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ABSTRACT Computer-based generative art is in the ascendant and widely applied in media contexts such as
web design, game resource, and digital entertainment. The process of creating non-photorealistic rendering
images can be enjoyable if some useful and efficient methods are involved. This paper presents an automatic
and fast method for digital stippling, which produces stipple renderings from photographs. To achieve this,
we employ a novel mechanism based on the data field of an original image. Our inspiration is originated
from physical fields. The used data field for an image can keep the balance between spatial and grayscale
information in the local neighborhood by potential function, as well as the balance between the local
information and the global trend. There involve three major steps in the proposed approach, including the
generation of image data field, the reduction of potential centers, and the artistic renderings. The second step
contains two types of reduction strategies, potential center elimination for stipple placement, and potential
center cutting for mosaic construction. A number of experiments, both visual comparisons and quantitative
comparisons, are performed. The results show the feasibility and the efficiency of the proposed method
and suggest that the proposed method can generate appealing stipple or mosaic images. This would inspire
graphic designers who may be interested in the stippled image automatically that is similar to images created
by the artist.

INDEX TERMS Computational aesthetics, data field, digital stippling, halftoning, non-photorealistic
rendering.

I. INTRODUCTION
Stippling is an artistic technique that constructs an image
from a large number of small dots or marks visually. These
dots or marks can vary in size, shape, density, and arrange-
ment to create the illusion of different texture, tone, and
shape, thus shades of gray are perceived within the stippled
image. As such, stippling is capable of capturing a very wide
dynamic range of tones, from white to black, and irregu-
larities in shape can all lead to slight variations, giving rise
to various styles of stippling. In general, stippling has been
applied to various fields, such as digital entertainment, art
emulation and robot art [1]–[4].

In the computer graphics community, many computer-
aided algorithms have been developed in an attempt to
approximate hand-drawn stippling, most of which employed
Lloyd’s algorithm [5] or its variants to provide regular
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dot spacing. Pioneering works by Deussen et al. [6] and
Secord [7] did the excellent job of tone reproduction with
stipples, and many other methods have since taken advan-
tage of it. Deussen et al. [6] first used Lloyd’s algorithm
to create computer generated pen-and-ink illustrations by
the simulation of stippling. An initial dot set is generated
using a halftoning method and then processed by a relax-
ation method based on Voronoi diagrams. Later, Secord [7]
enhanced this mechanism to generate stipple drawings from
grayscale images using weighted centroidal Voronoi dia-
grams (WVS for short). Hiller et al. [8] presented an exten-
sion of Lloyd’s approach, in which arbitrary shapes can
be used in place of dots. Balzer et al. [9] also introduced
a variant Lloyd’s method of capacity-constrained Voronoi
tessellation. Deussen et al. [10] proposed an adaptive ver-
sion of Lloyd’s algorithm based on Linde-Buzo-Gray algo-
rithm in vector quantization (LBG for short). The above
two representative methods based on the Lloyd’s algorithm
(that is the WVS method and the LBG method) will be
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involved into a comparative study with our method (see
Section IV).

Furthermore, more researchers explored this problem
using various other methods. Mould [11] transfromed the
input image into a weighted graph and provided a stipple
placement approach using distance in the weighted graph, but
it is not efficient enough to solve some large-scale problems.
Kopf et al. [12] introduced a recursiveWang tiles-based tech-
nique for rapidly generating large point sets that possess a
blue noise Fourier spectrum and high visual quality, and the
technique can produce millions of stipple points per sec-
ond. Example-based approach by Kim et al. [13] focused on
stippling as an artistic style and discussed the technique
for capturing and reproducing stipple features unique to an
individual artist. Martín et al. [14], [15] also presented an
example-based approach to synthesizing stipple illustrations
for static 2D images that produces scale-dependent results
appropriate for an intended spatial output size and reso-
lution. Li and Mould’s structure-dependent approach [16]
concentrated on structure preservation by using a priority-
based scheme that treats extremal stipples first and prefer-
entially assigns positive error to lighter stipples and negative
error to darker stipples, emphasizing contrast. Recently,
Ma et al. [17] used incremental Voronoi sets and a real-time
parallelized rejection strategy to fast produce digital stipple,
which makes a fair balance on result quality and computa-
tional efficiency.

Comprehensive overviews and comparative studies of
digital stippling can be found in the literature [2], [3].
Martín et al. [4] provided a recent version, in which
Kopf et al.’s Recursive Wang Tiles method (RWT for
short) [12] and Li and Mould’s Structure-Aware Stippling
method (SAS for short) [16] are both taken as state-of-art
algorithms. These two methods will be also involved into a
comparative study with our method (see Section IV).

From the evaluation perspective, Maciejewski et al. [18]
quantified the difference between a computed-generated stip-
pling and hand-drawn stippling of the same object, and used a
metric based on the Gray Level Co-ocurrenceMatrix (GLCM
for short) to explore the stipple aesthentics. The stipple dot
distribution can be studied from three different aspects, that
is, contrast, energy, and correlation. Another analysis tech-
nique was used by Li and Mould [16] to assess the quality
of their SAS method. This approach relied on the Structural
SIMilarity index (SSIM for short) [19], as well as the mea-
surement of tone using Peak Signal-to-Noise Ratio (PSNR
for short). The above evaluation indexes will be involved into
our comparative study as the quantitative analysis methods
(see Section IV).
In addition, correlation perception in information visual-

izationwas also introduced into the evaluations usingWeber’s
law proposed by Harrison et al. [20], and then a different
model was provided by Kay and Heer [21]. More recenctly,
Spicker et al. [22] proposed a measurement related to the
number of stipple points to quantify the visual abstraction
quality for stipple drawings.

