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ABSTRACT Security breaches due to attacks by malicious software (malware) continue to escalate posing
a major security concern in this digital age. With many computer users, corporations, and governments
affected due to an exponential growth in malware attacks, malware detection continues to be a hot research
topic. Current malware detection solutions that adopt the static and dynamic analysis of malware signatures
and behavior patterns are time consuming and have proven to be ineffective in identifying unknownmalwares
in real-time. Recent malwares use polymorphic, metamorphic, and other evasive techniques to change the
malware behaviors quickly and to generate a large number of new malwares. Such new malwares are
predominantly variants of existing malwares, and machine learning algorithms (MLAs) are being employed
recently to conduct an effective malware analysis. However, such approaches are time consuming as they
require extensive feature engineering, feature learning, and feature representation. By using the advanced
MLAs such as deep learning, the feature engineering phase can be completely avoided. Recently reported
research studies in this direction show the performance of their algorithms with a biased training data, which
limits their practical use in real-time situations. There is a compelling need to mitigate bias and evaluate these
methods independently in order to arrive at a new enhancedmethod for effective zero-daymalware detection.
To fill the gap in the literature, this paper, first, evaluates the classical MLAs and deep learning architectures
for malware detection, classification, and categorization using different public and private datasets. Second,
we remove all the dataset bias removed in the experimental analysis by having different splits of the public
and private datasets to train and test the model in a disjoint way using different timescales. Third, our major
contribution is in proposing a novel image processing technique with optimal parameters for MLAs and
deep learning architectures to arrive at an effective zero-day malware detection model. A comprehensive
comparative study of our model demonstrates that our proposed deep learning architectures outperform
classical MLAs. Our novelty in combining visualization and deep learning architectures for static, dynamic,
and image processing-based hybrid approach applied in a big data environment is the first of its kind toward
achieving robust intelligent zero-day malware detection. Overall, this paper paves way for an effective visual
detection of malware using a scalable and hybrid deep learning framework for real-time deployments.

INDEX TERMS Cyber security, cybercrime, malware detection, static and dynamic analysis, artificial
intelligence, machine learning, deep learning, image processing, scalable and hybrid framework.

I. INTRODUCTION
In this digital world of Industry 4.0, the rapid advancement of
technologies has affected the daily activities in businesses as
well as in personal lives. Internet of Things (IoT) and appli-
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cations have led to the development of the modern concept
of the information society. However, security concerns pose
a major challenge in realizing the benefits of this industrial
revolution as cyber criminals attack individual PC’s and net-
works for stealing confidential data for financial gains and
causing denial of service to systems. Such attackers make
use of malicious software or malware to cause serious threats
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and vulnerability of systems [1]. A malware is a computer
program with the purpose of causing harm to the operating
system (OS). Amalware gets different names such as adware,
spyware, virus, worm, trojan, rootkit, backdoor, ransomware
and command and control (C&C) bot, based on its purpose
and behavior. Detection and mitigation of malware is an
evolving problem in the cyber security field. As researchers
develop new techniques, malware authors improve their abil-
ity to evade detection.

A. RESEARCH BACKGROUND
When Morris worm made its appearance as the first ever
computer virus in 1988-89, antivirus software programs were
designed to detect the existence of such a malware by finding
a match with the virus definition database updated from time
to time. This is called signature-based malware detection,
which can also perform a heuristic search to identify the
behavior of malware. However, the major challenge in such
classical approaches is that new variants of malware use
antivirus evasion techniques such as code obfuscation and
hence such signature-based approaches are unable to detect
zero-day malwares [2]. Signature-based malware detection
system requires extensive domain level knowledge to reverse
engineer the malware using Static and Dynamic analysis and
to assign a signature for that. Moreover, signature-based sys-
tem requires larger time to reverse engineer the malware and
during that time an attacker would encroach into the system.
In addition, signature-based system fails to detect new types
of malware.

Security researchers have identified that hackers predom-
inantly use polymorphism and metamorphism as obfusca-
tion techniques against signature-based detection. In order
to address this problem, software tools are used to manually
unpack the codes and analyses the application programming
interface (API) calls. Since this process is a resource intensive
task, [3] presented an automated system to extract API calls
and analyses the malicious characteristics using a four-step
methodology. In step 1, the malware is unpacked. In step 2,
the binary executable is disassembled. Step 3 involves API
call extraction. Step 4 involves API call mapping and sta-
tistical feature analysis. This was enhanced in [4] using a
5-step methodology incorporating machine learning algo-
rithm (MLA) such as SVM with n-gram features extracted
from large samples of both the benign and malicious executa-
bles with 10-fold cross validations. Later, in [5] a comparative
study of various classical machine learning classifiers for
malware detection was performed, and a framework for zero
day malware detection was proposed. To handle malicious
code variants, the sequence ofAPI calls and their frequency of
appearance of API calls passed into similarity based mining
andmachine learning methods [7]. The detailed experimental
analysis was done on very large data set and to extract the
features from malware binaries a unified framework pro-
posed. In [8], API calls features and a hybrid of support
vector machine (SVM) and Maximum-Relevance Minimum-
Redundancy Filter (MRMRF) heuristics were employed to

present novel feature selection approaches for enhanced mal-
ware detection. Recently, with the increase in unknown mal-
ware attacks, the detailed information on obfuscated malware
is discussed by [6] and many researchers are improving the
MLAs for malware detection [9]. This forms the motivation
of this research work.

B. NEED FOR THE STUDY
Machine learning algorithms (MLAs) rely on the feature
engineering, feature selection and feature representation
methods. The set of features with a corresponding class is
used to train a model in order to create a separating plane
between the benign and malwares. This separating plane
helps to detect a malware and categorize it into its corre-
sponding malware family. Both feature engineering and fea-
ture selection methods require domain level knowledge. The
various features can be obtained through Static and Dynamic
analysis. Static analysis is a method that captures the infor-
mation from the binary program without executing. Dynamic
analysis is the process of monitoring malware behavior at
run time in an isolated environment. The complexities and
various issues of Dynamic analysis are discussed in detail
by [10]. Dynamic analysis can be an efficient long term
solution for malware detection system. The Dynamic analysis
cannot be deployed in end-point real time malware detec-
tion due to the reason that it takes much time to analyze
its behavior, during which malicious payload can get deliv-
ered. Malware detection methods based on Dynamic analysis
are more robust to obfuscation methods when compared to
statically collected data. Most commonly, the commercial
anti-malware solutions use a hybrid of Static and Dynamic
analysis approaches.

The major issue with the classical machine learning
based malware detection system is that they rely on the
feature engineering, feature learning and feature represen-
tation techniques that require an extensive domain level
knowledge [11]–[13]. Moreover, once an attacker comes to
know the features, the malware detector can be evaded
easily [14].

To be successful, MLAs require data with a variety of
patterns of malware. The publicly available benchmark data
for malware analysis research is very less due to the security
and privacy concerns. Though few datasets exist, each of
them has their own harsh criticisms as most of them are
outdated. Many of the published results of machine learn-
ing based malware analysis have used their own datasets.
Even though publicly available sources exist to crawl the
malware datasets, preparing a proper dataset for research is
a daunting task. These issues are the main drawbacks behind
developing generic machine learning based malware analysis
system that can be deployed in real time. More importantly,
the compelling issues in applying data science techniques
were discussed in detail by [15].

