of the SSPP-MPN, in this section we show how
to convert SSPP-MPN into TSP and restore the TSP solution
to the path in the original graph.

We denote G’ = (V', E’) as graph of TSP, the node set
V' = V,, U {s, 1}, the edge set E' = {(i,j)|i,j € V’}, and
denote Dj; as the weight of edge (i, j) in E'. Dj; is calculated
as the shortest path distance between nodes i and j in G where
nodes in V' are skipped for simple path constraint. If two
nodes in G’ are not connected, the weight of the edge between
them is infinite.

Algorithm 2 Problem Transformation

Input: Graph G, must-pass node set V,,, source node s, target
node ¢

Output: Transformed graph G’

: for each vertex vin V,, U {s, t} do

1
2: cost(v), path(v) < ShortestPath(G, v, V)
3: end for
4: for each vertex vin V,, U {t} do
5. cost(v, s) < cost(v, t)
6: end for
7: for node pair (u, v) in G’ do
8: cost’(u,v) < cost(u, v)
9: end for
10: return G’

The pseudocode of the transformation algorithm is given in
Algorithm 2. Procedure ShortestPath calculates the shortest
distance and paths for each node to other nodes in V' by
a shortest path algorithm [18]. Note that the shortest path
cannot visit other must-pass nodes. Otherwise, the simple
path constraint might be violated. Thus, a set of nodes to
be excluded is passed to the ShortestPath procedure (line 2).
Variables cost and path are two matrices to respectively store
the shortest distance and path for each pair of nodes in V.
Moreover, cost(v) and path(v) represent vectors of costs and
paths whose source node is v, respectively. Since solution of
TSP is a tour, after converting G into a TSP instance G, the
starting node s and ending node ¢ in G are merged into a single
node (it can also be considered as adding an edge (¢, s) in the
solution). Therefore, the cost of other nodes to sink 7 is set to
source s (lines 4-6). After that, all of the normal nodes and the

VOLUME 7, 2019

corresponding edges are dropped, and only the edges between
the must-pass nodes are copied to the transformed graph G’
(lines 7-9).

When a tour 7 on graph G’ is obtained by solving TSP,
we need to restore the tour to the original path on graph G in
order to obtain a feasible solution of the SSPP-MPN. Since
the shortest distance and the path of each pair of nodes in V,,
on graph G are given in advance, we only need to restore it
by querying matrix path.

B. TSP OPTIMIZATION PROCEDURE
The TSP optimization procedure consists of two stages. The
first one relaxes the simple path constraint and directly solves
TSP on graph G'. The second stage aims to minimize the total
number of conflicting nodes on the path, as well as optimizing
the path cost as the second objective.

1) DETERMINING THE ORDER OF MUST-PASS NODES

In the first stage, the MSM algorithm directly solves the
TSP by a classical solver on graph G’ without considering
the number of conflicting nodes in order to determine the
sequence of the must-pass nodes. Since the main challenge of
the problem is the order of must-pass nodes, our first objective
is to find a good order of the must-pass nodes by relaxing
the simple path constraints. Then, the conflicting nodes are
eliminated in the second stage.

If there is no conflicting node in the restored solu-
tion after the TSP optimization, then a feasible solution is
obtained. Otherwise, the second stage for minimizing the
number of conflicting nodes is required. In fact, the effec-
tiveness of MSM heavily relies on the performance of the
TSP solver. Only if the sequence of must-pass nodes is
of high quality, subsequent candidate path search and con-
flicting nodes promotion strategy are meaningful. Therefore,
we employ an efficient TSP solver called LKH proposed
in [4] which has been widely used in solving TSP and other
related problems.

2) MINIMIZING THE NUMBER OF CONFLICTING NODES
After the order of the must-pass nodes is determined, there
may exist conflicting nodes on the path. The reason might be
that the order of the must-pass nodes is inappropriate because
the simple path constraints are neglected.

In order to obtain a more reasonable sequence of the must-
pass nodes, we further perform k-opt moves [19] with an
additional condition, where the simple path constraints are
not relaxed. As long as there are conflicting nodes on the path,
it is an illegal solution. Therefore, there are two objectives in
this stage, namely the number of conflicting nodes on the path
and path weight. For example, assume that there are two paths
T, and T,, the weights of the two paths are w; and wy, and
numbers of conflicting nodes on the paths are ¢; and ¢;. Since
the main objective is to reduce the number of conflicting
nodes, if condition c; < ¢V (c; = cp Awy < wp)is satisfied,
we say that path 77 is better than path 7,. It is obvious
that the optimal solutions of this transformed problem are

52145

IEEE Access

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

the optima of the original problem. However, the optimality
and feasibility are not guaranteed by this procedure. This is
resulted from the heuristic nature of the LKH algorithm.

After this procedure, if there is no conflicting node on the
path, then MSM algorithm obtains an optimal or near-optimal
solution. Otherwise, it indicates that the SSPP-MPN cannot
be solved by the LKH algorithm. It is necessary to search for
candidate paths and use other advanced strategies to eliminate
loops.

C. CANDIDATE PATH SEARCH

The TSP optimization procedure aims to optimize the order
of the must-pass nodes as well as the number of conflicting
nodes. Since paths between the must-pass nodes are con-
nected via the shortest path in the stage of TSP optimization,
valid solution of the SSPP-MPN may not be obtained by only
changing the order of the must-pass nodes. Given a sequence
of must-pass nodes, there may exist repeatedly visited nodes
on the path connected by the shortest path, i.e., the set of
conflicting nodes C # &. In this case, we need to search
candidate paths instead of the shortest one. The candidate
path search (CPS) strategy tries to eliminate loops on the
path obtained by the TSP optimization procedure, such as
the k-shortest path algorithm [20] to reduce the number of
conflicting nodes.

In our algorithm, for each pair of must-pass nodes, we con-
sider its shortest path and the shortest path without visiting
the conflicting node. The purpose is to obtain a trade-off
between solution quality and computational efficiency, for
considering more candidate paths will be time-consuming
and sacrifice the solution quality. If the candidate path search
strategy cannot eliminate the conflicting nodes, a conflicting
nodes promotion strategy which will be introduced later in
Section III-D will promote these conflicting nodes to must-
pass nodes.