Nevertheless, great efforts should be made in placing the
stipple dots in order to ensure quality and rapidity of digital
stipple. One of the recent trends in digital stippling is to
incorporate structure or orientation information in generating
dot distributions. For instance, the structure-aware stippling
techniques are particularly useful in preserving visually iden-
tifiable structures and textures in the original image. Human
artists use stipples not only for tone reproduction, but also to
illustrate features, including edge emphasis and texture indi-
cation. Also, placing stipples by hand is a time-consuming
process, and handmade stipple drawings contain fewer stip-
ples than modern computer generated stipple images.

In this context, we propose an Image Data Field-based
method for Stippling (IDFS for short), a novel stippling
algorithm not based on Lloyd’s method. The core idea is to
construct a data field for the given image, which we call an
image data field. Each pixel in the image is considered as
one particle with position, mass and potential. Data field is
given to express the power of an item in the image by poten-
tial function as the physical field does. The description of
potential function is based on the assumption that all observed
data in the number universe will radiate their data energies
and be influenced by others simultaneously. Thus, the data
field of an image can keep the balance between spatial and
grayscale information in local neighbourhood by potential
function, as well as the balance between the local information
and the global trend. Unlike the Lloyd’s method, the use of
image data field ensures regular spacing of dots along the
feature directions as well as their perpendicular directions,
and then a good balance on result quality and computational
efficiency can be ensured.

In summary, the main contributions of our paper are the
following:
• We introduce data field as an effective and unified tool
for digital stippling, and then we provide an image data
field-based algorithm for the computer-aided stippling.
Specifically, we present the basic definition, the genera-
tionmethod, and the rendering algorithm how to produce
stipple points from an image data field.

• For the different visual effects, we propose two potential
center reduction algorithms based on image data field,
that is, potential center elimination for stipple placement
and potential center cutting for mosaic construction.

• We perform a comparative study of digital stippling,
both visual comparison and quantitative comparison,
and show the feasibility and the efficiency of the pro-
posed method.

The remainder of this paper is organized as follows.
In Section II, we provide a brief introduction on data field.
In Section III, we describe our IDFS algorithm in detail:
first image data field generation, next stipple placement by
using potential center elimination, and then the stipple ren-
dering algorithm, as well as a variant on mosaic construction.
In addition, the parameter configuration is also provided in
this section. In Section IV, we evaluate the performance
of the proposed method and compare it to state-of-the-art
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stippling methods. Finally, we discuss the results and give
some ideas for future improvements in Section V.

II. DATA FIELD
Data field is proposed by Li and Du [23] in recent years, and
has been of particular interest to researchers. Its main idea is
originated from physical field. In nuclear field, nuclear force
binds protons and neutrons together to form the nucleus of
an atom. Data field provides an analogy with the mechanism
of the nuclear field theory. Given a data space, data field
describes the complex correlation among data objects, where
there are some effects and interactions in an unknown way,
and it expresses the power of an item in the universe of
discourse by a potential function as the physical field does.

Data field has been introduced into various applica-
tions [24]–[26], and also successfully used in image
processing [27]–[30]. There are two general categories of
data field, static and dynamic ones, and we use the former
in the paper. The static data field is corresponding to the
stable active field in theoretical physics. Inspired by the
preliminary work [31], we introduce the static data field into
digital stippling and propose a novel method based on the
image data field.

Given a data object p in data space �, let ϕp(q) be the
potential value at any position q ∈ � produced by p, then
ϕp(q) can be computed by anyone of the following equations,

ϕp(q) = Mq
p × exp(−(||p− q||/σ )α), (1)

ϕp(q) = G×Mq
p /(1+ (||p− q||/σ )α), (2)

ϕp(q) = Mq
p /(4πε0 × (1+ (||p− q||/σ )α)), (3)

where ||p−q|| is the distance between p and q, the strength of
interactionMq

p ≥ 0 can be regarded as mass or charge of data
objects, a natural number α is the distance index, and σ > 0
is the influential factor that indicates the range of interaction.
Additionally, the distance is usually measured by Euclidean,
Manhattan or Chebyshev metric.

Eqs.(1)-(3) are three common choices of the above poten-
tial function. Eq.(1) imitates nuclear field with Gaussian
potential, while Eqs.(2) and (3) imitate gravitational field and
electrostatic field respectively, where G and ε0 are the con-
stants depended on the law of gravitation and the Coulomb
law. Mathematically considered, therefore, the latter two
functions seem essentially the same. In addition, we need to
state that, there are several alternative formulae for ϕp(q),
such as electromagnetic field, temperature field or nuclear
field with exponential potential.

In general, there is more than one object in data space.
To obtain the precise potential value of any position under
these circumstances, all interactions from data objects should
be concerned. Given a data setD = {p1, p2, . . . , pn}, because
of the overlap, the potential value of any position q in the data
space is the sum of all data radiation,

ϕ(q) =
n∑
i=1

ϕpi (q), (4)

where ϕpi (q) is the potential value of q produced by pi, and
calculated by one of Eqs.(1)-(3).

In the following, we use the nuclear field with Gaussian
potential as Eq.(1) and then fix α = 2. Taking into account
the time complex and the efficiency of the proposed data field,
we choose the Chebyshev distance for ||p − q||, since once
the influential factor is fixed, at the same time cost, most
objects can be considered by using the Chebyshev distance.
Furthermore, how to determine the mass Mq

p is still an open
problem, and various applications use various definitions of
the mass. Three kinds of masses, inertial mass, active grav-
itational mass, and passive gravitational mass, are defined
in theoretical physics. For example, the mass used in [27]
and [30] refers to the active gravitational mass of p acting on
q, while the mass used in [29] is a passive gravitational mass
measure by an object in a known gravitational field. Thus,
the active gravitational mass that acts on pixel p by pixel q is
significant for image data field. We would define the image
data field considering the image intensity as the mass, and
then produce a novel method for image stippling.

