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ABSTRACT Humans have a fundamental ability that is fulfilling visual perception with complex brain
functions, while intelligent sensors onboard UAVs do not have. The difficulties mainly lie in the inexhaustive
study of brain science and the homologous mathematical description. In this paper, a visual cognition
invariance mechanism has been proposed, which first review studies in brain research, moving from
theoretical to practical. These terms are then reconsidered from brain pathways of visual perception. Next, a
conceptual model of visual cognition invariance mechanism is proposed and the mathematical deduction
is fulfilled. Furthermore, an experimental unmanned aerial vehicle is built to practically implement the
proposed algorithm. The simulation results and experimental practices have validated the effectiveness and
celerity of our method. Finally, a general discussion and proposals for addressing future issues are given.

INDEX TERMS Unmanned aerial vehicles, hybrid intelligent systems, object recognition, visual cognition.

I. INTRODUCTION
To meet changing environmental demands, humans make
rapid, strategic adjustments to how they deploy their inten-
tional and cognitive resources [1], such that when we
encounter similar but different difficulties, we tend to refocus
our attention and recall memory-relevant aspects so as to
work out recognition problems [2].

Although tremendous advances have been achieved in
brain research, understanding own brain visual and cognitive
system still remains one of the important research challenges
to address, because knowing how we perceive the environ-
ment may allow us to replicate our biologic abilities into
artificial systems, enabling us to build humanoid algorithms
and machines for a large number of applications.

In theoretical research, Poggio [3], Marr and Hildreth [4],
and Marr and Poggio [5] have tried to find out the human
visual and cognitive systems as a homogeneous substrate,
looking forward to explaining themwith a few general wiring
and plasticity rules. However, this view fades as time goes
by, replaced by a highly pluralistic view that human vision
system is inhomogeneous, with many specialized parts to be
explored separately [6]. Of particular interests are the ventral
stream [7] and dorsal stream [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenbao Liu.

In practical experiments, intelligent machines draw lessons
from human vision system are already happening. From
smart cameras applying movement correction [9], to facial
identification used in police and security operations [10],
to the completely self-driving cars employing human vision
models [11]. And for the near future, the perception system
of autonomous unmanned aerial vehicles (UAVs) which uses
human vision mechanism for reference is on the verge of
happening [12], [13].

Despite there are extensive theoretical research and practi-
cal experiments, one of the major hurdles of these humanoid
vision studies remains that they do not truly understand
a scene like humans would [14], but rely on amounts of
training and longtime computing. Replicating the process
that humans perceive outside world remains an enormous
challenge, the resolution of which would constitute a great
contribution on the way to true humanlike perception system.

Biomimetic technology research has a great potential
application. In 1944, Griffin [15] proposed that the blind
people can obtain a skill, which is to navigate without eyes
but using echolocation. Similar approaches using bats for
reference can be found in radar and sonar systems [16].
Dolphin sonar has a better advantage compared with tradi-
tional sonar systems in environment perception [17], [18].
In complex environment, humanlike methods often provide
excellent performance in perceiving objects and processing
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information. Imai [19] proposed a humanlike three-layer
model to better perceive outside world. In 2018, a system for
autonomous vehicles is built to give autonomous vehicles the
ability to process information like a human [20]. Regarding
the cognition of intelligent creatures, Fawaz et al. [21] and
Ding et al. [22] proposed cognitive architectures that use the
concept of Internet of Things for the surveillance of amateur
drones. More studies imitating human beings can be found
in [23]–[25], indicating a huge prospect.

Here, a human vision inspired approach of UAV’s onboard
perception system is presented. We first take an explanation
to humans’ visual neural pathways in perception process,
especially the visual information flow in dorsal stream and
ventral stream. Then a humanlike model called parallel visual
stream network (PVSN) which incorporates these neuro-
science insights in a structured perception system of UAVs. In
addition to the development of PVSN, we applied the model
to a variety of visual cognition tasks that required rapidity and
veracity. Finally the proposed model is tested against other
cognizing models in a hypothetical scenario where multiple
objects are situate in the environment, and the objects must be
recognized as fast and accurate as models can. Furthermore,
PVSN is experimented in a real scenario (in which there are
two distinct objects, true and false) on the basis of a visual
UAV platform, and the UAV must recognize the objects,
localize the true objects and reach to them sequentially.