Specifically, the set of conflicting nodes is denoted as
C ={c1, c2, ..., ck}. For each conflicting node ¢; € C, there
are usually four (sometimes three) must-pass nodes involved
because the conflicting node c¢; is the intersection of two
pairs of must-pass nodes. The solution of the SSPP-MPN
can be represented as P(c;) = {....mp,...,ci,...,
my,...,m3,...,Ci ..., ms, ...}, where only the conflicting
node and involved must-pass nodes are shown. In order to
eliminate the conflicting node c;, the following candidate path
search strategy is used:

o Step 1. Segment (m1, my) keeps using the shortest path,
while segment (m3, my) is replaced by the shortest path
without visiting conflicting node c;. Note that the new
candidate path should not overlap with segments other
than these two segments.

o Step 2. Segments (m1, my) and (m3, m4) are sequentially
replaced by the shortest path without visiting the con-
flicting node c¢;, where simple path constraint must be
satisfied.

By swapping (m, m») and (m3, m4), we could get other

two steps for candidate path generation. We perform the

52146

Algorithm 3 Candidate Paths Search
Input: Graph G, tour in transformed graph T
Output: Path P
1: P <« RestoreTour(G, T)
2: for each vertex v in ConflictNodes(P) do
3: M <« LocateOnelnvolvedSegment(G, v)
4: search candidate paths for M
5. if better candidate paths were found then
6
7

update paths for segments M
end if
8: end for
9: return P

procedure defined in Algorithm 3 to eliminate the conflicting
nodes as well as optimizing the path distance. From all the
combinations of the candidate paths, we choose a feasible
solution with the lowest cost (lines 4-7). If all the above
candidate paths cannot eliminate the conflicting node c;,
we record ¢; and will promote it to a must-pass node in the
following stage.

D. CONFLICTING NODES PROMOTION

It is possible that a valid solution can still not be obtained
after the previous TSP procedure and candidate path search
strategies. In this case, some conflicting nodes are repeatedly
visited, implying that it is very likely that these conflicting
nodes should exist in the optimal solution. Based on this
assumption, we propose a conflicting nodes promotion (CNP)
strategy. Specifically, we promote these conflicting nodes to
virtually become must-pass nodes, which enforces each of
them to be visited just once. This procedure is equivalent to
adding the conflicting nodes to the set of must-pass nodes
in the original graph, then the previous two procedures are
relaunched.

The conflicting nodes promotion strategy is mainly used
to increase the chance for our MSM algorithm to obtain
a feasible solution. Especially, there could be significant
improvement on dense graphs. In the extreme case, a fea-
sible solution can be always obtained if all the nodes on a
complete graph are promoted to must-pass nodes because
the problem is equivalent to a TSP problem. If a conflict-
ing node is incorrectly promoted, a sub-optimal path may
be obtained. However, the aforementioned TSP optimization
and candidate path search procedures attempt to minimize the
number of conflicting nodes as far as possible. As a result,
the conflicting nodes promotion strategy can promote very
limited number of nodes to must-pass nodes to improve the
search effectiveness.

E. CONNECTIVITY RELAXATION

If each normal node is promoted or there exists a pair of
must-pass nodes that no path can be found between them,
it can be inferred that the CPS and CNP procedures will have
to stop even if there is no feasible solution found. In order

VOLUME 7, 2019

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

IEEE Access

FIGURE 1. Graph transformation and neighborhood move example. (a) The infeasible path with a conflicting node; (b) the transformed
complete graph and the mapped path; (c) the resulting path of a swap neighborhood move.

to improve the robustness of the algorithm, an additional
landscape smoothing technique is applied after each preced-
ing procedures failed. This landscape smoothing technique
makes it possible to pass through insurmountable barrier
(hard constraints) in the solution space. It is achieved by
adding a virtual edge between each pair of nodes which are
not connected with edges directly in the original topology.
The penalties for passing through the virtual edges are very
large and they correlate to the distance between the node
pairs. In detail, the length of a virtual edge is equal to the
length of the shortest path between its end points multiplying
the upper bound of the optimal path length. After connecting
the node pairs, the original graph is transformed into a new
complete graph. Then, we map the path with conflicting
nodes on the original graph to a feasible path with huge
penalty on the new graph. This is done by bypassing the
repeatedly visited nodes through the newly added virtual
edges. However, it just changes the type of infeasibility
instead of fixing one so far. So a randomized local search
procedure utilizing the insertion, deletion, ejection, move,
swap, and mirror neighborhood structures proposed in [21]
is executed to search for a better path. Note that the deletion
neighborhood cannot remove the original must-pass nodes
from the current path. In fact, the initial solution of the
randomized local search can be any path found in preceding
procedures, but the MSM starts the search from the path with
least conflicting nodes.

Fig. 1 illustrates the graph transformation and a simple
example of a neighborhood move. Assume that the path rep-
resented with dashed arrow in Fig. 1(a) is the path with least
conflicting nodes found before the failure of CPS and CNP
technique. The transformation is demonstrated in Fig. 1(b).
On one hand, virtual edges s <> t and m; < ¢ are added
and their weights are set according to the lengths of the
shortest paths between the end points. On the other hand,
the original path s — vi — m; — v; — t is mapped to
s — v — my — t where the second visit to v; is bypassed
and it goes from m to ¢ directly. Fig. 1(c) shows a possible

VOLUME 7, 2019

neighborhood move that repairs the solution by swapping the
sequence of visit to m; and v, which transforms the path into
s — mj — v — t, thereby eliminating the virtual edges and
making it a feasible path.

In sum, the key components of the proposed MSM algo-
rithm are illustrated in Fig. 2. First, it relaxes the sim-
ple path constraint and transforms the SSPP-MPN into
TSP and the transformed problem is solved by utilizing
an effective algorithm for TSP. Then, the tour for the
original problem is restored and candidate paths will be
evaluated if conflicting nodes exist. Next, if there are still
conflicting nodes, the MSM algorithm will promote them
as must-pass nodes and restart from the problem transfor-
mation. Finally, an additional connectivity relaxation proce-
dure is applied in case that all the aforementioned strategies
fail.