In recent days, deep learning, which is an improved
model of neural networks has outperformed the classi-
cal MLAs in many of the tasks which exist in the field
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of natural language processing (NLP), computer vision,
speech processing and many others [16]. During the train-
ing process, it tries to capture higher level representation
of features in deep hidden layers with the ability to learn
from mistakes. MLAs experience diminishing outputs as
they see more and more data whereas deep learning cap-
tures new patterns and establishes associations with the
already captured pattern to enhance the performance of
tasks. There exists few research studies towards the applica-
tion of deep learning architectures for malware analysis to
improve cyber security [13], [11], [12], [17], [18], [18]–[24].
However, with Industry 4.0, the number of malwares is
rapidly increasing in recent times. Since the continuous col-
lection of malware in real time results in Big Data, the exist-
ing approaches are not scalable with very high requirements
for storage and time in making efficient decisions. The
absence of scalable and distributed architectures in solving
malware analysismotivated the current research to investigate
the algorithms and develop a scalable architecture, namely
ScaleMalNet.

C. MAJOR CONTRIBUTIONS OF THE STUDY
To fill the gap in literature, in this paper, a scalable deep
learning network architecture for malware detection called
ScaleMalNet is proposed with the capability to leverage the
application of Big Data techniques to handle vary large num-
ber of malware samples. Overall, the major contributions of
the current research work are:

1) A new proposal of a scalable and hybrid framework,
namely ScaleMalNet which facilitates to collect mal-
ware samples from different sources in a distributed
way and to apply pre-processing in a distributed man-
ner. The framework has the capability to process large
number of malware samples both in real-time and on
demand basis.

2) A proposal of a novel image processing technique for
malware classification.

3) ScaleMalNet follows two stage approach, in the first
stage the executables file is classified into malware
or legitimate using Static and Dynamic analysis and
in second stage the malware executables file is cate-
gorized into corresponding malware family.

4) An independent performance evaluation of classical
MLAs and deep learning architectures, benchmarking
various malware analysis models.

The rest of the paper is organized as follows. Section II
reviews the key malware classification models considering
various approaches traditionally employed for malware anal-
ysis. In Section III, deep learning architectures are introduced
to get insights into this research background. Section IV
presents the implementation architecture for deep learning
in this research study and the statistical measures used to
evaluate the performance of the classifier. SectionV describes
the experiments and observations of malware classification
using deep learning based on Static analysis. Section VI
discusses the experimental study and the results obtained for

malware classification using deep learning based onDynamic
analysis. Section VII presents the experimental outcome of
our deep learning architecture based on novel image process-
ing technique used for malware categorization. Section VIII
provides details of ScaleMalNet. Finally, Section IX provides
the conclusion of this study and future work.

II. MALWARE CLASSIFICATION MODELS
In this section, we discuss the pros and cons of some of the
popular classification models adopted for malware detection
traditionally using static and dynamic analysis as well as
their variations in recent years. However, with Big Data, it is
more important to consider image processing techniques for
enhanced data visualization and effective decision making.
A good understanding of these methods form the basis of our
research presented in this paper.

A. MALWARE CLASSIFICATION USING STATIC ANALYSIS
Several security researchers have applied domain level
knowledge of portable executables (PE) for static malware
detection. At present, analysis of byte n-grams and strings
are the two most commonly used methods for static mal-
ware detection without domain level knowledge. However,
the n-gram approach is computationally expensive and the
performance is considerably very low [25]. It is often dif-
ficult to apply domain level knowledge to extract the nec-
essary features when building a machine learning model to
distinguish between the malware and benign files. This is
due to the fact that the windows operating system does not
consistently impose its own specifications and standards [9].
Due to constantly changing specifications and standards from
time to time, the malware detection systemwarrants revisions
to meet future security requirements. To address this, [26]
has applied machine learning algorithms (MLAs) with the
features obtained from parsed information of PE file. They
adopted formatting of agnostic features such as raw byte his-
togram, byte entropy histogram which was taken from [19],
and in addition employed string extraction. MalConv [11]
compared these classical machine learning models with the
deep learning approach. They have made the dataset with
features as well as raw files and the associated code publicly
available since deep learning models require more explo-
ration and require further research.

A classical fully connected network and recurrent neural
network (RNN) model of deep learning was traditionally
employed to detect malware with 300 bytes information
from the PE header file [9]. Subsequently, [12] has employed
convolutional neural network (CNN) on a large number
of byte long executables and obtained consistent results
across 2 different tests based on a previous study [25].
Using domain level knowledge, [26] has extracted several
features and showed that its performance is comparable to
the MalConv [11] deep learning approach. The performance
of Malconv model was improved by making modification
to the existing architecture [12]. We believe that the deep
learning capabilities have not been fully realized, and this
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work proposes the application ofWindows-StaticBrain-Droid
(WSBD) model for incorporating deep learning.

In this work, by usingWSBD, we evaluate the performance
of benchmarked models [11], [26] and [12] on the publicly
available dataset from [26] along with privately collected
samples of benign and malwares. We introduce several vari-
ants of the existing deep learning architectures from [11]
and [12]. In addition, we compare the performance of various
classical machine learning classifiers on the domain level
features obtained from [26] using deep learning techniques.

B. MALWARE CLASSIFICATION USING DYNAMIC
ANALYSIS
Malware analysis methods based on Dynamic analysis are
more robust to obfuscation methods as compared to Static
analysis. In [20], features from 5 minutes API calls were
extracted and passed on to CNN for classification using
Dynamic analysis. They used around 170 samples and
obtained 0.96 for Area under Curve (AUC) as the quality
measure. In [21], shallow feed forward network with feature
sets of API calls were obtained from a large number of
samples of benign and malware that were collected privately.
It performs well as compared to the existing approaches
but it lacks the study on the speed of execution, which is
important for real-time deployments. In [22], experiments
with echo state networks (ESNs) and RNNwere conducted to
learn the language of malwares. In most of the experiments,
the ESNs performed well in comparison to RNN. In [23],
experiments were conducted to determine when to stop the
malware execution with respect to the network communica-
tion. This method has reduced the total time taken by 67%
compared with conventional methods. In [24] the application
of RNN and its variant long short term memory (LSTM) and
CNN were employed for malware classification with API
call long sequences as features. The major problem with the
existing methods are that they take more time to analyze
the behaviors during execution. In [24], a hybrid of CNN
and RNN was employed for malware classification using
system call sequences. These system calls were obtained
from Dynamic analysis, and their method was reported to
outperform previously used algorithms such as SVM and
hidden markov model (HMM). However, we identify the
main drawback as the failure to discuss the importance of
execution time towards detection of malware in real-time.
In [13] has proposed a method based on RNN with two dif-
ferent datasets. They also evaluated the performance of other
classical machine learning classifiers. They had reported 94%
accuracy with 5s execution time.

Many research studies have compared malware detection
techniques based on Static, Dynamic, and Hybdrid analysis.
In [27], use of HMM on both static and Dynamic analy-
sis of feature sets and a comparative study on detection
rates was conducted over a substantial number of malware
families. They reported that Dynamic analysis generally
yielded the best detection rates. In this work, we propose
Windows-Dynamic-Brain-Droid (WDBD) model that

evaluates the efficacy of the various classical machine learn-
ing algorithms (MLAs) and deep learning architectures to
know which algorithm is most appropriate for windows
malware classification. We employ two different datasets that
contain different numbers of malware and benign samples
that are captured during different execution time.