II. BRAIN PATHWAYS OF VISUAL PERCEPTION
The brain pathways of visual perception have been illustrated
by the neurophysiologist Fuster [26]. He pointed out that
humans’ visual perception is a complex system with multi
channels. Every channel has its own task, they work indepen-
dently as well as parallel to fulfill the general task of visual
perception together. These parallel pathways including space
and time channel, color information channel, left eye and
right eye information channel, spatial azimuth information
channel, etc. An exhausting description of all these brain
pathways involved is impossible due to the lack of brain-
scientific and neuro-scientific evidence. In this section we
will briefly describe the human brain pathways and relating
areas we think are critical to the proper functioning of visual
perception architecture.

Han et al. [27] found that the pattern formed by movement
can also cause the activation of the dorsal and ventral regions.
This also supports the view that there is a synergy between
the two pathways (‘‘what’’ pathway and ‘‘where’’ pathway)
separated in visual perception. Figure 1 shows the general
description of visual perception. The visual information pro-
cessing starts with retina, projecting through the lateral genic-
ulate to the primary visual cortex, then to the senior visual
cortex with further processing function [28]. Retinal cells are
divided into large cells(M) and smalls cells(P) according to
their functions. The large cells are responsible for processing
information related to movement and brightness and then
project to the V1 area. The small cells are related to colors
and shapes, and then project to the V2 area. The visual

FIGURE 1. The two brain pathways in visual perception.

information is projected further into the outer striate cortex
after V1 and V2 processing. In the outer striate cortex stage,
the visual information processing is accomplished through
two anatomical and functional pathways separately [29]. One
is the dorsal visual pathway, which begins from V1, and
goes through V2 and V3, then to the parietal lobe through
MT area (visual area V5) and from there to the posterior
parietal cortex (PPC). The dorsal stream, what also known
as the ‘‘where pathway’’, is related with visual stimuli for
spatial location andmotion information processing. The other
is the ventral visual pathway, which starts from V1, and goes
through V2 and V4, then to the inferior temporal cortex
(IT). The ventral stream, what also known as the ‘‘what
pathway’’, is responsible for object characteristics including
shape, color, size and texture, etc. The two pathways both start
at V1 and V2, and terminate at the frontal lobe [30], what also
called the visual cognition invariance in perceiving outside
world [31], [32].

Regardless of whether the two pathways are encoded by
a single neuron or multiple units, the knowledge of visual
perception provide functional insights into mechanism of the
brain that a modeler can seek to build a humanoid model by
referring to human’s visual cognition invariance mechanism.

III. VISUAL COGNITION INVARIANCE MECHANISM
A. OUTLINE OF PARALLEL VISUAL STREAM NETWORK
A graphical representation of our proposed architecture is
given in Fig.2, which proposes that acting and perceiving
upon objects of UAVs’ perception system in environment is
like in the case of two brain pathways in visual perception
of humans, and each pathway is responsible for specific
function.

In PVSN, objects are modeled as a combination of features
andmovements, which can be detected by cameras, providing
input of environment information. Then the information is
preprocessed to the formation of two visual maps, the object
identity feature map (IFM) and the object spatial movement
map (SMM), which stand for the map information of ven-
tral pathway and dorsal pathway respectively. Bidirectional
crosstalk between IFM and SMM ensures the object corre-
sponds to the appropriate spatial location in the environment.
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FIGURE 2. Outline of parallel visual stream network.

The IFM is then separated to individuals depends on partial
boundaries module. A winner-take-all algorithm in object
identity module is applied to ensure the object and spatial rep-
resentation that reached resonance first will continue for the
further processing. In the dorsal pathway, SMM is divided to
tow maps, object location and UAV location. Once an object
is chosen, the relative position between object and UAV is
selected, and a library of joint angle commands is then also
selected based on the former module. The visual cognition
invariance module will select the opt object and the flying
plan most relevant to the current context and suppress the
irrelevant ones on the basis of real-time external commands
and input information. Feedbacks of visual cognition invari-
ance module will update the PVSM configuration towards
real human visual mechanism.