III. THE PROPOSED ALGORITHM: IDFS
A. IMAGE DATA FIELD GENERATION
Image data field is a natural extension of data field in image
processing. Each image pixel is as a data particle with the
mass, and has interactions with neighbouring pixels. The
potential sum at any pixel is calculated by obeying the law
of short-range nuclear force field.

Suppose � = {p = (xp, yp)|xp ∈ [1,w], yp ∈ [1, h]} is a
finite space consisting of two-dimensional pixels, g : � →
[0, l−1] is a mapping, g(p) denotes the grayscale value of the
pixel p, and then an input image is a pair Ig = (�, g), where
h, w, and l are the height, width, and intensity of the image
respectively.

According to data field, each pixel p ∈ � is a particle with
the mass, and the intensity change interactions (attraction or
repulsion) between each other form an image data field on the
two-dimensional space�. Assuming two pixels p, q ∈ �, let
ϕp(q) be the potential at any pixel q produced by p, and then
it can be computed by,

ϕp(q) = g(p)× exp(−(max{|xp−xq|, |yp − yq|}/σ )2), (5)

where g(p) is the strength of interaction, and can be as the
mass of data object in image data field. The parameter σ
also denotes the influential factor related with the interaction
distance.

Given a two-dimensional space �, each pixel acts on each
other by some interaction forces, and forms an image data
field, the potential of any pixel q can be defined as below,

ϕ(q) =
∑
p∈�

ϕp(q), (6)

where p ∈ � denotes the neighbourhood of q in the image.
Generally, there are too many pixels p in a given image

space �. The above potential simulates the short-range
nuclear force’s field corresponding to the Gaussian potential
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FIGURE 1. The example image and its data field: (a) the original image, (b) the histogram, (c) the equipotential lines, and (d) the
equipotential surfaces.

field, which satisfies three sigma rule. But, it should be
noted that, Eq.(5) is a slightly different from the standard
Gaussian function, that is the variance, and then the sec-
ond multiplier item in Eq.(5) should be converted into
exp(− 1

2 (
max{|xp−xq|,|yp−yq|}

σ/
√
2

)2). Thus, the standard deviation

of the Gaussian function is actually σ/
√
2. In the image data

field, the influential range of a data object is the geometrical
neighbourhood with the distance shorter than 3σ/

√
2, that

is to say, data objects beyond a certain distance are almost
not influenced by a specified data object, and the poten-
tial contributions become zero. Especially for the problems
in image processing, too wide range of neighbourhood is
time-consuming and unnecessary. To reduce the time cost,
the potential value of any pixel q can be simplified as
below,

ϕ(q) =
∑
p∈ξ (q)

g(p)× exp(−(max{|xp − xq|, |yp − yq|}/σ )2),

(7)

where ξ (q) = {p|p ∈ �,max{|xp − xq|, |yp − yq|} ≤
3σ/
√
2} denotes the neighbouring pixels affected by the cen-

tral pixel q.
In physics, scalar fields often describe the potential energy

associated with a particular force. The force is a vector field,
which can be obtained as the gradient of the potential energy

scalar field. A particle gives out force in all directions, and
receives forces from the neighboring particles. We take the
original image in Figure 1a as an example, whose histogram
is shown in Figure 1b. There are two airplane objects on the
uneven background. The histogram of the image is approx-
imately unimodal, and there exists seriously uneven illumi-
nation and slight gray level changes with a wide range in
the background. Based on the above description, we model
a grayscale image as a two-dimensional space, and then
generate the image data field using Eq.(7). The equipotential
lines produced by this image data field is shown in Figure 1c,
where the two dimensions denote the position of each pixel
with horizontal and vertical direction, respectively. More
visually, Figure 1d demonstrates the equipotential surfaces,
in which another dimension is added to denote the magnitude
of each potential value. Supposing the image pixel p with
the position (xp, yp), the value of new dimension is calcu-
lated by Eq.(7). Figure 1d indicates that the neighborhood
pixels are associated with the central pixel ordered by the
interactions, and the potential value of the pixel p moderate,
the neighborhood pixels weaker interaction. It is noted that,
the image has been pre-processed by step 3 of Algorithm 1
(see Section III-D), thus, two regions of airplanes are obtained
higher potential values, even so these pixels are darker than
background pixels and their grayscale values are comparably
low.
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Here, we confine ourselves to the two-class problem of
separating objects (foreground) from background. Without
losing generality, we assume that the background appears
darker than the object, otherwise the original image should
be reversed the color of each pixel. In fact, analyzing Eq.(7)
intuitively, we know, when the influential factor σ is assigned,
the image data field describes the grayscale tendency of
pixels in a neighborhood, the higher the potential value of
the pixel p, the greater the grayscale level and interaction,
and these pixels should be corresponded to the objects in
the image. Based on the image data field, the homogeneous
regions with stronger interaction and higher grayscale can
be obtained from an image by comparing the potential value
since the spatial information is considered.

In general, there are several characteristics of the potential
value in an image data field:
• Given the influence factor, the potential value of a cen-
tral pixel is bounded by an interval.

• For a homogeneous neighborhood with the greater
grayscale, the potential value of the central pixel is very
high. Statistically, this neighborhood owns high mean
potential and small standard deviation. Then, these pix-
els appear more of the objects.

• For a homogeneous neighborhood with the lower
grayscale, the potential value of the central pixel is very
small, even zero. This neighborhood has small mean
potential and standard deviation, and the corresponding
pixels are more like the background.