C. MALWARE CLASSIFICATION USING IMAGE
PROCESSING TECHNIQUES
Malware attacks are on the rise and in recent days, new
malwares are easily generated as variants of existing malware
from a known malware family. To overcome this problem,
it is important to learn the similar characteristics of malware
that can help to classify it into its family. Several studies
conducted in [28]–[32], [34], [35] have taken advantage of
the fact that most malware variants are similar in structure,
with digital signal and image processing techniques used for
malware categorization. They have transformed the malware
binaries into gray scale images and report that malwares from
the same malware family seem to be quite similar in layout
and texture. Since image processing techniques require nei-
ther disassembly nor code execution, it is faster in comparison
to the Static and Dynamic analysis. The main advantage of
such an approach is that it can handle packed malware, and
can work on various malwares irrespective of the operating
system. Experimental results have shown 98% classification
accuracy on a huge malware database and it is also resilient
to popular obfuscation techniques namely, encryption. They
have made benchmarked data, Malimg as public for further
research. They also presented Search and RetrieVAl of Mal-
ware (SARVAM), an online malware search and retrieval
system where binary executable can be analyzed by utilizing
similarity metrics. They also presented SigMal, a malware
similarity detection framework which was based on signal
processing. It has the capability to handle both packed and
unpacked samples, avoiding unpacking process which uses
resources intensively. Heuristics based on the information
about the PE structure were used to augment the accuracy of
the signal processing based features. Experimental outcomes
exhibit that SigMal’s performance out wings all other static
malware detection methods in terms of accuracy.

In recent days, the Malimg dataset is used to evaluate the
efficacy of advanced machine learning algorithms (MLAs)
over classical MLAs. Instead of following various signal and
image processing techniques, the applications of deep learn-
ing algorithms are transformed into malware categorization
using Malimg dataset [17], [18]. In [17], they have applied
the combination of SVM and deep learning architectures such
CNN and RNN variations. They have divided the dataset
randomly into 80% for training and 20% for testing and
claimed that the combination of GRU and SVM performed
well in comparison to the other methods. Recently, [18] did
the detailed analysis of different CNN architectures such
as ResNet-50, VGG16, VGG-19 and the transfer learning
applied on both the Malimg and privately collected dataset.
In this work, we propose DeepImageMalDetect (DIMD) that
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leverages deep learning with image processing approach for
malware categorization. The performance of the proposed
architecture is compared with the other deep learning archi-
tectures and classical machine learning classifiers. All these
methods are evaluated on the benchmark dataset and the also
the performance of those methods are shown on the recently
collected private malware samples.

At last, we propose hybrid malware analysis system named
as ScaleMalNet which composed of Windows-Static-Brain-
Droid (WSBD), Windows-Dynamic-Brain-Droid (WDBD)
and DeepImageMalDetect (DIMD). This can detect malware
in real-time more accurately. The details of the deep learning
architectures, the implementation architecture and the analy-
sis of different approaches are presented as follows.

III. DEEP LEARNING ARCHITECTURES
Deep learning or deep neural networks (DNNs) takes inspi-
ration from how the brain works and forms a sub module
of artificial intelligence. The main strength of deep learning
architectures is the capability to understand the meaning of
data when it is in large amounts and to automatically tune the
derived meaning with new data without the need for a domain
expert knowledge. Convolutional neural networks (CNNs)
and Recurrent neural networks (RNNs) are two types of
deep learning architectures predominantly applied in real-life
scenarios. Generally, CNN architectures are used for spatial
data and RNN architectures are used for temporal data. The
combination of CNN and LSTM is used for spatial and
temporal data analysis. The concepts behind the various deep
learning architectures are discussed in a mathematical way.
All the mathematical equations are taken from [16].

A. DEEP NEURAL NETWORK (DNN)
A feed forward neural network (FFN) creates a directed graph
in which a graph is composed of nodes and edges [16]. FFN
passes information along edges from one node to another
without formation of a cycle. Multi-layer perceptron (MLP)
is a type of FFN that contains 3 or more layers, specifically
one input layer, one or more hidden layer and an output
layer in which each layer has many neurons, called as units
in mathematical notation. The number of hidden layers is
selected by following a hyper parameter tuning approach. The
information is transformed from one layer to another layer
in forward direction without considering the past values.
Moreover, neurons in each layer are fully connected. AnMLP
with n hidden layers can be mathematically formulated as
given below:

H (x) = Hn(Hn−1(Hn−2(· · · (H1(x))))) (1)

H defines hidden layer. This way of stacking hidden layers
is typically called as deep neural networks (DNNs). Figure 1
shows a pictorial representation of DNN architecture with n
hidden layers. It takes input x = x1, x2, · · · , xp−1, xp and
outputs o = o1, o2, · · · , oc−1, oc. Each hidden layer uses
Rectified linear units (ReLU ) as the non-linear activation
function. This helps to reduce the state of vanishing and error

FIGURE 1. Architecture of DNN with n hidden layers.

gradient issue [36]. ReLU has been turned out to bemore pro-
ficient and capable of accelerating the entire training process
altogether. ReLU is defined mathematically as follows:

f (x) = max(0, x) (2)

where x denotes input.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional network or convolutional neural network or
CNN is supplement to the classical feed forward network
(FFN), primarily used in the field of image processing [16].
It is shown in Figure 2, where all connections and hidden
layers and its units are not shown. Here, m denotes number
of filters, ln denotes number of input features and p denotes
reduced feature dimension, it depends on pooling length.

In this work, CNN network composed of convolution 1D
layer, pooling 1D layer and fully connected layer. A CNN
network can have more than one convolution 1D layer, pool-
ing 1D layer and fully connected layer. In convolutional 1D
layer, the filters slide over the 1D sequence data and extracts
optimal features. The features that are extracted from each
filter are grouped into a new feature set called as feature
map. The number of filters and the length are chosen by
following a hyper parameter tuning method. This in turn uses
non-linear activation function, ReLU on each element. The
dimensions of the optimal features are reduced using pooling
1D layer using either max pooling, min pooling or average
pooling. Since the maximum output within a selected region
is selected in max pooling, we adopt max pooling in this
work. Finally, the CNN network contains fully connected
layer for classification. In fully connected layer, each neuron
contains a connection to every other neuron. Instead of pass-
ing the pooling 1D layer features into fully connected layer,
it can also be given to recurrent layer, LSTM to capture the
sequence related information. Finally, the LSTM features are
passed into fully connected layer for classification.

C. RECURRENT STRUCTURES
Recurrent structures have the capability to learn the sequence
information in the data. The well-known recurrent structures
are recurrent neural network (RNN) and long short term
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FIGURE 2. Architecture of CNN for malware detection.

memory (LSTM) [16]. Figure 3 shows the architecture of
CNN depicting an RNN unit and an LSTM memory block.
RNN is not like a feedforward network where the signals
flow only in one direction from input to output. When data
is represented as a sequence, RNN is used to handle the
positional memory. In this network, the output of a layer is
added to the next input and then fed into the same layer.
It controls the information of signal with respect to the time.
RNNs are the best suited network if the pattern of the data
changes with time.

The transition function of RNN is denoted by tf . At each
time step t , the hidden state vector ht is estimated as follows:

ht =

{
0 t = 0
tf (ht−1, xt ) otherwise

(3)

During backpropagation, the transition function tf goes
into the problem of vanishing gradient when the model prop-
agates through multiple steps. This can lead to the decay of
information through time. To overcome this, gradient clip-
ping and gating mechanisms are introduced [16]. An LSTM
network is a type of RNN which helps in handling long-term
dependencies with memory blocks and gating functions.
A memory cell is a part of memory block which acts like a
memory and this is controlled using several gating functions
such as input, output and forget gates. The computation of
LSTM unit at time step t is mathematically defined as fol-
lows:

ft = σ (Wf .[ht−1, xt ]+ bf ) (4)

it = σ (Wi.[ht−1, xt ]+ bi) (5)

ct = tanh(Wc.[ht−1, xt ]+ bc) (6)

ot = σ (Wo[ht−1, xt ]+ bo) (7)

ht = ot ∗ tanh(ct ) (8)

where xt denotes an input vector, ht denotes hidden state
vector, ct denotes cell state vector, ot denotes output vector,

it denotes input vector and ft denotes forget state vector and
terms of w and b denotes weights and biases respectively.