For the PVSN architecture, to achieve such complicate
processes, a number of components are required to explicate,
which are described in the following sections together with
mathematical algorithms derivation.

B. THE COMPONENTS AND ALGORITHMS OF PVSN
Supposing the environment captured by camera is image
I (x, y) and the environment information is in convolution
with Gass kernel function G (x, y, σ ) at different scales in
order to obtain stable feature points [33]. Figure 3 shows
the schematic of different scales constitute Gauss Pyramid.
The environment information is converted to � scales. Each
scale is determined by scale layers S and scale factor k . The
difference of Gaussians (DoG)D (x, y, σ ) is applied showing
the difference between the two adjacent scales of G:

D (x, y, σ ) = (G (x, y, kσ)− G (x, y, σ )) ∗ I (x, y) (1)

To object information module, it functions on converting
chaotic data D (x, y, σ ) to sorted data map (IFM and SMM)
as shown in Fig.4, where OP, OA, OL and UL represents the
feature of object points, angles, locations and UAV location
respectively.

FIGURE 3. Schematic of the environment information module.

FIGURE 4. Schematic of the object information module.

For the k-th DoG Dk , its Taylor expansion at local extreme
point (x0, y0, σ0) is:

Dk (x, y, σ ) = Dk (x0, y0, σ0)+
∂DTk
∂X

X +
1
2
XT

∂2DTk
∂X2 X

(2)

where the first and second order derivatives can be derived by
neighborhood difference approximation [34].

Supposing the higher order derivative of Dk (x, y, σ ) is
zero, the precise extreme position Xmax can be obtained as:

Xmax = −

(
∂2Dk
∂X2

)−1
∂Dk
∂X

(3)

OnceXmax is determined, to enhance the stability of match-
ing and to improve noise immunity, the feature points with
low contrast and unstable edge are removed by using Eq.(4)
and Eq.(5) respectively.

Dk (Xmax) = Dk +
1
2

∂DTk
∂X

Xmax (4)

Hk =
[
Dxx Dxy
Dxy Dyy

]
(5)

where Hk is the partial derivative of Hessian matrix at the
optimal feature point.

Assuming α and β is the maximum and minimum eigen-
value, and α = γβ:

Tr (H)2

Det (H)
=

(
Dxx + Dyy

)2
DxxDyy −

(
Dxy

)2 = (α + β)2

αβ
=
(γ + 1)2

γ

(6)
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FIGURE 5. IFM-SMM converter.

We can infer from Eq.(6) that the threshold of feature
points is only defined by the ratio of α and β, it is relevant to
specific eigenvalues. So if we assign a constant threshold τ :

Dk = 4 · Dk (7)

where 4 is the threshold function 4 =
{
1, if γ < τ

0, if γ ≥ τ
.

Furthermore, the gradient value mk and direction angle θk
of feature points can be obtained by its neighborhood:

θk (x, y) = arctan
L (x, y+ 1)− L (x, y− 1)
L (x + 1, y)− L (x − 1, y)

(9)

where Lk (x, y) = Gk (x, y, σ ) ∗ I (x, y).
So IFM can be defined by:{

OPk = 4 · Xmax
OAk = [mk , θk ]

(10)

Then IFM-SMM converter transforms IFM to SMM via
applying temporal difference (TD). Figure 5 shows the
schematic of IFM-SMM converter. The movement of feature
point and corresponding angle can be defined by difference
f kTD of the former state S1 (IFM state 1) and current state S2
(IFM state 2):

OLk= f kTD (S1, S2)=
{
f kTD

(
OP11,OP

2
1

)
⊕ f kTD

(
OA11,OA

2
1

)}
(11)

where ⊕ represents the sum mapping relation, indicating
that SMM not only includes TD of the two components
of IFM, but also involves the mapping relation between
both.