• For a neighborhood consisting of edge or noisy pixels
from transition regions, the potential value of the cen-
tral pixel is generally moderate, somewhere in between
those of foreground and background. These pixels usu-
ally look not very continuous and uniform, and the
potential values are highly unstable.

• The higher the potential value of a central pixel is,
the more likely the central pixel is in the interior of a
homogeneous region with high grayscale level, that is,
from foreground.

Potential value is related to the grayscale tendency in the
neighborhood. The flatter the grayscale change is, the more
extreme the potential value. When a pixel locates in the
interior of a homogeneous region from an image foreground,
grayscale change of its neighborhood is slight. Accordingly,
the potential value of the pixel is rather high. Similarly,
a pixel in the interior of a homogeneous region from an image
background, the potential value is fairly low. As for a pixel
in the non-homogeneous region (that is transition region),
the grayscale change of its neighborhood is sharp, and the
corresponding potential is moderate. Thus, pixels in the inte-
rior of a homogeneous region from an image foreground will
have higher potential than those in the non-homogeneous
region and the background. Theoretically, the potential value
of a pixel can be as an indicator to detect the candi-
date central pixel in the possible homogeneous region of
objects.

B. STIPPLE PLACEMENT BY POTENTIAL
CENTER ELIMINATION
Given a two-dimensional image space �, q∗ ∈ � is the
central pixel of a neighbourhood, ϕ(q∗) denotes its potential
value calculated by Eq.(7), q∗ is most likely the local central
pixel of the current image data field if ϕ(q∗) is the maximum
potential value. We call this pixel as the potential center, and
the other neighbor pixels are attracted by q∗, which leads to
a homogeneous region of objects.

In a homogeneous region of objects, all the other neighbour
pixels are attracted by the central pixel to some extent, but the
attracted intensity between any two pixels may be not same,
which depends on the respective contribution to the potential
of the central pixel in image data field. In particular, the cen-
tral pixel is attracted by itself with the maximal intensity.

Given a two-dimensional image space �, q∗ ∈ � is a
potential center, for ∀q ∈ ξ (q∗), there exists a finite sequence
consisting of potential centers q∗1, q

∗

2, . . . , q
∗
t (t ≥ 1),

q∗t = q∗, and the following conditions are satisfied: (1) q ∈
ξ (q∗1); (2) when t > 1, for ∀i ∈ [1, t − 1], q∗i ∈ ξ (q

∗

i+1); then
q∗ and q has a relationship of the potential center attraction,
and Sq∗ = {q, q∗1, q

∗

2, . . . , q
∗
t } is the pixel set of potential

center attraction.
Pixels are processed in priority order, where higher priority

pixels are those closer in higher potential values. Once the
current potential center is eliminated, the image data field
should be updated according to the potential center attraction.
Considering the iterations of image data field, the original
image data field ϕ(q) is as ϕ0(q), and we introduce k > 0
as a new indicator of the total number of iterations, and then
the detailed definition is formalized as below.

ϕk (q) =


ϕ(q) k = 0

ϕk−1(q)−
∑
qk∈Sq∗

g(qk )× e
−
||q−qk ||

2

σ2 k > 0 (8)

where ϕk (q), ϕk−1(q) denotes the potential value of the pixel
q in the k th, k − 1th image data field, ||q−qk || is the distance
of each pair of pixels, g(qk ) is the grayscale level of the
pixel qk , σ is the influence factor, and Sq∗ is the pixel set of
potential center attraction.

Figure 2a shows the detail of the equipotential lines on a
sub-image in an enlarged sense. The equipotential lines are
relatively dense around the contour of the airplanes, while
sparse on the background. Generally speaking, this equipo-
tential map is simple in structure. Each potential center is
shown in Figure 2b after 100 iterations. One can observe
that the contour of the upper airplane has been emerged. The
equipotential lines of the corresponding 100th image data
field are shown in Figure 2c, whose details in an enlarged
sense are also listed in Figure 2d. Clearly, this equipotential
map is more complex in structure. There are many positions
with relatively low potential values, that is, many potential
centers have being eliminated. By contrast of the two equipo-
tential lines, more local minimums of the potential values are
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FIGURE 2. Stipple placement by potential center elimination: (a) detail of Figure 1c on a sub-image, (b) the locations of top
100 potential centers, (c) the equipotential lines with 100 iterations, and (d) detail of Figure 2c on a sub-image.

appeared in Figure 2d. Meanwhile, these minimal potential
values cover the small regions only surrounding the central
pixels, since we do not eliminate the potential contribution of
the affected pixels at once in Eq.(8).

Figure 3a shows the equipotential surfaces of the final
image data field when the process of potential center elimina-
tion is finished. For the reference, the corresponding equipo-
tential lines are shown in Figure 3b. Once enough candidate
potential centers are eliminated, the image data field would be
very stable and flat. In one sense, the potential centers can be
as the reduction of the image data field, as well as the origial
image. Clearly, the number of the eliminated potential centers
is more, the final image data field should become flatter,
and the potential centers can describe the original data more
accurately. Theoretically, one can consider all of the pixels
as the potential centers with the elaborately fixed parameters,
and then eliminate these potential centers, thus, the potential
values of all locations in the final image data field would be
all zero.