IV. IMPLEMENTATION ARCHITECTURE AND
STATISTICAL MEASURES
The implementation architecture adopted for our experimen-
tal analysis is a real-time distributed Apache Spark cluster
computing platform. A prototype model is developed for
this research and to protect the confidentiality, we provide
only a summary of the scalable framework implemented for
this purpose. The Apache spark.1 cluster computing frame-
work is set up over Apache Hadoop Yet Another Resource
Negotiator (YARN)2 This framework facilitates to efficiently
distribute, execute and harvest tasks. Each system has spec-
ifications (32 GB RAM, 2 TB hard disk, Intel(R) Xeon(R)
CPU E3-1220 v3 @ 3.10GHz) running over 1 Gbps Ethernet
network.We define the basic unit of our Apache Spark cluster
as a node, which is a machine. The developed framework
has 3 kinds of nodes, master node, slave node and data
storage node. The master node (Cm) controls all the nodes
in the framework. The user can communicate to the system
through master node interface. It retrieves data from data
storage node and performs preprocessing and segmentation.
This distributes workloads to other slave nodes and finally
aggregates the output from all other slave nodes. The slave
nodes (Cs) retrieve preprocessed data from the master node.
There might be a big quantity of them to investigate data
in parallel. The master-slave node framework keeps com-
putation very fast and also adjusts according to the size of
the data. The data storage node (Cds) is used for storing
data. It also acts as a slave node. This keeps track of data
on daily basis and aggregates the data to daily, weekly and
monthly basis. The proposed scalable architecture can be

1https://spark.apache.org/
2http://hadoop.apache.org/
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FIGURE 3. Architecture of RNN unit (left) and LSTM memory block (right).

scaled out to break down much bigger volumes of network
event information. All deep learning models are implemented
using TensorFlow [37] with Keras [38]. All classical machine
learning algorithms (MLAs) are implemented using Scikit-
learn [39]. All experiments related to deep learning architec-
tures are run on GPU enabled TensorFlow machines.

In this study, to evaluate the performance of classifiers,
we have considered Accuracy (Accuracy ∈ [0, 1]), Precision
(Precision ∈ [0, 1]), Recall (Recall ∈ [0, 1]) and F1-score
(F1 − score ∈ [0, 1]) standard metrics. These metrics are
estimated based on True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). TP represent the
number of malware application samples correctly identified
as malware application, TN represent the number of benign
application samples correctly identified as benign application
samples, FP represent the number of benign application sam-
ples misclassified as malware application samples, FN repre-
sent the number ofmalware application samplesmisclassified
as benign application samples. The metrics such as Accuracy,
Precision, Recall and F1-score are defined as follows

Accuracy =
#TP+ #TN

#TP+ #TN + #FP+ #FN
, (9)

Precision =
#TP

#TP+ #FP
, (10)

Recall =
#TP

#TP+ #FN
, (11)

and

F1−score = 2×
(
Pr ecision× Recall
Pr ecision+ Recall

)
. (12)

One of the most commonly used diagnostic tool to iden-
tify the interpretation of the binary classifier is Receiver

Operating Characteristic (ROC) curve. Primarily, the ROC
curves are used when the samples of each class are balanced.
Most commonly, area under the curve (AUC) is used to
compare the ROC curves. AUC, as the name indicates, just
the area under the ROC curve. It specifically measures the
amount of separation between classes. AUC is defined as;

AUC =
∫ 1

0

#TP
#TP+ #FN

d
#FP

#TN + #FP
(13)

Higher the AUC indicates that the model predicts classes
accurately. To generate ROC, we estimated the trade-off
between the true positive rate (TPR ∈ [0, 1]) on the Y axis to
false positive rate (FPR ∈ [0, 1]) on the X axis across varying
threshold in the range of [0, 1], where

TPR =
#TP

#TP+ #FN
, (14)

and

FPR =
#FP

#FP+ #TN
. (15)

V. MALWARE DETECTION USING DEEP LEARNING
BASED ON STATIC ANALYSIS
We adopt an evaluation sub module to benchmark the deep
learning architectures based on Static analysis. The per-
formance of various classical machine learning and deep
learning for static portable executable (PE) malware detec-
tion and classification are evaluated on publicly available
dataset called Ember along with privately collected samples
of benign and malwares. The variants of deep learning archi-
tectures are proposed by carefully following a hyper param-
eter tuning approach. Various trials of experiments are run
for different classical machine learning algorithms (MLAs)
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and deep learning architectures. Experiments related to deep
learning architecture are run till 1,000 epochs with var-
ied learning rate [0.01-0.5]. All of the models of classical
machine learning and deep learning have marginal difference
in their performances. Thus, the performance of the mal-
ware detection can be enhanced by incorporating a hybrid
system pipeline typically called as Windows-Static-Brain-
Droid (WSBD), which is composed of both classical machine
learning and deep learning models. WSBD can be deployed
at an organization level to detect malware effectively in
real-time.

A. DESCRIPTION OF DATASET
To evaluate the effectiveness of classical machine learning
and deep learning architectures, it is required to create a
large dataset with a variety of different samples. The publicly
available datasets for possible research in cyber security for
malware detection are very limited due to the privacy pre-
serving policies of the individuals and organizations. Over
time, as malware have grown it has become increasingly
difficult to have one source having all types of malware
families. Many researchers try to collaborate their findings
but still there is not a single dataset or repository to acquire all
the required samples. In this research, the publicly available
dataset Ember is used with a subset containing 70,140 benign
and 69,860 malicious files. This dataset is randomly divided
into 60% training and 40% testing using Scikit-learn. The
training dataset contains 42,140 benign files and 41,860mali-
cious files. The testing dataset contains 28,000 benign files
and 28,000 malicious files. These samples were obtained
from VirusTotal3, VirusShare4 and privately collected sam-
ples of benign and malware samples.

We prepare the datasets for conducting the experimental
analysis using the following pre-processing stages:

1) Ember: Using domain level knowledge, various fea-
tures from parsed PE file as well as format-agnostic
features such as raw byte histogram, byte entropy his-
togram are taken from [26], and strings are extracted
and passed into the LightGBM model. Since the per-
formance of LightGBM model is good as compared
to MalConv model, they use gradient boosed decision
tree (GBDT) in LightGBM with default parameters
consisting of 100 trees and 31 leaves per tree. Fol-
lowing, in this work we evaluate the performance of
classical MLAs and DNNs for malware classification
using the Ember dataset.

2) MalConv:MalConv is an architecture proposed in [11]
for malware detection which composed of 3 differ-
ent sections are undergone, namely (1) pre-processing
(2) convolution and (3) fully-connected. In the
pre-processing section, the raw byte sequences from
the binary files are passed into embedding layer.
The embedding layer contains 257 as the size of the

3https://www.virustotal.com/
4https://virusshare.com/

dictionary of embeddings and 8 as the embedding
dimension. Embedding layer maps bytes into fixed
length feature vector representation. In convolution
section, MalConv contains two convolution 1D layers.
Each convolution 1D layer contains 512 (kernel size 4,
128 filters) units and 500 strides. These convolution
layers follow the gated convolution approach. Convo-
lution layer follows a temporal maxpooling which uses
4000 as pooling length to reduce the dimension and
to handle the information sparsity issue. Fully con-
nected section is composed of 2 fully connected layers:
the first fully connected layer contains 128 units, and
the second fully connected layer contains 1 unit with
sigmoid non-linear activation function. SVM is used at
the last layer for classification with LSTM.