IV. COMPUTATIONAL RESULTS AND ANALYSIS

A. BENCHMARK INSTANCES AND

EXPERIMENTAL PROTOCOL

The benchmark instances in our test consist of three sets. The
first set consists of 240 instances generated from 12 networks
by randomly selecting must-pass nodes as done in [12]. The
second set contains 367 instances provided by Andrade [14].
The last set contains 256 large instances generated by our-
selves. For the 12 networks, five of them are obtained
from SNDLIib [22], other five ones were generated with the
Doar-Leslie model [9], [23] and the rest two networks were
CORONET CONUS and TeliaSonera [12], respectively. The
number of must-pass nodes of the 240 instances is the same
as in [9], [12]. For Andrade’s datasets, there are 340 random
instances whose number of nodes are 20, 40, 80, 200, and 300
(denoted by A20, A40, A80, A200, A300, respectively), and
there are 27 instances from TSPLIB [24] (denoted by Aatsp).
For our own dataset, the number of nodes are generally
larger than the aforementioned datasets. They can be further
divided into three categories, which are crafted sparse graph,
random dense graph with few must-pass nodes and random

52147

IEEE Access

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

O =0 o
ORI AR O

——— Solving TSP »441

Problem
Transformation
Connectivity
Relaxation
Conflicting

Nodes Promotion

Tour
Restoration

Candidate Path $J
Search

FIGURE 2. The key components of the proposed MSM algorithm.

dense graph with many must-pass nodes, respectively. In the
crafted category, there are 16 instances where the topology
or the distribution of the must-pass nodes are elaborately
designed. There are some clique instances which are com-
posed of a lot of small complete sub-graphs but are sparse
graphs in general, some grid instances which are generated
by adding some random edges into grid frameworks, some
hop instances whose weights on edges are equal and some
detour instances where the must-pass nodes are far from
the shortest path between the source and the destination.
In the random categories, there are 150 instances with 50 to
150 must-pass nodes and 90 instances with 50 to 1200 must-
pass nodes. The scales of the self-generated instances are
explicit in their names. The number following the character
v gives the vertex number, the one coming after the character
e presents the edge number, and the number following the
character d means the number of the must-pass nodes. The
proposed MSM algorithm is programmed in C++ and tested

52148

on Windows Server 2012, with Intel Xeon E5-2609 2.5 GHz
CPU and 32 GB memory. The MIP models are solved by
Gurobi 7.5 [25].

B. COMPUTATIONAL RESULTS

To assess the performance of our MSM algorithm, we per-
form five independent runs on each instance and record the
average results. The results are compared with the PSN algo-
rithm proposed by Martins and Gomes et al. [12] and the
04 model proposed by Andrade [14]. Tables 1 and 2 show
the average results over all the instances for each dataset.
The first row gives the number of must-pass nodes in both
tables.

In Table 1, Column PSN Gap presents the average opti-
mality gap obtained by Martins’s algorithm in percentage.
Column MSM Gap reports the average gap to the optimality
obtained by MSM algorithm in percentage. Column MSM
Time gives the average running time in seconds taken by the

VOLUME 7, 2019

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

IEEE Access

TABLE 1. Computational results on the 240 instances in [12].

[Vin| =2 [Vin| =4 [Vin| =8 [Vin| = 10 [Vin| = 20
Dataset PSN MSM MSM PSN MSM MSM PSN MSM MSM PSN MSM MSM PSN MSM MSM
Gap Gap CPU Gap Gap CPU Gap Gap CPU Gap Gap CPU Gap Gap CPU
newyork 0.11 0 0.03 1.95 0 0.03 - - - - - - - - -
norway 0.09 0 0.03 227 0.80 0.04 - - - - - - - - -
india35 0.24 0 0.03 1.80 1.20 0.03 359 2.70 0.03 3.80 0.95 0.03 - - -
pioro40 0.24 0 0.04 263 0 0.04 3.61 3.50 0.04 488 0 0.03 - - -
germany50 0.58 3.10 0.04 3.46 1.30 0.03 587 1.03 0.04 6.13 3.40 0.04 - - -
N500GO 0.26 4.20 0.06 246 8.90 0.06 5.60 4.30 0.06 648 0.20 0.09 9.82 2.40 0.13
N500G1 0.32 5.60 0.05 1.89 1.20 0.06 5.09 4.50 0.06 6.11 0.98 0.06 9.29 0.46 0.15
N500G2 0.30 4.30 0.05 255 2.10 0.06 555 3.00 0.06 6.39 5.60 0.07 9.04 4.10 0.13
N500G3 0.28 1.50 0.05 251 2.50 0.05 507 4.10 0.07 592 0.73 0.08 9.78 1.10 0.09
N500G4 0.21 2.00 0.06 2.12 2.50 0.06 433 1.60 0.06 4.94 3.90 0.08 932 7.20 0.16
CORONET 0.62 2.30 0.05 1.93 4.50 0.06 228 9.00 0.04 272 1.40 0.05 - - -
TeliaSonera ~ 0.21 0 0.03 027 0 0.06 0.08 0 0.03 - - - - - -
TABLE 2. Computational results on the 367 instances in [14].
[Vin] = 0.25]V] [Vin| = 0.5]V] [Vin| = 0.75]V] V| =1V -2

Dataset Q4 MSM MSM Q4 MSM MSM Q4 MSM MSM Q4 MSM MSM

CPU CPU Gap CPU CPU Gap CPU CPU Gap CPU CPU Gap
A20 0.08 0.04 1.8 0.09 0.04 0.19 0.11 0.04 0.06 0.21 0.05 0.07
A40 0.32 0.05 0.4 0.46 0.05 0.30 0.49 0.06 0.12 0.57 0.06 0.00
A80 1.33 0.06 0.4 2.18 0.10 0.08 3.04 0.15 0.02 342 0.12 0.00
A200 38.69 0.33 0.7 36.09 1.52 2.70 39.27 3.86 0.42 68.29 0.58 0.00
A300 - - - - - - - - - 594.20 0.31 0.00
Aatsp - - - - - - - - - 50.45 0.29 0.01
TABLE 3. Computational results on the 16 self-generated instances (crafted sparse graphs).
Instances Optima CF CPU SF CPU FF CPU Q3 CPU Q4 CPU MSM CPU MSM Best MSM Avg.
¢.v500e4396d50 152 - - 10.11 - 9.08 0.17 152 152
¢.v500e5990d199 4669 1.65 4.40 8.50 1.61 8.82 20.80 4669 4669
¢.v1000e5995d199 9967 5.17 17.74 29.11 8.03 31.09 71.45 9967 9976
¢.v1000e18281d200 874 57.53 128.80 236.25 2112.59 361.77 82.73 874 890
¢.v1000e18293d100 449 103.02 238.25 358.16 1319.63 362.90 1.62 450 450
¢.v2000e37052d400 1777 - - - - - 3561.00 1777 1777
¢.v200e990d20 597 1.29 1.28 2.63 1.22 0.96 0.06 597 597
¢.v200e990d40 899 1.64 2.29 1.64 2.23 1.38 0.08 899 899
¢.v300e995d40 1305 1.22 242 4.04 1.04 451 0.27 1305 1305
¢.v500e2986d100 1959 2.10 6.66 11.96 7.52 13.51 2.67 1968 1968
¢.v1000e3995d100 2209 7.04 18.59 39.37 13.23 30.82 0.31 2209 2209
¢.v2000e39832d100 745 32.02 75.90 330.91 75.01 190.90 2.23 745 745
¢.v300e844d20 375 0.40 1.56 2.07 0.43 1.81 0.09 375 375
¢.v500e2000d22 447 1.24 3.03 6.66 1.25 6.08 0.11 447 447
¢.v2000e27632d85 2640 31.29 81.08 162.82 61.71 144.72 2.42 2640 2640
¢.v2000e39832d100 2370 37.20 100.01 520.42 544.10 359.71 4.98 2370 2380