However, the real-time method that produces competi-
tive quality solutions is more important and favorable since
it allows users to acquire desired results instantly. Thus,
accuracy and performance should be a dilemm. Too precise

reduction leads to poor efficiency of the proposed method.
On the one hand, once the influential factor is fixed, it will
take more time to eliminate more potential centers and obtain
a higher accuracy. On the other hand, at a lower time cost,
only fewer potential centers can be considered, which leads
to a lower accuracy on the original image. While lack of
potential centers would also make it difficult to describe the
original image information. Considering the time complex
and the efficiency, a moderate number is more optimal to
fix the number of the eliminated potential centers. However,
the problem of determining this parameter without human-in-
the-loop is still an open issue, and sustained effort is required
for an autonomous processing.

C. STIPPLE RENDERING
The potential centers easy represent the image data distri-
bution or its features, and then these pixels can be as the
stipples. Thus, the number of the potential centers would
affect the visual result of the image stippling. Our algorithm
as presented so far still creates unacceptable results for huge
numbers of stipples. It is clear from inspecting Figure 2b
that the tone can be improved by making more dramatic
adjustments to stipple size. To better reproduce fine details of
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FIGURE 3. Final results by using potential center elimination: (a) the final equipotential surfaces after potential center elimination,
and (b) the final equipotential lines.

the original picture, a moderate stipple size should be fixed
as much as possible. We propose adjusting the stipple size in
the rendering process in such a way as to reduce the effect
of stipple counts. Stipple size r(q) varies linearly with the
original potential value ϕ0(q), formalized as below,

r(q) = max{rmin, rmax
ϕ0(q)− ϕmin
ϕmax − ϕmin

}, (9)

where ϕmax , ϕmin respectively denote the maximum and the
minimum one of potential values in the image data field ϕ0.
According to the above equation, a minimum size stipple

is placed at a site of pixels with lower potential values, up to
a maximum size stipple when the potential values drops to
the highest. Deussen et al. [6] argued that artists rarely use
stipples which vary in size by more than a factor of two.
In Eq.(9), we follow this advice and have our maximum
stipple twice the size of the minimum, so rmin = 1 and
rmax = 2.

Figure 4 shows further results of IDFS on an image, and
the number of stipples is 327, 1310, 2621, and 32768 respec-
tively. By using our IDFSmethod, the result is still acceptable
only with 1310 stipples, since the two airplane objects are
clearly represented by these stipples. Along with the number
of stipples increasing, more and more background pixels are
involved into stipples, although the stipple size is compara-
tively small.

D. OVERALL PROCESS
Algorithm 1 outlines the generation process used, which
contains three main components, including image data field
generation, potential center elimination and stipple render-
ing. Given an input image, the proposed method auto-
matically converts it into stipple style by the following
steps:

System initialization (step 1) involves setting parameters,
and reading in the original images. Some pre-processing
(steps 2 and 3) is done, in preparation for the generation

Algorithm 1 The IDFS Algorithm
Input: The original image Io and the influence factor σ .
Output: The stipple list L, that is, a list of stipple dots with

the size.
1: Read the input image data Io, and set initialization param-

eters, for example, k ← 0,L ← ∅.
2: Pre-process the original image and obtain an 8-bit image
Ig if involved in a 24-bit image, or set Ig← Io directly.

3: Reverse the color of the 8-bit image if necessary, and
obtain the updated image Iu, or set Iu← Ig directly.

4: Generate an image data field ϕ from the image data Iu
with the given influence factor pattern σ (see Eq.(7) in
Section III-A), and then ϕk ← ϕ.

5: repeat
6: Find the maximum potential value in the current image

data field ϕk , whose corresponding position (X∗,Y ∗)
is as the current potential center q∗, and then L ←
L ∪ (X∗,Y ∗).

7: while p ∈ ξ (q∗) do
8: Update the k + 1th image data field ϕk+1 using

Eq.(8) mentioned in Section III-B.
9: end while

10: Draw the k th stipple with the varied size (see
Section III-C) and then k ← k + 1.

11: until The number of stipples is more enough or other
stopping criterion is satisfied.

12: Produce the current stipple list L as the final rendering
image.

of image data field later. This is followed in step 4 by the
generation of image data field, to be used as the initial poten-
tial value for the iteration process. Steps 5 to 11 form themain
iteration loop of the rendering system. Each generation has a
maximum potential value in the current image data field, and
a potential center is found as one candidate stipple. With the
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FIGURE 4. Example results from using our IDFS method: (a) 327 stipples, (b) 1310 stipples, (c) 2621 stipples, and
(d) 32768 stipples.

incremental generation k , more and more potential centers
are eliminated, and then image data field becomes flatter
and flatter. Once the enough stipple dots have been prepared,
the rendering with the varied size should be applied to them.
Finally, the rendering result can be produced as various forms.

Here, we provide a concise description on step 3. We intro-
duced a controlled variable by visual observation and then
changed the grayscale value of each pixel p from g(p) in Ig
to 255 − g(p) in Iu, if involved darker objects in images,
where g(p) is the grayscale value of the original image. But
the additional processing does not affect any stippling results.
We only introduced this process because of the consistency of
artistic style, that is, object pixels are always been processed
earlier, since bright pixels should be with higher potential val-
ues and probably eliminated as a potential center according
to the priority.

E. MOSAIC CONSTRUCTION
Mosaics and stipples have a close relationship: the same
primitive distribution problems are seen in each other. We can
easy modify the step of Algorithm 1 to place mosaic tiles.