For ventral stream, the processing of IFM is depicted
in Fig.6. The ventral visual hierarchy has two modules,
partial boundaries module (PBM) and object identity mod-
ule (OIM). They work together to decompose IFM into
distinct sets of features using partial boundary algorithm.
And then every set is identified by color, shape and tex-
ture, finally the identities are integrated as output of object
identity.

Assuming two feature points in IFM are Dq =
〈
OPq,OAq

〉
and Dp =

〈
OPp,OAp

〉
. 0

(
Dq,Dp

)
is the function of PBM,

FIGURE 6. Schematic of information flow in ventral visual hierarchy.

to judge whether there is a coordination between Dq and Dp:

0
(
Dq,Dp

)
=

〈
OPq,OAq

〉
�
〈
OPp,OAp

〉〈
OPq,OAq

〉
⊗
〈
OPp,OAp

〉 , 0 ∈ [−ω,ω]

(12)

where � represents the Euclidean distance similarity com-
putation symbol, ⊗ is the feature orientation similarity com-
putation symbol. ω is the threshold value, and +ω (or −ω)
indicates the max Euclidean distance uniformly (or not).
When 0

(
Dq,Dp

)
= 0, they are orthogonal between each

other.
The region in same partial boundary Pk can be defined as:

0k
(
Dq,Dp

)
∈ [0, 1] , ∀Dq, Dp ∈ Pk (13)

Finally eachP is testified and classified by its color, shape and
texture, then all the characteristics are integrated as a whole
object identity value, as the object identity module in Fig.6
shows.

For dorsal stream, the input SMM has a map of object
location and UAV location, but the relation between the two
is independent, vague and uncertain. The network between
objects is definite and precise, but the UAV is not in the net.
As a result, the UAV can only know its location from remote
ground stations, causing the time difference in controlling and
inaccuracy in recognizing. But by combining the net and the
UAV, the precise location can be calculated as the relative
position module in Fig.7 shows.

Let E =
(
Ex ,Ey,Ez

)
be the relative positions between the

UAV and SMM network, for the k-th SMM:

Ek =

ExEy
Ez

T
k

=

OLx − ULxOLy − ULy
OLz − ULz

T
k

(14)

mk (x, y) =
√
(L (x + 1, y)− L (x − 1, y))2 + (L (x, y+ 1)− L (x, y− 1))2 (8)
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FIGURE 7. Schematic of information flow in dorsal visual hierarchy.

FIGURE 8. Schematic of the visual cognition invariance module.

The goal of joint angle commands module is to find the
optimal joint angle commands J , within the permissible range
of performance <, to minimize the Ek between a calculation
Ec based on SMM and the information sensors onboard Es,
which can be described as a Tikhonov minimization problem
[35], [36]:

min
J∈<

(
n∑
i=1

ζi ‖Ec − Es‖ + λ (Ek + J)

)
(15)

where ζi is the weight of i-th object. Ek + J is to use control
commands to minimize Ek , which is controlled by the regu-
larization parameter λ. The norm ‖Ec − Es‖ penalizes large
error to prevent over-fitting.

As shown in figure 8, the decision to which object to reach
next is determined by the coordinated actions of the external
commands, object identity and joint angle commands in the
visual cognition invariance module. In its most basic form,
an adaptive resonance theory (ART) [35] of two intercon-
nected fields (the comparison field and recognition field) is
applied.

In the VCIMmodel, to the k-th object identity Pk and joint
angle commands Jk , the recognition field RFk can be defined
as:

RFk (Pk , Jk) = (Pk − Jk)T
∑−1

k
(Pk − Jk) (16)

TABLE 1. The algorithm implementation of PVSN.

where
∑

k is the correlation covariance matrix between Pk
and Jk .
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FIGURE 9. Perceiving and cognizing UAV platform.