3) Variants of MalConv: The slight variation to the
strides, SELU nonlinear activation function of the
MalConv model and removed the DeConv regular-
ization by [12]. The convolution section contains two
convolution layers, a maxpooling followed by another
two convolution layers. The first two convolution layers
contain 32 units with strides 4 and the next two con-
volution layers contain 16 units with strides of 8. The
last two layers follow the global average pooling with
4 fully connected layers.

4) Other variants of MalConv: There are four different
deep learning architectures adopted here. Two deep
learning architectures are variants of the MalConv [11]
and other two deep learning architectures are vari-
ants to the variants of MalConv [12]. We introduce
the modifications in the LSTM layer with 30 memory
blocks added into MalConv as well as variants of Mal-
Conv after the Global maxpooling and Global average
are respectively incorporated. Finally, the features of
LSTM layer are passed into SVM for classification.
In SVM, c and kernel function value is set into 1.0 and
rbf respectively.

B. DATA ANALYSIS AND RESULTS
We present the data analysis and results obtained from var-
ious experiments conducted on the variants of the existing
deep learning architecture mentioned above [11], [12], [26].
In order to evaluate the performance of various classi-
cal machine learning classifiers such as Logistic Regres-
sion (LR), Navie Bayes (NB), K-Nearest Neighbor (KNN),
Decision Tree (DT), Ada Boost (AB), Random Forest (RF)
and Support Vector Machine (SVM) and deep neural net-
work (DNN) on the domain level features, we conducted
various experiments using the Ember dataset. All classical
MLAs used the default parameters provided by scikit-learn
machine learning library. Initially, two trails of experiments
were run for the DNN to find out the optimal parameters
for the number of units till 200 epochs. The experiments
were used adam optimizer and binary cross entropy as loss
function. This DNN contains an input layer, output layer and
a fully connected layer with units in the range [32-5,120].
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FIGURE 4. Proposed deep learning architecture based on static analysis - windows-static-brain-droid (WSBD).

A fully connected layer has used ReLU activation function
which helps to prevent from vanishing and exploding gradient
issue. DNNwith 4,608 achieved the best performance and the
performance deteriorated when the number of hidden units
increases from 4,608 to 5,120 and 5,632. Thus the number
hidden units is set into 4,608. Later, to identify an optimal
learning rate, two trails of experiments were run for DNN
with learning rate in the range [0.01-0.05] till 100 epochs.
The DNN network with learning rate 0.01 performed well
in compared to other learning rates. Later to identify the
DNNnetwork structure, we run two trails of experiments with
DNN 1 to 12 layers till 100 epochs. Initially, all the fully
connected layers have used the 4,608 hidden units and the
performance with DNN 10 layer was good compared to other
DNN networks. Later, we followed decreasing the number
of units along with increasing the number of layers. Finally,
the neurons in the 10 fully connected layers are set to 4,608,
4,096, 3,584, 3,072, 2,560, 2,048, 1,536, 1,024, 512, 128 hid-
den units respectively. Dropout of 0.01 and Batch normaliza-
tion is placed in between the fully connected layers which
helps to prevent from overfitting and increases the speed
of learning during training respectively. Generally, dropout
removes the neurons and its connections randomly. When the
experiments with DNN were run without the dropout and
Batch normalization, the DNN models results in overfitting
and took larger time for training. Sigmoid is used in output
layer which results 0 or 1 where 0 indicates benign and
1 indicates malware. The detailed parameter details of DNN
network is reported in Table 1.

Table 2 gives the detailed results of all the models having
marginal difference in terms of accuracy. Among all models,
variants of MalConv performed better. The performance of
Ember datasets with domain level features have outperformed
the Malconv, which can be enhanced by following a hyper
parameter tuning method. More importantly, DNN outper-
formed other classical MLAs and as well as the Malconv
architecture. The dataset used in this study is a sub set of
Ember and the dataset is balanced. However, in most of
the cases the benign and malware classes have imbalanced
data samples distribution. This can be controlled using data
mining techniques [45]. The performances of variants to the

existing deep learning architectures are closer to the Ember
and Malconv.

Finally, this work suggests that the hybrid of domain level
knowledge with classical machine learning models and deep
learning architectures on the entire byte sequences can be
used in real-time to detect the malware effectively, shown
in Figure 4.

The limitation of this work is that a detailed analysis on the
hyper parameter tuning method has not been adopted for the
variants of the existing deep learning architectures. Thus, this
remains scope for future enhancement towards improving the
performance of malware detection.

VI. MALWARE DETECTION USING DEEP LEARNING
BASED ON DYNAMIC ANALYSIS
We present an evaluation sub module to compare classi-
cal machine learning algorithms (MLAs) and deep learning
architectures based on Dynamic analysis for windows mal-
ware detection. All the models are examined on the behav-
ioral data that are collected via Dynamic analysis [13]. The
parameters for deep networks are selected by following a
hyper parameter selection approach with various trials of
experiments conducted upto 1,000 epochs with varied learn-
ing rate [0.01-0.5]. Deep learning architectures outperformed
the classical MLAs in all types of experiments. This is due to
the fact that those deep models are able to learn the optimal,
high level and abstract feature representations by passing
them into more than one hidden layers. The result of best
performed model is not directly comparable to [13], due to
the splitting methodology used for training and testing which
is entirely different. Within the first 5 seconds of execution,
both classical MLAs and deep learning architectures have the
capability to detect whether the executable file is benign or
malicious.

A. DESCRIPTION OF DATASET
We have employed two types of datasets from previous
research works [13]. Dataset 1 was collected using Virtual-
Box5 virtual machine using Cuckoo Sandbox6 with a custom

5https://www.virtualbox.org/
6https://cuckoosandbox.org/
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TABLE 1. Detailed configuration details of deep neural network (DNN).

package written in the Java library, Sigar7 to collect the
machine activity data. The virtual machine has the capacity
of 2GB RAM, 25GB storage, and a single CPU core running
64-bit Windows 7. Dataset 2 was collected in a Virtual-
Box virtual machine using Cuckoo Sandbox with a custom
package written in the Python library, Psutil8 to collect the
machine activity data. The virtual machine has the capacity
of 8GB RAM, 25 GB storage, and a single CPU core running
64-bit Windows operating system. The detailed statistics of
Dataset 1 and Dataset 2 is reported in Table 3.

B. DATA ANALYSIS AND RESULTS
We adopt a hyper parameter technique to identify the optimal
parameters for deep learning models so that the malware
detection rate is enhanced. Initially, the training dataset is
randomly split into 70% training and 30% validation. The

7https://github.com/hyperic/sigar
8https://pypi.org/project/psutil/

validation data helped to observe the training accuracy across
different epochs. Finally, the performance of the trained
model is evaluated on the test dataset. For network param-
eters, three trials of experiments are run for the hidden units
to enhance the learning rate with the basic CNN and DNN
model. Both the CNN and DNN models experiments have
used adam as optimizer and binary cross entropy as loss
function. Both the models are composed of 3 layers such as
input layer, hidden layer and an output layer. In input layer,
the two models contain 10 neurons for 10 different features
and the output layer contains 1 neuron with sigmoid activa-
tion function. To find out the hidden units for DNN, various
experiments are run for the neurons in the range [4-128].
In the experiments with 64 neurons, DNN performed well in
comparison to the other neurons. To find out the number of
filters in CNN, 3 trials of experiments are run for the filters
in the range [4-64]. CNN network with filters 32 performed
well in comparison to the other filters. These parameters
are set for the rest of the experiments were conducted to
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TABLE 2. Detailed test results.