The Voronoi diagram is a method of dividing an image into
a number of regions. We consider each potential center as the
centroid of eachVoronoi region. The usedmethod of potential
center elimination should differ from Eq.(8). To accelerate
the potential center elimination, we remove the effect of all
the related pixels, instead of partial influence like Eq.(8). The
modified mathematical model is as below,

ϕk (q) =

{
ϕ(q) k = 0
0 k > 0

(10)

The contrast of Eq.(8) and Eq.(10) shows that the only dif-
ference between them is the updated method of the potential
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FIGURE 5. Mosaic construction by potential center elimination: (a) the equipotential surfaces with the first potential center
elimination, (b) the details equipotential lines from the first iteration, (c) the equipotential lines after 100 iterations, and
(d) the Voronoi boundaries related to 382 potential centers.

value in the process of potential center elimination. At each
iteration, the algorithmmoves each potential center, then rear-
ranges the voronoi cells. Figure 5 demonstrates the mosaic
construction by potential center elimination. After the first
potential center elimination, the equipotential surfaces are
shown in Figure 5a. There is a huge empty on the base of the
equipotential surface. More clearly, the details equipotential
lines of Figure 5a is also listed in Figure 5b, where a square
hole is evidently appeared. With 100 times of potential center
elimination, the equipotential lines is shown in Figure 5c. The
two airplane objects are approximately depicted by the white
regions with zero potential values. In addition, the potential
values using Eq.(10) are reduced more sharply than those
using Eq.(8). In this way, we obtain 382 potential centers,
and then generate the Voronoi boundaries related to these
potential centers. The result is shown in Figure 5d. Basically,
the intuitive analysis by the naked eye indicates that the size
of tiles is uniform, and the space arrangement of regions is
also appropriate.

Figure 6 shows some examples of mosaics obtained by
using our IDFS method. We generate Voronoi diagram with

totally 1936 Voronoi cells, whose color is determined by the
elimination order of potential centers. As shown in Figure 6a,
the first 100 Voronoi cells are rendered using approximate red
color. The visual result of 1936 Voronoi regions is overlapped
with the original image, as shown in Figure 6b. Overall,
the results are acceptable.

F. PARAMETER CONFIGURATION
There are three parameters in the above analysis on image
data field-basedmethod for stippling. Themost important one
is the influential factor σ in definition Eq.(5), and the another
two are the minimum and the maximum size of stipples, that
is, rmin and rmax in Eq.(9). The latter two have discussed in
Section III-C, which are introduced as optional parameters to
control the artistic freedom of the output.

Thus, there is only one pending parameter. Here, we dis-
cuss the choice of σ . Although the optimal setting of the
parameter σ depends on the image under analysis and on
the subjectivity of the user, a good trade-off is the following.
The influential factor σ is closely related with the neigh-
borhood size 3σ/

√
2. A too small neighborhood size will
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FIGURE 6. Examples of mosaics obtained by using our IDFS method: (a) Voronoi diagram, and (b) visual result
of 1936 Voronoi regions.

result in imprecise estimate of the original image, while a too
large neighborhood size will cause the loss of localization
and the high time cost of the implementation. In Eq.(7),
the neighbouring pixels ξ (q) related with the central pixel q
can be clearly determined by the the neighborhood size ns =
d3σ/
√
2e. Considering the neighborhood size is actually an

integer for an image, it is relatively easy to choose, thus we
experimentally obtain an optimal ns value n∗s from 3 to 11 in
this paper, and then the influential factor σ is approximately
calculated by

√
2n∗s /3.

For the termination strategy (step 11) of Algorithm 1,
there are two related parameters, that is, Gk and Tp, since
the terminating conditions include two components. Gk is
the maximum number of stipples, as well as the maximum
generation of the iteration, and then the IDFS system is
stopped when a fixed number of stipples are acceptable. That
is, the iterative process of Algorithm 1 is terminated with
k > Gk . In addition, the potential difference threshold Tp
denotes the difference between the average potential values
of two successive generations, which indicates that the result
is reaching or has reached a plateau. In other words, if any one
of the above conditions is satisfied, the proposed algorithm is
terminated.

Certainly, some other suitable termination strategies for
Algorithm 1 are also alternative. However, how to choose the
termination strategy and set the appropriate parameter value
is still an open problem.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
In order to illustrate the performance of the IDFS system,
both grayscale and color images, are involved into the exper-
iments. The proposed method is implemented under Matlab
2014 environment.

We conduct two groups of experiments with other exist-
ing techniques. In the first group, StippleShop1 and an

1http://tobias.isenberg.cc//personal/demos/stippleshop.zip

interactive reimplementation2 of the LBG method [10] are
used for the related methods. StippleShop is a filter- and
effect-based tool that implements the 2D stippling/dot place-
ment approaches, including the WVS method [7], the SAS
method [16], the RWT method [12]. In addition, halftoning
has strong connections to stippling, and black and white
stippling results might be treated as a kind of halftoning.
Both stippling and halftoning share the goal of represent-
ing a continuous-tone image for a binary medium, and
we also focus on investigating suitable dot distributions.
Thus, in the second group of experiments, we compare our
result images with the halftoning results by OSTromoukhov’s
error-diffusion algorithm (OST for short) [32], and Li and
Mould’s Contrast-Aware Halftoning algorithm (CAH for
short) [33], these two methods are also implemented by
StippleShop.

For a fair comparison, all the methods are auto-parameters
or default settings, including the influence factor σ in our
method. All the experiments are performed on a PC with a
2.3GHz Core i7 CPU, 16GB RAM and a Nvidia Geforece
GTX 1080 Graphics card, running on a Windows 10 operat-
ing system. Some original images are shown in Figure 7.

B. RESULTS
1) VISUAL COMPARISON
As a first quality criterion, we investigate the perceptual
quality of our IDFS algorithm. Here, we compare and analyze
the related methods to help evaluate our approach. For the air-
plane image, Figure 8 gives a comparison against the results
from the SAS method [16] and the RWT method [12], who
shares our goal of using stipples for structure, as well as the
OST method [32] and the CAH method [33], who shares our
goal of using stipples for halftoning. In addition, two Lloyd
optimization-based methods, that is theWVSmethod [7] and
the LBG method [10], are also involved into the comparison,
since the Lloyd’s algorithm is as the classical method for

2https://github.com/MarcSpicker/LindeBuzoGrayStippling
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FIGURE 7. Some original images.

digital stippling, and theWVSmethod is as the historical one,
while the LBG method as the recent one.