To the comparison field CF = {cf1, cf2, ..., cfn}, the com-
parison function can be defined as :

f (RFk) =

n∑
i=1

cfi · RFk

n∑
i=1

cfi

(17)

Finally the motor commands Cm is defined as:

Cm =

{
J 7→ Cm, iff (RFk) · C∗ ≤ fthr
Jnew, iff (RFk) · C∗ > fthr

(18)

where 7→ is the mapping symbol, which turns joint angle
commands to corresponding motor commands. C∗ and fthr
represents motor commands data base and its threshold value
respectively. Jnew is the set of new joint angle commands
preparing to add to C∗.

C. THE ALGORITHM IMPLEMENTATION OF PVSN
To fulfill the proposed method, the detailed algorithm imple-
mentation of PVSN should be given. Here we use pseudocode
(see in Table 1) to describe how the algorithm runs.

The environment is perceived by the camera onboard.
To one of the captured frames, it is regarded as an input
picture I (x, y). Before applying the proposed algorithm,
the parameters σ , τ , ω, λ, fthr , C∗ should be initialized. For
every DoG of I (x, y), we first calculate Xmax and Dk to
remove the unsuitable feature points. Then to every objects,
the object features and its corresponding angles are calcu-
lated, indicating the features of different objects. So IFM
of can be obtained by the combination of OPk and OAk .
Next, the IFM-SMM converter can transfer IFM to SMM by
using TD method so as to get OLk . On the basis of IFM and
SMM, the partial boundary algorithm is applied to calculate
0k
(
Dq,Dp

)
, so as to define whetherDq andDp belongs to the

same region or not. Finally, the optimal joint angle commands
Joptimal can be obtained by finding the optimal solution of

FIGURE 10. The true and false objects.

Tikhonov minimization problem, and the motor commands
Cm is defined by the relation between f (RFk) · C∗ and fthr .

IV. VISUAL COGNITION INVARIANCE MECHANISM
In Sections 2 and 3 we presented a visual cognition invariance
mechanism of humans and a multiple hypotheses framework
to follow VCIM associated with UAV flight. This section
presents an experimental validation of the presented approach
in the UAV perception and cognition context.

The experiments have been conducted on the perceiving
and cognizing UAV (P&C-UAV) as Figure 9 shows. The
P&C-UAV perceives environment from its embedded adap-
tive resolution camera on the basis of 3-DOF pan-tilt plat-
form, and current flight status (altitude, attitude, flight speed
andGPS position, etc.) from highly integrated sensors in PIX-
4 flight controller. Then the environment images and status
information are transmitted to airborne Intel computer stick,
where the images and information are processed to generated
flight offset instructions. Finally, the instructions are trans-
ported to PIX-4, which converts the instructions to motor
commands. Furthermore, to monitor whether the algorithms
and modules are functioning well or not, a wireless data
transmission link (2.4GHz) between UAV and ground station
is built to observe the real-time operation of processes.

V. EXPERIMENTS
The process described in Sec. 3 generated successful VCIM
and UAV’s maneuvering policies. The mechanisms and poli-
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FIGURE 11. IFM simulation result and comparisons. (a) IFM simulation
result. (b) Comparisons of PVSN, SIFT and SURF.

FIGURE 12. SMM simulation result.

FIGURE 13. Experimental environment with multiple objects.

cies were tested using a computer simulation as well as P&C-
UAV flight test. Sections 5.1 and 5.2 describe the simulated
training and test results. Section 5.3 describes the experimen-
tal results applying real-time PVSN on a P&C-UAV.

FIGURE 14. Three experimental images from P&C-UAV. (a) Experimental
image 1. (b) Experimental image 2. (c) Experimental image 3.

A. PVSN SIMULATION TRAINING
The visual cognition invariance mechanism naming PVSN
was trained in Matlab 16a, Inter Core i5. Suppose the objects
are in two classes, the true object with letter ‘‘T’’ and the false
object with letter ‘‘F’’, the standard size of objects is shown
in Fig. 10.

Take the true and false objects in Fig.10 as an example,
the shape feature is extracted as a benchmark, define the
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TABLE 2. Comparisons of three methods of experimental image 1.