TABLE 3. Statistics of datasets.

identify the optimal parameter for learning rate and various
configurations of experiments for network parameters were
made with learning rate within the limit [0.01-0.5]. In most
of the cases, performance of experiments associated with
lower learning rate was found to be good in identifying the
executable as either benign or malware. By reviewing the
training time and the malware detection rate, the learning rate
0.01 is used for the rest of the experiments.

To find out the optimal network structure for DNN and
CNN, DNN/CNN 1, 2, 3, 4, and 5 layers were used, and 3 tri-
als of experiments were run for various network topologies
for 100 epochs. DNN model with 4 layers and CNN with
1 layer performed well in comparison to the other network
topologies. In DNN, to reduce overfitting and increase the
training speed, the concept of dropout 0.01 and Batch nor-
malization were employed. In CNN, dropout 0.3 was used
before the penultimate layer. When the numbers of layers
were increased in the DNN and CNN model, the malware
detection rate decreased. This is attributed to over fitting.
DNN and CNN models with less number of parameters
attained good malware detection rate with up to 100 epochs,
but the more complex deep learning models attained the
highest malware detection rate when the experiments were
run up to 1,000 epochs. The functional block diagram of
the proposed deep learning architecture based on Dynamic
analysis for windows malware detection is shown in Figure 5.
The executable files are passed into the Dynamic analysis
phase which extracts different features. These features are
passed into various classical MLAs and deep learning archi-
tectures to learn the characteristics of legitimate and malware

files. Both CNN and DNN models have used adam opti-
mizer, sigmoid nonlinear activation function and binary-cross
entropy loss function. ReLU is used as activation func-
tion in convolution and fully connected layers. The sigmoid
and binary-cross entropy are mathematically defined as
follows:

sigmoid (x) =
1

1+e−x
(16)

loss(pd, ed) = −
1
N

N∑
i=1

[edi log pdi+(1−edi) log(1−pdi)]

(17)

where x defines input, pd is predicted probability, ed is the
expected class label.

The detailed test results are reported in Table 4 and ROC
curve for Data set 1 and Data set 2 is shown in Figure 6a
and Figure 6b respectively. For a comparative study, various
classical MLAs are evaluated on the Dataset 1 and Dataset 2.
For these algorithms, the default parameters of Scikit-learn
were used and not the hyper parameter tuning method. Thus
the performance of various classical MLAs can be further
enhanced by following a hyper parameter tuning method.
In both the datasets the deep models outperformed the clas-
sical MLAs. Moreover, CNN model outperformed the DNN
model.

In this submodule, a comparative study of various classical
MLAs and deep learning architectures for windows malware
detection is done. Deep learning architectures outperformed
the classicalMLAs in all types of experiments conductedwith
2 different datasets. Thesemodels are capable of detecting the
executable as malicious or benign within the first 5 seconds
of execution. The reported results could be improved further
as future research work by promoting training or stacking a
few more layers to the existing architectures. Further, new
features could be added to the existing data, and these explo-
rations are devoted for future research.
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FIGURE 5. Proposed deep learning architecture based on dynamic analysis - windows-dynamic-brain-droid (WDBD).

FIGURE 6. ROC curve for (a) Data set 1, (b) Data set 2.

VII. MALWARE FAMILY CATEGORIZATION USING DEEP
LEARNING BASED ON IMAGE PROCESSING
We propose a novel DeepImageMalDetect (DIMD) as a deep
learning model based on image processing techniques with
convolutional neural network (CNN) and long short term
memory (LSTM) hybrid pipeline for malware categorization.
The proposed method uses visualization with deep learning
for malware family categorization. This method completely
avoids the feature engineering which was followed in the
existing methods [43] and [44] to convert the malware files
into images. The proposed method is fast compared to Static
and Dynamic analysis as it works on the raw bytes and
completely avoids disassembly or execution. The second
advantage compared to the existing methods [43] and [44]
is that the proposed method is agnostic to packed malware.
In other words, packed malware variants from the unpacked
malware can contain visual similarity.

Most commonly, similar techniques are followed sepa-
rately to develop malware detection for different operating
system (OS). The proposed method has the capability to work
on malwares from different OS such as Windows, Android
Linux etc.

Themethod behindmalware image generationwas initially
proposed by [40]. A binary object’s data can be represented
as gray scale images, where each byte associated to the
image pixel color with a value of zero for black, and a value
of 255 for white and all other values are intermediate shades
of gray. They also reported that malware image analysis
facilitates to differentiate the different parts of the data. This
approach can be applied towards various tasks such as frag-
ment classification, file type identification, methods which
require an understating of primitive data types and identifying
the contents of location of regions. In [33], the malware was
transformed into gray scale images by reading 8-bit unsigned
integers. The width of image is defined by file size and
height is allowed to vary depending on the width and file
size. By following a method proposed by [41], the malware
images were resized to two-dimensional (2D) matrix of 32×
32 and mapped into 1x1024 size array. Each feature array is
normalized using L2 normalization.
We performed a comparative study by employing classi-

cal MLAs and deep learning algorithms on the benchmark
datasets, Malimg [17], [33] and privately collected malware
samples.
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TABLE 4. Test results.

A. DESCRIPTION OF DATASET
The two types of datasets used here are: Malimg (Dataset
1) and privately collected samples (Dataset 2). Malimg
dataset contains 9,339malware samples from 25 various mal-
ware families. The detailed statistics of the dataset is reported
in Table 5. The dataset was formed by transforming malware
binaries into a matrix. This matrix has 8-bit unsigned integer.
This matrix can be visualized as a grayscale image which
contains values in the range of [0, 255], 0 represents black
and 255 represents white.We converted the 2Dmatrix into 1D
vector form, resulting in a 1x1024 size array. L2 normaliza-
tion is employed for newly formed data. Next, the dataset was
randomly divided into 70% training and 30% testing dataset
with both these datasets containing samples for each malware
family.

Dataset 2 was crawled from VirusSign9 and VirusShare10

over one year period. About 15,512 malware samples and
antivirus labels for malware samples were obtained by using
VirusTotal.11 AVclass [42] tool was used for labeling the
malware samples. These samples are grouped into 10 mal-
ware families. The detailed statistics of the dataset is given
in Table 6.

B. DATA ANALYSIS AND RESULTS
The proposed architecture, DeepImageMalDetect (DIMD) is
shown in Figure 7. For both the datasets, the performance of
various classical machine learning algorithms (MLAs) and
deep learning architectures were evaluated for malware data

9http://www.virussign.com/
10https://virusshare.com/
11https://www.virustotal.com/

TABLE 5. Description of Data set 1, Malimg.

TABLE 6. Description of Data set 2.

analysis. In most of the cases, the deep learning architectures
outperformed the classical MLAs. For all the deep learning
architectures, we adopted adam optimizer and softmax acti-
vation function with categorical-cross entropy loss function.
The detailed configuration of optimal deep learning architec-
ture are reported in Table 7. The experimental design and the
results obtained are described below:

1) Experiments on Dataset 1, Malimg: To select optimal
values for parameters and structures of the deep learn-
ing architecture, various experiments were conducted
using Dataset 1. Initially the 70% training was ran-
domly divided into 50% training and 20% validation.
To find out suitable parameter for the number of filters,
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FIGURE 7. Proposed deep learning architecture based on Image processing - deep image mal detect (DIMD).