The two structure-based stippling methods, that is the SAS
method and the RWT method, cannot produce the acceptable
results, since the two airplane objects are lost and generalized
in the background. The two halftoning methods, that is the
OST method and the CAH method, yielded the acceptable
results, but the process of the uneven background is still far
from perfect, and meanwhile too many dots are used. The two
Lloyd optimization-based methods showed different perfor-
mance, theWVSmethod cannot represent the input well even
the iteration time is the longest, and the LBG method created
a good approximation, but the dot size should be still further
investigated and improved.

Compared with Figure 8, Figure 4 shows that our method
preserves structure better than these six previous methods.
Visually, the effect of our result images is quite good. Our
IDFS method can achieve significantly better tone reproduc-
tion and better structure. In other words, our IDFS method
can express very complicated and detailed content.

In addition, we further validate the fact that our approach is
useful for stippling and it is a better alternative to the existing
methods. We only select the best result for each input image
by the traditional methods, as well as results by the proposed
method, not all the results for eight original images. On the
one hand, this simplification makes the paper more compact.
On the other hand, we introduced a simple user evaluation on
the aesthetic performance of these result images by various
methods. We started by inviting 68 users to participate in
this investigation, who volunteered from our university, and
there are 4 digital stippling novices, 13 digital art enthusiasts,
48 undergraduate students with some art knowledge, and
3 professional teachers of artistic design. All of them declared
that they have seen hand-drawn stipple images and are with
some related knowledge. Then, the users were asked to
evaluate the result images by various methods considering

the original images in Figure 7 as the input. Later, they picked
out the best results by the compared methods, and completed
a task of judging our method’s ability to exhibit aesthetic
performance equivalent to, or indistinguishable from, those
of the traditional methods. The answer is dualistic, just ‘‘yes’’
or ‘‘no’’.

The most selected result images by the traditional meth-
ods are listed in Figure 9. Among the six traditional meth-
ods, the OST method is voted three images from eight
ones as the best by an overwhelming majority, as shown
in Figures 9a, 9b and 9d, and the CAH method also three
images, as shown in Figures 9e, 9f and 9h. While the LBG
method and the SAS method have produced as the best once,
that is for only one image, as shown in Figures 9c and 9g.
Furthermore, the RWT method and the WVS method lack
the enough support, thus no result iamges by these meth-
ods are listed in Figure 9. Specially, for the two Lloyd
optimization-based stippling methods, the WVS method has
to be given a good initial point distribution, and cannot yield
reasonable results for the selected images, while the LBG
method generated moderate results, but not perfect, since it
should be investigated more advanced cell splitting criteria to
achieve adaptive size.

For the reference, all the result images are still attached
in the Supplementary Materials available online. It is worth
pointing out that, the results for the latter four original images
are absent, since the RWT method cannot directly handle the
input image with the unequal size.

In general, about 72% of participants (49 users) think
the results by our IDFS method are acceptable, that is,
the response to the above dual question is ‘‘yes’’. This user
study shows that our method gained a certain approval, and
can be as an alternative to the traditional methods. Some users
argued that, with less stipples, our method even produces
better results than the traditional methods, compared with
Figures 9c to 9f. Some other users felt that the proposed
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FIGURE 8. Comparisons of the results by various methods: (a) SAS, (b) RWT, (c) OST, (d) CAH, (e) WVS, and (f) LBG.

TABLE 1. Quantitative evaluation results.

method itself appears to have the ability to slightly process
and understand the meaning of the original images, especially
for the salience of images. In summary, the experimental
results of these original images indicate that the proposed
method is effective in yielding the approximately ideal results
of stipple rendering.

2) QUANTITATIVE COMPARISON
For a quantitative comparison, we employ the structural
similarity index measure (SSIM) [19] and the peak signal-to-
noise ratio (PSNR) to quantify the tone and the structure dif-
ference between the stippling result and the original grayscale
image.

Table 1 gives the result data for the structure similarity.
The proposed IDFS method has obtained higher SSIM values
than other previous methods, thus higher structure similarity.
Additionally, tone similarity is usually measured by com-
puting the PSNR between two images. Higher PSNR values
indicate higher tone similarity. Tone similarity by PSNR is
also listed in Table 1. Our method has better tone matching
than others, apart from the OST method which was carefully
honed to match tone exactly. As a whole, the last column of
Table 1 shows the total performance of the various methods,
our method produced the highest mean PSNR value, as well
as the best mean MSSIM value.
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FIGURE 9. Other comparisons of the results by various methods: (a) (b) (d) results by the OST method, (c) results by
the LBG method, (e) (f) (h) results by the CAH method, (g) results by the SAS method, and (i) results by our IDFS
method.

From the earlier analysis [18] and our priori knowledge,
we use GLCMs to explore and evaluate the stipple aes-
thentics from the perspective of texture analysis. We create
GLCMs from these result images, using horizontal offsets of
(0, 1), (0, 2), . . . , (0, 40). Figure 10 presents the three texture
statistics plots of the result images by various methods. Each
plot displays the corresponding texture statistic in relation to
the magnitude of the offset direction. Figure 10a shows the
texture correlation of the result images by the five methods.
All of the correlation plots have smooth curves falling from a
high correlation at an offset of one pixel to a low correlation
as the offset approaches approximately five pixels. In con-
trast, the other five texture correlation plots, except results
by the WVS method and our approach, resemble a random
distribution with the growth of the offset in the second half.
But,,according to the above analysis, the visual results by
the WVS method are totally unacceptable. Figure 10b shows
the texture contrast of the same result images in relation to the
offset magnitude. Again, one can see smoother curve in our
result by contrast with those by other methods. This curve
indicates that the contrast to neighboring pixels is low, but
farther from the reference pixel, the contrast becomes high.