proposed algorithm to converge. As we can see from Table 1,
our algorithm is able to find the optimal solutions easily
on the instances with few must-pass nodes. Although the
MSM algorithm reaches sub-optimal solutions sometimes,
the gap between the objective of the sub-optimal solution
and the optimal objective is smaller than that of the PSN
algorithm for 37 out of 48 datasets. Especially, when the
number of must-pass nodes increases, the MSM has smaller
gaps than PSN. Besides, the proposed MSM algorithm is
able to produce feasible solution on all the instances, while
Martins’s algorithm failed to solve some instances in the
germany50 and CORONET datasets [12]. These experiments
demonstrate that our algorithm is competitive compared with
the PSN algorithm.

In Table 2, Column Q4 Time shows the average running
time in seconds for the Q4 model to reach the optimal solution

VOLUME 7, 2019

proposed by Andrade on each dataset. Column MSM Time
presents the average running time of our algorithm in sec-
onds. Column MSM Gap reports the average optimality gap
of our MSM algorithm in percentage. Since the MIP solvers
always find the optimal solutions, i.e., the gap is 0, the opti-
mality gaps of the Q4 model are not reported in Table 2.
Table 2 discloses that, the MSM can reach the optimal solu-
tions in most cases, and the time consumption is relatively low
compared with the 04 model, especially on instances with
large number of must-pass nodes.

In addition to the classic instances which have been tested
by other researchers, we have conducted experiments on
our own instances and the computational results are listed
in Tables 3 to 5.

In detail, Table 3 reports a detailed computational results
obtained by the four different MIP models and the MSM

52149

IEEE Access

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

TABLE 4. Computational results on the 150 self-generated instances (random dense graphs with few must-pass nodes).

Ob;. CPU Obyj. CPU Ob;. CPU
Instance Q4 MSM Q4 MSM Instance Q4 MSM ~ Q4 MSM Instance Q4 MSM Q4 MSM
VI000e519000d118 132 132 2682 2.06 VI351e736295d90 16 116 420 365 V1682662234089 127 127 1229 305
v1006¢682068d101 106 106 379 256 v1353e989043d141 - 147 3600 471 Vv1684¢2509160d116 - 119 3600 13.06
v1009¢941397d128 - 130 3600 3.56 Vv1356¢1768224d134 - 136 3600 8.12 v1691e581704d54 93 93 1189 291
v1012e486772d50 73 73124 167 v1364¢261888d95 325 157 3600 151 v1692¢993204d91 117 117 2667 427
v1025e496100d78 102 102 249 191 Vv1371e1207851d149 - 155 3600 613 v1698¢2008734d110 - 115 3600 8.83
v1041¢716208d84 97 97 2351 285 v1378¢366548499 1952 152 3600 1.96 v1700¢1013200d96 129 129 1857 455
v1056e671616d149 - 154 3600 320 v1385¢623250d81 118 118 3009 3.10 v170262765750d81 1273 84 3600 10.53
v1057e835030d77 86 86 2031 3.11 v1388¢875828d77 97 97 3232 398 v17051962455d66 80 80 3112 748
v1059¢1103478d112 - 113 3600 448 v1394e588268d106 136 136 3511 3.09 v170662651124d123 - 126 3600 1125
v1076e1084608d106 - 108 3600 4.68 v1398¢1076460d99 114 114 1252 483 v1714e1083248d124 - 145 3600 520
v1082€925110d146 - 148 3600 4.17 v1402e536966d136 172 172 1656 2.93 v1720e1217760d102 - 127 3600 5.6
v1089€760122d69 89 89 2769 291 v1415¢1705075d128 316 131 3600 7.95 v17271290069d50 73 73 2982 475
v1094e286628d119 157 157 455 1.92 v1419e865590d112 - 132 3600 4.09 v1739e1396417d96 298 111 3600 6.22
v1097310451d52 83 83 381 130 v1420e218680d52 105 105 89 126 v1747¢1484950d76 95 95 1316 630
v11026469452d71 97 97 1599 2.02 v1421e1071434d127 - 132 3600 4.97 v1752e1575048d123 - 132 3600 7.49
v1106e873740d68 84 84 1162 338 v1436¢1970192d64 68 68 1581 821 v1771e464002d68 115 115 406 238
v1107¢1033938d56 62 62 901 3.65 v1445¢1458005d87 1483 99 3600 6.34 v1772e1461900d134 - 145 3600 811
vI113e609924d143 150 150 1532 2.78 v1460e677440d9 1 120 120 3348 3.6 v1773¢1698534d90 1632 103 3600 7.69
v1115e564190d119 - 135 3600 288 Vv1476e1564560d92 1702 102 3600 6.31 v1775¢2909225d98 1599 100 3600 11.62
v1120e694400d52 71 71 246 270 v1483e2077683d116 273 119 3600 8.60 v1785¢2732835d114 - 115 3600 11.54
v1127¢645771d110 120 120 1599 295 v1484e1638336d129 - 132 3600 735 v1792¢1320704d53 951 78 3600 5.06
v1141€791854d143 - 148 3600 3.68 v1488¢1092192d134 - 145 3600 5.0 v1799e3121265d61 170 66 3600 1151
v1145e1111795d72 77 77 1201 653 v1494¢182268d90 183 183 319 106 v1801e3128337d143 - 144 3600 13.95
v1155e684915d124 132 132 1065 3.05 v1497¢1925142d101 1720 105 3600 8.45 v1805¢1783340d114 - 132 3600 873
v1159e1089460d112 114 114 684 438 v1503e1576647d57 200 733600 6.19 v1838¢1474076d89 1623 111 3600 6.33
v1168e1261440d122 - 124 3600 538 v1513e842741d131 - 155 3600 4.06 v1843e2545183d62 1117 75 3600 9.47
v1170e1334970d73 78 78 731 530 v1524e944880d92 1568 114 3600 4.93 vi851e199908d100 214 214 484 124
v1171€789254d84 95 95 1946 3.09 v1528e191000d68 137 137 370 1.04 v1857¢1047348d124 337 153 3600 543
v1177¢1293523d104 - 108 3600 498 v1534e1093742d107 127 127 2170 43l v1857¢1704726d82 286 100 3600 6.94
v1182e554358d140 152 152 1383 2.66 v1544¢1926912d106 - 109 3600 805 v1862e2651488d99 105 105 3454 11.24
v1195¢182835d81 143 143 355 1.0 v1549¢563836d101 - 143 3600 269 v1865¢2642705d112 - 116 3600 11.56
v1201598098d56 82 82 525 223 v1550e1767000d82 89 89 2162 690 v1868e1763392d128 - 135 3600 873
v1205653110d113 - 129 3600 277 v1553e1619779d75 1235 85 3600 635 v1869¢1704528d137 - 148 3600 8.14
v1211€773829d128 - 131 3600 329 v1557€326970d112 - 179 3600 1.9 v1888¢1463200d103 - 126 3600 6.55
v1217e690039d110 301 123 3600 2.85 v1558e1799490d90 9% 96 3427 775 v1890e2407860d55 1110 67 3600 10.03
V1222498576489 120 120 250 221 v1568¢1401792d86 262 101 3600 591 v1904e2753184d83 267 90 3600 11.16
V1232663694498 117 117 2595 287 v1572¢1829808d145 - 148 3600 8.72 v1907€226933d73 157 157 377 118
v1240e715480d101 115 115 733 3.03 v1580e2483760d147 - 148 3600 11.66 v1911€2973516d85 1452 90 3700 12.17
v1260e1224720d129 - 132 3600 5.30 v1581€954924d131 - 153 3600 4.89 v191362490726d54 958 743600 10.06
vI271e640584d131 322 143 3600 3.32 v1588¢2051696d117 309 122 3600 8.86 v1914¢803880d118 - 161 3600 424
v1279¢860767d69 90 90 893 341 v1593¢1932309d88 1382 94 3600 7.65 v1915¢1941810d107 - 125 3600 8.89
v1290e526320d140 156 156 1343 2.72 v1594¢1476044d139 - 143 3600 677 v1918e3277862d94 1487 98 3600 13.42
v1299¢970353d61 80 80 1542 3.70 v1595¢1290355d101 1733 117 3600 545 v1928¢3399064d69 220 78 3600 12.67
v1302¢1683486d96 1487 99 3600 668 V1621239908142 245 245 864 234 v1948¢3268744d102 - 105 3600 13.50
v1307262707d91 143 143 138 139 v1621e685683d71 107 107 583 3.04 v1974e3231438d137 362 138 3600 15.40
v1327e1388042d132 - 134 3600 6.50 v1633e364159d105 170 170 767 191 v1975¢1988825d143 - 153 3600 10.07
v1332e1189476d88 276 96 3600 6.04 V1638869778458 86 86 551 424 v1977e2202378d143 - 150 3600 11.09
v1337e1472037d119 - 121 3600 638 v1648¢1835872d77 210 89 3600 9.70 v1980e1787940d109 - 128 3600 830
v13411027206d72 84 84 363 424 v1660e1679920d57 73 732376 137 v1994¢1886324d146 - 159 3600 9.59
v1342¢308660d136 194 194 977 236 v16712018568d141 - 143 3600 1149 v1995¢3227910d55 1134 68 3600 13.17