3 trials of experiments were run for filters 16, 32 and
64, and with filter length 3 for a CNN network with
one layer CNN, maxpooling with pooling length 2 and
followed by fully connected layers.
The fully connected layer contains 25 neurons with
softmax activation function. These experiments were
run till 100 epochs with batch size 32. After it was
tested on the validation dataset, the CNN network with
64 filters and filter length 3 showed the best accuracy.
In the same experiment, dropout of 0.5 was placed
before the fully connected layer. This facilitated to
avoid over fitting. Without dropout, the experiments
with CNN ended up in overfitting. To find out suitable
learning rate, 2 trials of experiments were run for varied
learning rate in the range 0.01-0.5. Experiments with
learning rate 0.01 performed well. Experiments with
lower learning rate showed less accuracy in compari-
son to higher learning rate when the experiments were
run till 50 epochs. When it was run till 200 epochs,
the lower learning rates performed well. Based on com-
putational time and accuracy, the learning rate was set
to 0.01 for the rest of the experiments.
In order to determine the network structure, 3 types
of CNN networks were used with 1, 2 and 3 lay-
ers. Four trials of experiments were run for all net-
work topologies of CNN. These experiments were
run till 150 epochs. CNN network with 2 CNN
layers had performed well. The performance of CNN

FIGURE 8. Training accuracy of various deep learning architectures on
malware categorization.

3 layer remained same as CNN 2 layer even when the
experiments were run till 300 epochs. In second set of
experiments, the outputs of the CNN layer were passed
into recurrent layer, LSTM. In order to determine the
number of memory blocks, 3 trials of experiments
were run for memory blocks 18, 36, 70 and 100. The
experiment with 70 memory blocks performed well in
comparison to the others.
There are two phases in both machine learning and
deep learning models. All these models are trained
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TABLE 7. Detailed configuration details of CNN 1, CNN 2, CNN 1 + LSTM
and CNN 2 + LSTM.

using training data and evaluated on the testing dataset.
The training loss function is monitored during train-
ing and if c + 1 achieves improvement in loss func-
tion than c, then that epoch model is saved. The
training accuracy of all deep learning architectures
for 1,000 epochs are shown in Figure 8. The train-
ing loss of all deep learning architectures are shown
in Figure 9. We observe that CNN 2 and CNN-LSTM
2 architectures have achieved optimal accuracy for
150 epochs. CNN 1 followed improvement in accuracy
till 1,000 epochs. This shows that the network with
less number of parameters require more epochs to con-
verge or attain optimal performance. CNN 2 achieved
optimal performance for epochs 210 and after that due
to overfitting the network has shown sudden decrease.
Finally, CNN 2 performed well in comparison to all

FIGURE 9. Training loss of various deep learning architectures on
malware categorization.

other architectures for 1,000 epochs. During testing,
the test data was passed to all the saved models and we
estimated the accuracy, precision, recall and f1-score.
The results are reported in Table 8. Tables 9, 11 con-
tains the detailed test results in terms of TPR and
FPR of each classes for classical MLAs and deep
learning architectures respectively. Among all classi-
cal MLAs, SBM performed well, particularly showed
higher TPR and lower FPR for the malware families
C2Lop.P, Lolyda.AT, Swizzor.gen!I and VB.AT. More
importantly, it showed better TPR and FPR for the
malware family VB.AT compared to deep learning
architectures. Thus the application of transfer learn-
ing in deep learning architectures can enhance the
performance in malware detection and categorization.
The performance of CNN 2 layer with LSTM showed
higher TPR and lowerFPR except the malware families
Malex.gen!J, Obfuscator.AD, Rbot!gen, Skintrim.N,
Swizzor.gen!E,VB.AT, and Yuner.A. This is mainly
due to the reason that these classes contains less number
of samples and due to overfitting the performance of
CNN 2 layer with LSTM architecture reduced com-
pared to other architectures. Another significant reason
is that these malware families contains less number of
families compared to other classes. Thus, application
of cost-sensitive approach in deep learning can easily
handle imbalanced data during training [45].
The accuracy measure hides the detail of the
performance of the classification model. Since the
Malimg dataset is highly imbalanced, we used the con-
fusion matrix to understand the performance, shown
in Table 10 and computed the Error rate as

Error rate=
(
1−

(
corrected predictions
total predictions

))
× 100.

(18)

The error rate for malwares Adialer.C, Agent.FYI,
Alueron.gen!J, Autorun.K, Dontovo.A, Fakerean,
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TABLE 8. Detailed test results for Data set 1.

Instantaccess, Lolyda.AA 2, Lolyda.AA 3, Lolyda.AT,
Obfuscator.AD, Rbot!gen, Yuner.A is 0. It indicates
that the model learnt the complete behaviors of these
malwares. In Allaple.A malware, the classification
model correctly classified 871 samples out of 885 and
8 samples are misclassified as Allaple.L malware.
This indicates that both of these malwares have
a lot of similarity and most importantly both are
belongs to ’worm’ malware family. The classification
model achieved highest error rate for the malwares
C2Lop.P, C2Lop.gen!G, Swizzor.gen!E and Swiz-
zor.gen!I. The 10 samples of C2Lop.P is misclassified
into C2Lop.gen!G and Swizzor.gen!E equally. More
interestingly the C2Lop.P and C2Lop.gen!G belongs to
’Trozan’ malware family and Swizzor.gen!E is belongs
to ’Trojan Downloader’ malware family. Few sam-
ples of Swizzor.gen!E and Swizzor.gen!I malwares
are misclassified each other’s. This shows that both
of the malwares have a lot of similar characteristics
and both of them are from same malware family
’Trozan Downloader’. More interestingly few samples
in both of the malware families are misclassified into
C2Lop.P and C2Lop.gen!G malwares. This indicates
that the classification model may require few more
additional samples from these malware families to
accurately learn the hidden characteristics between the
C2Lop.P and C2Lop.gen!G and Swizzor.gen!E and
Swizzor.gen!I malwares.

2) Experiments on Dataset 2, privately collected samples:
It is a common practice to adopt cross-validation as a
statistical method to assess learning algorithms. It splits
data into training and testing. Learning algorithms are
trained on training data and evaluated on the testing

data. The fundamental form is k-fold cross validation.
It splits the data into k groups with the same length.
The k − 1 groups used for training and the other fold
is used for testing and this process is repeated for k
learnings. The detailed results of 10-fold cross vali-
dation are reported in Table 12. The optimal parame-
ters and structures for deep learning architectures are
selected through hyper parameter tuning. The detailed
parameter details of all deep learning architectures are
available at. In order to select an optimal parameter
for the number of filters for CNN, initially two trials
of experiments are run for filters 16,32,64 of CNN.
This architecture is composed of an input layer, con-
volution, pooling and fully connected layer. All exper-
iments were run for 200 epochs. Experiments with
64 filters performed well and when we increased the
filters into 128, the performance deteriorated. Thus
64 filters are set for the rest of the CNN experiments.
To select optimal learning rate, 3 trials of experiments
are run for learning rate in the range [0.01-0.5]. The
experiments with learning rate 0.05 performed well.
To select the network structure for CNN, we run three
trials of experiments with the CNN 1, CNN 2 and CNN
3 layers network. CNN 2 layers network performed
well in comparison to other networks. Additionally,
the CNN features are passed into LSTM layer instead of
fully connected layer for classification. LSTM contains
50 memory blocks. This in turn obtains the sequence
related information and passes onto fully connected
layer for classification.