Figure 10c shows the images’ texture energy in relation to
the offset magnitude. Here, we see discrepancies among the
techniques. Our result image has a smooth curve, with a
slightly higher set of energy values corresponding to pixels
neighboring the reference. In addition, our IDFS plot is a
constant value with a fairly high energy level, indicating a
random stipple distribution.

3) DISCUSSION
In this subsection, we provide a brief discussion on the pro-
posal. Our IDFS method used a priority mechanism focus-
ing on extremal potential values, and it introduced some
optional parameters to control the number of stipples and
the artistic style. The above results for the original images
demonstrated overall higher visual quality and relatively less
time consumption. Although the proposed approach has been
proven to be successful in some cases, none of methods are
generally applicable to all images, and different algorithms
are usually not equally suitable for a particular application.
Our technique based on image data field is superior to other
existing methods, especially for those uneven lighting images
with salient objects. However, it is currently not good at
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FIGURE 10. Texture statistics with horizontal offset from various methods: (a) contrast, (b) correlation, and (c) energy.

FIGURE 11. Failure results of applying the proposed method: (a) the original image, (b)-(d) the results by our method, the OST method and the
LBG method, respectively.

capturing very complex and rich texture. Typically, one of the
failure cases is shown in Figure 11, result by our method is
simply not acceptable, but among the six traditional methods,

the OST method and the LBG method generated proper
results. In fact, image data field used in the paper mainly
considers the color information of the images, but combines
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FIGURE 12. Examples of mosaics obtained by using 10000 Voronoi regions: (a) the No 2 image,
(b) the No 4 image, (c) detail of (a) on a sub-image, and (d) detail of (b) on a sub-image.

only a limited amount of local structure, which is far from
sufficient to express the global texture in images. In other
words, our method cannot efficiently represent the texture
structure in some more complicated cases, and then produces
the unsatisfactory results. Of course, different image data
fields with potential functions for different type of input
images might be beneficial. But how to choose the suitable
potential function is clearly not a simple problem without
human intervention.

4) TILE MOSAICS
The proposed image data field can also serve as a gen-
eral framework for tile mosaics, where the potential centers
are arranged to follow the feature flow with some spacing
constraint. We use the IDFS method to build tile mosaics.
Figure 12 shows two examples of mosaics obtained by using
10000 Voronoi regions. As shown in Figure 12, the result
images appear the key details very nicely, and exactly capture
the feature of the original images. Also our IDFS method
usually use less tiles in the resultant mosaics than those used

in previous mosaics of irregular tiles. As a whole, the exper-
imental results of these images suggest that the proposed
method is effective in yielding the approximately ideal results
of mosaic construction.

C. TIME COMPLEXITY
The main time cost of the proposed IDFS system lies in
image data field generation (step 4 in Algorithm 1) and
potential centers reduction (steps 6-9 in Algorithm 1) in a
window-by-window manner. Considering the original image
with the size of hw, the former consumes the time of order
O(4n∗s

2hw), where the affiliated term is generally much less
than hw. The latter scans each pixel once which takes time
about O(hw). Additionally, the presented method for stipple
rendering (step 10 in Algorithm 1) costs time no more than
O(Gk ), where the number of stipples Gk is usually satisfied
the condition Gk � hw. Thus, the time complexity of the
proposed algorithm is approximately linear in the size of
the original image, that is, O(hw). Therefore, the computa-
tional complexity analysis indicates that our IDFS system
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is enough efficient. In fact, for an image with the size of
512 × 512, the time consume is usually not more than 1 s
in our practice.

In a way, the proposed method is efficient from the view of
running time, and it can be approximatively satisfied by the
need of the real-time applications, because our method runs
with less time cost and the generated visual results are also
acceptable.

V. CONCLUSION AND FUTURE WORK
In the paper, we provide an alternative stippling method using
image data field. The experiment results, both visual and
quantitative comparisons, verify the efficiency and feasibility
of the proposal, which can be as an alternative to the existing
methods. Also, the proposed IDFS algorithm has a good
performance on running time, and its time complexity is
approximatively linear related to the size of the input image.
To some extent, our method understands and reduces the
image information by using the data field evaluating the inter-
action between pixels, and then achieves stippling rendering
with less stipples. The main difference between our method
and the previous studies is the proposed method potentially
contains an effect of salient region segmentation.

There are a couple of issues that will be considered in the
future research: (1) Different potential functions of image
data field should contribute to and lead to various visual
effects of result images, and more alternative potential func-
tions maybe provide just as or more interesting than the
presented result images, thus the extension of the proposed
method to introduce more other potential functions is well
worth further studying on. (2) Because of our existing knowl-
edge, we would prefer to focus our method more on computer
art in the paper, but not computer graphics purely. Neverthe-
less, the proposed method is only implemented in Matlab,
and other languages for engineering applications should be
employed, for example, C++ and Java. Then, how to inte-
grate with the existing image processing software is another
feasible direction. The extension of the technique is currently
under investigation and will be reported later.

APPENDIX
Supplementary data on result images: supplementary data
associated with this article can be found online. In the sup-
plementary materials, we provide a ‘‘7-zip’’ archiver file,
which include various image results, mentioned in Figure 8
and Section IV-B1.
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