algorithm on the 16 crafted instances.! Column Optima

reports the optimal objective values to the instances obtained
by the MIP models under unlimited timeout. Column
CF CPU, SF CPU, FF CPU, Q3 CPU, and 04 CPU presents
the CPU time taken by conventional model, sequential model,
commodity flow based model, Andrade’s O3, and Q4 model,
respectively. Column MSM best and MSM Average give the
best and average objective values collected from the five
independent runs of the MSM algorithm. From Table 3 we
can observe that the MSM algorithm is able to reach the
optima on 14 out of 16 instances, and it always finds optimal
solutions on 11 ones. For the instances where the MSM
algorithm only got the sub-optima, the gaps are relatively nar-
row (less than 0.5%). Besides, the computational time taken
by the MSM algorithm is significantly shorter than solving

IThe PSN algorithm proposed in [12] is not included in this comparison
since it is inconvenient for the authors to provide their solvers.

52150

the MIP models on all the instances except the instances
with clique sub-structure. Moreover, all MIP models failed
to find the optima on ¢.v2000e37052d400 within one hour
time limit, and there are three models which fail to solve the
¢.v500e4396d50, while the MSM is able to handle these hard
cases.

For the instances based on random dense graphs, only the
04 model is included in the comparison because it outper-
forms other three models for almost all the instances. The
benchmark results are given in Tables 4 and 5. Column Obj
represents the best objective value found within the one-
hour time limit by each approach. Column CPU reports the
CPU time consumed for finding the solution with the best
objective value. If the objective value is not given and the
CPU time is 3600 seconds, it means that no feasible solution
is found. According to Table 4, it can be clearly seen that
the MSM algorithm obtained high quality solutions on all the
instances within 20 seconds stably, while the 04 model only

VOLUME 7, 2019

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

IEEE Access

TABLE 5. Computational results on the 90 self-generated instances (random dense graphs with many must-pass nodes).