C. DEEPIMAGEMALDETECT (DIMD)
An overview of our proposed DeepImageMalDetect (DIMD)
model is shown in Figure 7. This uses CNN-LSTM pipeline
which helps to extract temporal and spatial features. The
architecture is composed of 3 layers. In input layer,
the malwares are converted into image format [33], and these
images are transformed into 1D vector [17]. These 1D vectors
of length 1024 form an input to the CNN layer composed
of 64 filters with filter length 3, max-pooling with pooling
length 2, a convolution layer with 128 filters of filter length 3,
max-pooling with pooling length 2, an LSTM layer with
70 memory blocks and dropout 0.1 and a fully connected
layer. The dropout is used to alleviate the overfitting. It ran-
domly removes the units along with connections. The fully
connected layer contains 25 units with activation function
softmax. The softmax is defined as follows

SF(xi) =
exi∑n
j=1 e

xj
(19)

where SF defines softmax activation function, x defines
input.

The fully connected layer uses categorical-cross entropy as
loss function and is estimated as follows:

loss(pd, ed) = −
∑

x
pd(x) log(ed(x)) (20)
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TABLE 9. Detailed Data set 1 test results of various classical machine learning classifiers.

TABLE 10. Confusion matrix for CNN 2 + LSTM architecture.

where pd is true probability distribution, ed is predicted
probability distribution. We have used adam as an optimizer
to minimize the loss of categorical-cross entropy.

In this sub module, the application of image pro-
cessing techniques along with classical MLAs and deep
learning architectures are used for malware categorization.
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TABLE 11. Detailed Data set 1 test results of CNN 1, CNN 2, CNN 1 + LSTM and CNN 2 + LSTM architectures.

The efficacy of classical MLAs and deep learning archi-
tectures are evaluated on benchmark dataset and privately
collected malware samples. Deep learning architectures out-
performed the classical MLAs. This method is agnostic to
packing and operating system. Moreover, it takes less time as
compared to Static andDynamic analysis due to the fact that it
does not require disassembly or execution inside virtual envi-
ronment. Additionally, the sub module proposed DeepIm-
ageMalDetect (DIMD) which contains convolutional neural
network and long short term memory (CNN-LSTM) pipeline
for malware categorization has achieved highest accuracy
of 96.3% on Dataset 1 with a 10-fold cross validation. The
reported results can be further enhanced by using highly
complex deep learning architecture and carefully following
a hyper parameter technique.

Optimal parameters are set for both the classical machine
learning and deep learning algorithms by following a hyper
parameter selection technique. The deep learning algorithms
performed well in comparison to the classical MLAs. More-
over, the hybrid network CNN-LSTM performed well in
comparison to all other algorithms. This has showed accuracy
of 96.3% which outperforms the existing methods. The pri-
mary reason is that the CNN-LSTM is able to capture both the
spatial and temporal features. DIMD is an effective method

for malware categorization in comparison to the existing
methods which completely avoids disassembly, decompil-
ing, deobfuscation or execution of the binary. Since the
hyperparameters plays an important role in achieving better
performance, the reported results can be further enhanced by
finding optimal parameters.

The rapidly evolving technologies particularly ICT sys-
tems generates huge amount of data, typically called as big
data. Due to the large volume, large variety, large veloc-
ity and large veracity as the big data characteristics, big
data causes many challenging issues in applying machine
learning algorithms and deep learning architectures. This
requires the concepts of data mining and information pro-
cessing. In deep learning, Autoencoder is the most commonly
used method for dimensionality reduction and in classi-
cal machine learning most commonly used classical meth-
ods for dimensionality reduction are principal component
analysis (PCA) and singular value decomposition (SVD).
Recently, the application of Autoencoder for cyber security
applications is employed [16]. Autoencoder is a generative
model which learns the latent representation of different
feature sets. It learns significant features in an unsuper-
vised way and found to be suitable method for network
traffic analysis because as the amount of data generated by
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FIGURE 10. Proposed deep learning architecture for real-time malware analysis.

ICT systems is very large in a fraction of system and within
this time the data has to be preprocessed without losing any
information to attain significant performance. Autoencoder
can also be used as dimensionality reduction techniques.
Dimensionality reduction technique to get better classifica-
tion rate can be thoroughly discussed to enhance the per-
formance of the proposed method in this study remained as
future work. The source code and the trained models for
all the experiments are made publically available for further
research.12

12https://github.com/vinayakumarr/DeepImageMalDetect-DIMD

VIII. PROPOSED ARCHITECTURE - SCALEMALNET
The results obtained from the rigorous experiments con-
ducted in this research work has aided in proposing Scale-
MalNet, a malware analysis system that follows a systematic
process to collect data internally from various data sources
and uses self-learning techniques such as classical machine
learning, deep learning and image processing techniques to
detect, classify and categorizemalware to their corresponding
malware family accurately. The framework is highly scal-
able which facilitates collection of malware samples from
different sources and applies pre-processing in a distributed
way. The framework incorporates self-learning techniques
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TABLE 12. Detailed results for Data set 2.

to malware analysis such as malware detection, classifica-
tion and categorization. The performance of deep learning
architectures are evaluated over classical machine learning
algorithms (MLAs) and an improvement in performance is
observed consistently. The framework has malware detection
system which uses Static and Dynamic analysis in the first
stage. In the second stage the detected malwares of the first
stage are passed into second stage to categorize into corre-
sponding malware family. ScaleMalNet architecture is shown
in Figure 10.

IX. CONCLUSION
This paper evaluated classical machine learning algo-
rithms (MLAs) and deep learning architectures based on
Static analysis, Dynamic analysis and image processing tech-
niques for malware detection and designed a highly scal-
able framework called ScaleMalNet to detect, classify and
categorize zero-day malwares. This framework applies deep
learning on the collected malwares from end user hosts and
follows a two-stage process for malware analysis. In the first
stage, a hybrid of Static and Dynamic analysis was applied
for malware classification. In the second stage, malwares
were grouped into corresponding malware categories using
image processing approaches. Various experimental analysis
conducted by applying variations in the models on both the
publically available benchmark datasets and privately col-
lected datasets in this study indicated that deep learning based
methodologies outperformed classical MLAs. The developed
framework is capable of analyzing large number of malwares
in real-time, and scaled out to analyze even larger number
of malwares by stacking a few more layers to the existing
architectures. Future research entails exploration of these
variations with new features that could be added to the exist-
ing data. The major finding of this work, weakness and future
scope can be summarized as follows:

• Two-stage process scalable malware detection
framework is proposed. The proposed framework uses

state-of-the-art method, deep learning which detects the
malware in first level and in second level the malware is
categorized into their corresponding categories.

• The performances obtained by deep learning architec-
tures outperformed classical MLAs in static, dynamic
and image processing based malware detection and cat-
egorization. However, in the dynamic analysis based
malware detection study, the deep learning architectures
are applied on the domain knowledge extracted features.
This can be avoided by collecting memory dumps for
binary files at run time and then memory dump file can
be mapped into grayscale image.

• In image processing with deep learning based malware
identification study; themalwares were transformed into
fixed-sized images and then were flattened. In future
work, the spatial pyramid pooling (SPP) layer can be
used to allow images of any size to be used as input.
This learns features at variable scales and it can be put in
between the sub sampling layer and the fully connected
layer to improve our models flexibility.

• The malware families in Malimg dataset are highly
imbalanced. To handle the multiclass malware families
imbalanced issue, cost sensitive approach can be fol-
lowed. This facilitates to introduce the cost items into the
backpropogation learning methodology of deep learn-
ing architectures. Primarily the cost item represents the
classification importancewhich provides lower value for
the classes that has large number of samples and higher
value for the classes that has smaller number of samples.

• The deep learning architectures are vulnerable in an
adversarial environment [16]. The method generative
adversarial network can be used to generate samples
during testing or deployment stage can easily the deep
learning architectures can fooled. In the proposed work,
the robustness of the deep learning architectures is
not discussed. This is one of the significant directions
towards future work since the malware defection is
an important application in safety-critical environment.
A single misclassification can cause several damages to
the organization.
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