Obj. CPU Ob;. CPU Ob;. CPU
Instance Q4 MSM Q4 MSM Instance Q4 MSM Q4 MSM Instance Q4 MSM Q4 MSM
v1000e999000d391 - 392 3600 6.09 v1319e1361208d489 - 490 3600 11.19 v1626e305688d533 - 578 3600 6.47
v1003e628881d128 131 131 2283 2.47 v1344¢1178688d782 - 783 3600 16.97 v1640e2376360d294 - 295 3600 15.15
v1018e968118d148 337 149 3600 3.75 v1360e864960d87 1582 112 3600 3.49 v1655e885425d494 - 496 3600 10.73
v1022e405734d388 - 389 3600 3.68 v1364e377828d818 - 819 3600 11.80 v1661e1533103d906 - 907 3600 27.06
v1043e¢1001280d68 74 74 2046 3.31 v1366e1098264d441 - 442 3600 9.26 v1665¢1591740d74 - 86 3600 6.20
v1046e595174d180 - 182 3600 2.63 v1373e1646227d482 - 483 3600 12.87 v1673e2148132d678 - 679 3600 23.67
v1049e¢978717d181 - 182 3600 4.01 v1375e338250d407 - 427 3600 5.57 v1679¢1109819d374 - 375 3600 9.99
v1053e414882d463 - 464 3600 4.58 v1379¢373709d390 - 407 3600 4.98 v1682¢862866d252 - 264 3600 6.57
v1061e809543d130 - 133 3600 3.12 v1401e1882944d91 1358 94 3600 7.04 v1718e1195728d1172 - 1173 3600 37.86
v1067e294492d257 - 274 3600 2.36 v1433e1675177d791 - 792 3600 20.81 v1738e2151644d197 - 198 3600 12.40
v1068e1014600d147 - 149 3600 3.97 v1443e1193361d914 - 915 3600 21.78 v1746e1636002d279 - 280 3600 11.54
v1089e675180d454 - 455 3600 6.08 v1452¢1043988d907 - 908 3600 20.32 v1764e2141496d1076 - 1077 3600 40.43
v1090e654000d569 - 570 3600 8.08 v1464¢2070096d456 - 457 3600 14.96 v1768¢2738632d892 - 893 3600 38.61
v1109¢947086d261 - 262 3600 5.16 v1469¢1332383d253 - 254 3600 7.74 v1774e431082d1075 - 1078 3600 23.18
v1118e1175018d225 - 226 3600 5.32 v1483e809718d717 - 718 3600 13.72 v1789¢2461664d804 - 805 3600 33.17
v1129¢534017d362 - 364 3600 4.27 v1486€291256d611 - 633 3600 8.38 v1791e3100221d1068 - 1069 3600 48.06
v1137e143262d105 173 173 338 0.87 v1488e2194800d361 - 362 3600 13.75 v1795e445160d716 - 725 3600 17.16
v1148e337512d127 167 167 1502 1.93 v1491e254961d405 - 470 3600 4.81 v1812e2139972d261 - 262 3600 13.32
v1150e716450d645 - 646 3600 10.20 v1493e1378039d283 - 285 3600 8.40 v1813e683501d526 - 530 3600 10.05
v1175e853050d262 - 263 3600 4.84 v1494e182268d541 - 647 3600 63.09 v18582285340d118 295 122 3600 10.55
v1182¢247038d343 - 372 3600 3.15 v1499e475183d869 - 870 3600 14.78 v1859e¢3152864d687 - 688 3600 33.68
v1191e1313673d326 - 327 3600 7.48 v1505e1413195d364 - 365 3600 9.91 v1861e2811971d1004 - 1005 3600 41.81
v1194e1179672d119 - 123 3600 4.67 v1510e1485840d190 - 191 3600 7.44 v1863e¢1017198d147 - 173 3600 5.79
v1208e1234576d458 - 459 3600 9.37 v1519e428358d76 1529 120 3600 2.18 v1888¢3073664d294 - 295 3600 20.29
v1213e844248d462 - 463 3600 7.61 v1543e1414931d331 - 332 3600 9.74 v1920e1628160d281 - 282 3600 11.34
v1223e163882d222 315 315 1084 4.65 v1558e190076d475 - 592 3600 38.98 v1926e2808108d1150 - 1151 3600 48.92
v1229e854155d216 - 219 3600 4.58 v1560e273000d729 - 760 3600 11.73 v1944e324648d150 - 251 3600 3.35
v1243e488499d61 220 93 3600 1.96 v1574€206194d526 - 642 3600 6.20 v1965e¢2161500d914 - 915 3600 35.40
v1293e321957d610 - 612 3600 7.04 v1579¢2003751d683 - 684 3600 21.81 v1993e360733d230 - 341 3600 3.72
v1300e1201200d141 - 145 3600 7.68 v1616e1971520d680 - 681 3600 21.36 v1999e1733133d800 - 801 3600 27.93
(b)

FIGURE 3. A special case where CPS fails to find feasible solutions. (a) The optimal solution; (b) the transformed problem; (c) the infeasible

restored solution.

found feasible solutions on 99 instances. For the ones whose
feasible solutions were found by the 04 model, the MSM
algorithm got better results on 37 out of them, and obtained
the same results on 62 out of them. From Table 5 we can
observe that, the computational time increases as the number
of must-pass nodes grows for both the 94 model and our
MSM algorithm. However, the MSM algorithm was still able
to find the optimal or sub-optimal solutions on each instance
within 70 seconds. As for the Q4 model, the feasible solutions
were found only on 11 instances within the time limit, and
no better solution is found compared to the MSM algorithm.
These results show the advantage of the MSM algorithm on
large random dense graphs, and it implies that the MSM algo-
rithm is highly scalable and it is able to tackle the instances
with large size in a reasonable time. In sum, the MSM reaches

VOLUME 7, 2019

a good balance between solution quality and computational
efficiency.

C. ANALYSIS AND DISCUSSION
Due to the heuristic nature of the candidate path search (CPS)
and conflicting nodes promotion (CNP) strategies, they might
fail to find the optimal or even feasible solutions on cer-
tain topology structures. We will illustrate the imperfection
of each strategy via three handcrafted instances, and then
evaluate the different combinations of the strategies on the
benchmark instances.

Fig. 3 shows a special case where the CPS fails to find
a feasible solution. In the directed graph, s and ¢ stand for
the source node and the target node, respectively, and m;
represents the must-pass nodes and v; are the normal nodes.

52151

IEEE Access

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

(b)

FIGURE 4. A special case where CNP fails to find optimal solutions. (a) The optimal solution; (b) the transformed problem; (c) the sub-optimal

restored solution.

FIGURE 5. A special case where CNP fails to find feasible solutions. (a) The optimal solution; (b) the transformed problem; (c) the infeasible
restored solution.

Fig.s 4 and 5 follow the same notations. The dashed arrow
in Fig. 3(a) presents the optimal and the only feasible path
s — mp — vi — my — t whose length is 202. The graph
will be transformed into Fig. 3(b) and a TSP is solved on
the transformed graph as Section III-A described. However,
the optimal solution of the TSP restores to an infeasible path
s — vi = my — mj; — v; — t which visits v| twice given
in Fig. 3(c). Unfortunately, there is no candidate paths from
s to my and from m to ¢ at all, which means that it is unable
to solve this case only with the CPS technique under current
framework. However, if the normal node v is promoted using
the CNP technique, the conflict will be avoided easily.

Fig. 4 shows a special case where the CNP fails to find the
optimal solution. It is almost the same as Fig. 3, except an
additional edge goes from mj to mj. The optimal solution
is represented by the dashed arrow in Fig. 4(a) which is
s — my — my — t and whose length is 201. The graph will
be transformed into Fig. 4(b) and the optimal solution of the
TSP on the transformed graph restores to an infeasible path
s — vi — mp — m] — v| — t which visits v; twice given
in Fig. 4(c). Unfortunately, promoting the conflicting node v

52152

will lead to a sub-optimal solution s — m; — vi — my — ¢
whose length is 202. Moreover, the CNP fails to find feasible
solutions in another special case illustrated in Fig. 5. The
optimum is s — m; — mp — m3 — t whose length
is 202 and it is highlighted with dash arrow in Fig. 5(a).
The resulting TSP problem of the transformation is given
in Fig. 5(b), and an infeasible path s — vi — m3 — my —
m; — v — t will be retrieved after solving it as we can see
from Fig. 5(c). According to the conflicting nodes promotion,
the repeatedly visited normal node v; will become a must-
pass node, and this produces an unsolvable problem. It can be
inferred that it will be harder to find out the optimal solution
only with the CNP technique under the current framework.
To further evaluate the effectiveness of the important com-
ponents of the proposed MSM, we have performed exper-
iments to compare our MSM algorithm with its simplified
versions without the conflicting nodes promotion (CNP),
the candidate path search (CPS) or the connectivity relax-
ation (CR) strategies, respectively. Specifically, four variants
of the MSM algorithm are considered in this experiment. The
first one disables the CR technique, the second one disables

VOLUME 7, 2019

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

IEEE Access

o4 E= C

=3 CCR

[Z1 C-CR-CPS
120 4 EEE C-CR-CNP
B C-CR-CNP-CPS

100 4

80 1

Failure count

60

401

A

0 —I171

T f
SNDLib C&T

FIGURE 6. Failure count comparison among different strategies.

the CR and CPS techniques, the third one disables the CR and
CNP techniques, and none of the three techniques is enabled
in the last one. Since the CR technique is a post-process out-
side the main loop, we did not enumerate each combination
with or without the CR technique. Unlike solving the TSP
on complete graphs, it is hard to find a simple path visiting
specific must-pass nodes on sparse graphs because there
could be some critical nodes which are on the shortest paths
to multiple must-pass node pairs. We have executed five inde-
pendent runs on each instance with each version following the
experimental protocol described in Section IV-A, and count
the number of runs where the algorithms fail to find a feasible
solution. In order to make the illustration clearer, we regroup
the datasets into six groups, denoted by SNDLib (newyork,
norway, and india35, etc.), N500 (N500GO to N500G4),
C&T (CORONET and TeliaSonera), Random (A20 to A300),
Aatsp, and SZL (our own), respectively.

The summarized results of this experiment are presented
in Fig. 6. The y-axis gives the number of failures of obtain-
ing a feasible solution, and the x-axis gives the instance
groups. The bars marked with C represent the statistics of the
complete version of the MSM, while -CR, -CNP and -CPS
means that the connectivity relaxation, the conflicting nodes
promotion, and the candidate path search are disabled in the
corresponding version of the algorithm, respectively.

Fig. 6 discloses that the complete version of the proposed
MSM outperforms the other four versions on each dataset.
Moreover, the version only without the CR post-process
generally got better results than the other three incomplete
versions, except that there are insignificant disadvantages on
SNDLib and Aatsp groups, which implies that the connectiv-
ity relaxation technique is essential to make the performance
of the MSM algorithm more stable. In detail, the version with-
out the CPS technique, i.e., only enabling the CNP technique,
always obtains feasible solutions on Aatsp group, but fails
to find any feasible solution on most instances in SNDLib,
N500, and C&T groups. The performance of the configura-
tion without the CNP technique, i.e., only enabling the CPS
technique, is similar to but slightly better than the one with

VOLUME 7, 2019

T T
Random Aatsp

Instance group

neither the CNP nor the CPS techniques, and always found
feasible solutions on SNDLib and C&T groups. Moreover,
the unsuccessful rate increases dramatically in the Random
group when the conflicting nodes promotion technique is
disabled. These phenomena indicate that each of the CNP and
the CPS techniques works well on certain topology structures,
but not robust enough in general cases. Thus, we need to inte-
grate both of them into the MSM algorithm to overcome their
drawbacks and make full use of their advantages. Although
the MSM fails sometime too, the probability is very low,
as there are only 3 failures out of 863 x 5 = 4315 runs. The
reason might lie in the heuristic nature of the LKH algorithm
and the conflicting node promotion strategy. Therefore, sim-
ply restarting the algorithm until a feasible solution is found
or running multiple parallel solvers might guarantee 100%
successful rate. This experiment justifies the importance of
the conflicting nodes promotion and candidate path search
strategies.

V. CONCLUSION

In this paper, we have studied the shortest simple path prob-
lem with must-pass nodes by converting it into TSP and
proposed a multi-stage metaheuristic algorithm that uses
multi-strategies, such as k-opt move based TSP solver to
determine the order of must-pass nodes, candidate path search
and conflicting nodes promotion for eliminating conflicting
nodes, and connectivity relaxation to ensure a valid solution.
In addition, we have presented three mathematical program-
ming formulations of the SSPP-MPN. Computational results
tested on three sets of 863 instances show the effectiveness
and efficiency of the proposed algorithm. Finally, additional
analysis indicates the importance of the components in the
proposed MSM algorithm. As we can observe from the anal-
ysis, there are still rooms for improvement for the MSM algo-
rithm. In future, the techniques to fix incorrectly promoted
nodes will be studied in order to improve the robustness of
the proposed algorithm. The rapid assessment or incremental
evaluation strategy of TSP solver to reduce the running time
and improve efficiency will also be studied in future work.

52153

IEEE Access

Z. Su et al.: MSM Algorithm for Shortest Simple Path Problem With Must-Pass Nodes

REFERENCES

[1]

[2]
[3]
[4]
[51

[6]

[71
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

I. Pardines and V. Lopez, “Shop&Go: TSP heuristics for an optimal
shopping with smartphones,” Sci. China Inf. Sci., vol. 56, no. 11, pp. 1-12,
2013.

J. P. Saksena and S. Kumar, “The routing problem with ‘K’ specified
nodes,” Oper. Res., vol. 14, no. 5, pp. 909-913, 1966.

S. E. Dreyfus, “An appraisal of some shortest-path algorithms,” Oper. Res.,
vol. 17, no. 3, pp. 395412, 1969.

K. Helsgaun, “An effective implementation of the Lin—Kernighan traveling
salesman heuristic,” Eur: J. Oper. Res., vol. 126, pp. 106-130, Oct. 2000.
W. Rao, X. Wang, C. Jin, and F. Liu, “On the universal strategy for improv-
ing a certain type of construction heuristic for the traveling salesman
problem,” Scientia Sinica Informationis, vol. 45, no. 8, p. 1060, 2015.

M. Hou and D. Liu, “A novel method for solving the multiple traveling
salesmen problem with multiple depots,” Chin. Sci. Bull., vol. 57, no. 15,
pp. 1886-1892, 2012.

T. Ibaraki, “Algorithms for obtaining shortest paths visiting specified
nodes,” SIAM Rev., vol. 15, no. 2, pp. 309-317, 1973.

H. Vardhan et al., “Finding a simple path with multiple must-include
nodes,” in Proc. IEEE Int. Symp. Modeling, Anal. Simulation Comput.
Telecommun. Syst., Sep. 2009, pp. 1-3.

T. Gomes, S. Marques, L. Martins, M. Pascoal, and D. Tipper, ‘Protected
shortest path visiting specified nodes,” in Proc. 7th Int. Workshop Reliable
Netw. Design Modeling (RNDM), Oct. 2015, pp. 120-127.

T. Gomes, L. Martins, S. Ferreira, M. Pascoal, and D. Tipper, ““Algorithms
for determining a node-disjoint path pair visiting specified nodes,” Opt.
Switching Netw., vol. 23, pp. 189-204, Jan. 2017.

L. Martins, T. Gomes, and D. Tipper, ““An efficient heuristic for calculating
a protected path with specified nodes,” in Proc. Int. Workshop Resilient
Netw. Design Modeling, Sep. 2016, pp. 150-157.

L. Martins, T. Gomes, and D. Tipper, ‘““Efficient heuristics for determining
node-disjoint path pairs visiting specified nodes,” Networks, vol. 70, no. 4,
pp- 292-307, 2017.

R. C. de Andrade, “Elementary shortest-paths visiting a given set of
nodes,” in Proc. Simpdsio Brasileiro de Pesquisa Operacional, Sep. 2013,
pp. 2378-2388.

R. C. de Andrade, ‘“New formulations for the elementary shortest-path
problem visiting a given set of nodes,” Eur. J. Oper. Res., vol. 254, no. 3,
pp. 755-768, 2016.

M. DeLeon, “A study of sufficient conditions for hamiltonian cycles,”
Rose-Hulman Undergraduate Math. J., vol. 1, no. 1, p. 6, 2000.

D. L. Miller and J. F. Pekny, “Exact solution of large asymmetric traveling
salesman problems,” Science, vol. 251, no. 4995, pp. 754-761, 1991.

A. J. Orman and H. P. Williams, “A survey of different integer pro-
gramming formulations of the travelling salesman problem,” in Optimi-
sation, Econometric and Financial Analysis, E. J. Kontoghiorghes and
C. Gatu, Eds. Berlin, Germany: Springer, 2007, pp. 91-104.

D. B. Johnson, “A note on dijkstra’s shortest path algorithm,” J. ACM,
vol. 20, pp. 385-388, Jul. 1973.

S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Oper. Res., vol. 21, no. 2, pp. 498-516,
1973.

J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage.
Sci., vol. 17, pp. 712-716, Jul. 1971.

T. Benoist, F. Gardi, A. Jeanjean, and B. Estellon, “Randomized local
search for real-life inventory routing,” Transp. Sci., vol. 45, no. 3,
pp. 381-398, 2011.

52154

[22] S. Orlowski, R. Wessily, M. Piéro, and A. Tomaszewski, “SNDIlib
1.0—Survivable network design library,” Networks, vol. 55, pp. 276-286,
May 2010.

[23] M. DoarandI. Leslie, ‘““How bad is naive multicast routing?”” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), vol. 1, Mar./Apr. 1993, pp. 82-89.

[24] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA
J. Comput., vol. 3, no. 4, pp. 376-384, 1991.

[251 Gurobi Optimizer Reference Manual Version 7.5, Gurobi Optimization
LLC, Houston, TX, USA, 2017.

ZHOUXING SU received the B.E. degree in com-
puter science and technology from the Huazhong
University of Science and Technology, China,
in 2014, where he is currently pursuing the Ph.D.
degree in computer software and theory with the
Laboratory of Smart Computing and Optimiza-
tion, School of Computer Science and Technology.
His researches focus on using metaheuristics and
mathematical programming to solve real-world
applications such as personnel rostering, inventory
routing, and facility location problem.

JUNCHEN ZHANG received the B.S. degree in
applied physics from Southeast University, China,
in 2013, and the master’s degree in computer soft-
ware and theory from the Huazhong University of
Science and Technology, China, in 2018. He is
currently a Software Engineer with Intellifusion
\ - / Inc., China. His research interests include heuris-
£ 4 tic algorithm, similarity search, parallel and dis-
tributed computing, and program optimization.

ZHIPENG LU received the B.S. degree in applied
mathematics from Jilin University, China, in 2001,
and the Ph.D. degree in computer software and the-
ory from the Huazhong University of Science and
Technology, China, in 2007. He was a Postdoc-
toral Research Fellow with LERIA, Department of
Computer Science, University of Angers, France,
from 2007 to 201 1. He is currently a Professor with
the School of Computer Science and Technology,

e Huazhong University of Science and Technology,
and also the Director of the Laboratory of Smart Computing and Optimiza-
tion. His areas of research interests include artificial intelligence, compu-
tational intelligence, operations research and adaptive metaheuristics for
solving large-scale real-world and theoretical combinatorial optimization,
and constrained satisfaction problems.

VOLUME 7, 2019

	INTRODUCTION
	PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION
	PROBLEM DESCRIPTION
	MATHEMATICAL FORMULATION
	CONVENTIONAL FORMULATION (CF)
	SEQUENTIAL FORMULATION (SF)
	COMMODITY FLOW BASED FORMULATION (CFF)

	MULTI-STAGE METAHEURISTIC ALGORITHM
	PROBLEM TRANSFORMATION AND TOUR RESTORATION
	TSP OPTIMIZATION PROCEDURE
	DETERMINING THE ORDER OF MUST-PASS NODES
	MINIMIZING THE NUMBER OF CONFLICTING NODES

	CANDIDATE PATH SEARCH
	CONFLICTING NODES PROMOTION
	CONNECTIVITY RELAXATION

	COMPUTATIONAL RESULTS AND ANALYSIS
	BENCHMARK INSTANCES AND EXPERIMENTAL PROTOCOL
	COMPUTATIONAL RESULTS
	ANALYSIS AND DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	ZHOUXING SU
	JUNCHEN ZHANG
	ZHIPENG LÜ