TABLE 3. Comparisons of three methods of experimental image 2.

midpoint of shape features as the center of rotation and the
features are rotated, clockwise and anticlockwise, 90 times
with a step of 2 degrees, therefore there are 180 samples of
objects.

A test image and its simulation results (IFM and SMM)
is shown in Fig.11and Fig.12, respectively. In IFM, the
objects points and angles are compared with samples to
get object identity (whether it is true or false object). The
simulation result shows that after PVSN training, an object
can be mapped with samples with an average accuracy rate
0.94 as shown in Fig.11(b), which is much higher than scale-
invariant feature transform (SIFT, with accuracy result 0.78)
[38] and speeded up robust features (SURF, with accuracy
result 0.83) [39].

Assuming the flight height of UAV is 40 meters, in SMM
simulation result (as is shown in Fig.12), the relative positions
between UAV and SMM network are depicted with three-
dimensional space coordinates (take the UAV as the coordi-
nate system), which shows the UAVwas able to localize itself
and objects.

B. EXPERIMENTAL RESULTS ON A P&C-UAV
In Section 3 we presented a multiple hypotheses framework
and algorithms to fulfill VCIM via two pathways and we
showed how it allows to improve the intelligence and accu-
racywith regard to the constraints associatedwith UAVflight.
This part presents an experimental validation of the suitability
of the presented approach in the P&C-UAV context.

Fig.13 shows the experimental environment, in which the
multiple objects are put on the ground and a P&C-UAV is
flying with equipment listed in Section 4 onboard. To confirm
the VCIM’s effectiveness, comparison experiments on P&C-
UAV are done using two typical algorithms (SIFT and SURF)
and the proposed one.

The UAV sends the images from its embedded camera to
the ground station (personal computer, PC) via a wireless ana-
logical link of 2.4GHz. Images are processed on the ground
station with SIFT, SURF and VCIM. Take three images as
an example (as is shown in Fig14(a), (b) and (c)), the task
considered was to autonomously distinguish multiple true
and false objects regarding the real-time flight.
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FIGURE 15. Experimental results of multiple objects.

FIGURE 16. Comparison results of SIFT, SURF and PVSN. (a) Comparisons
of true objects. (b) Comparisons of false objects. (c) Comparisons of
time-consuming.

Table 2 and Table 3 show the experimental results of three
methods, which indicate the proposed method has a higher
accuracy in calculating similarity of true and false objects for
it has fewer feature points, and the calculation time of PVSN
performs much faster processing ability (which cost less than

1/3 time compared with the other two). Furthermore, PVSN
can get the relative position between object and UAV via two
pathways, giving out the motion commands to UAV to adjust
flight, while SIFT and SURF can only recognize objects.

For Fig.15(c), there aremultiple objects needing recognize.
So the objects are sorted and the results are labeled on the
image.

To make a clear comparison of three methods, the results
are classified and recognized in Fig.16. In Fig.16 (a) and
(b), the similarity of true objects and false objects are drew
with broken lines, indicating the processing accuracy of each
object. Result shows that PVSN has higher accuracy in clas-
sifying and recognizing objects. Furthermore, the proposed
method costs much less time in image processing and data
calculating than the other two methods (see in Fig.16(c)).

VI. CONCLUSIONS
In terms of humans, we have argued how VCIM can follow
brain-like way in perceiving and cognizing outside world,
which is similar to natural ‘‘dorsal stream’’ and ‘‘ventral
stream’’ in visual processing. After reviewing terminology
in the context of brain and visual perception, a conceptual
constructive model for objects cognizing has been proposed.
Following are some concluding remarks.

(a). A humanoid mechanism and algorithm is built refer-
ring to two brain pathways in visual perception. The proposed
VCIM not only performs well in simulations but also in
experiments.

(b). Compared with the other two methods, PVSN has
a better performance both in simulated and experimental
environment. It has higher accuracy in recognizing objects
and has less time in calculating. Besides, PVSN can obtain
the relative position between UAV and objects while SIFT
and SURF unable to.

(c). The proposed constructive mechanism is expected to
shed new insight on our understanding of visual pathways in
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brain, which can directly reflected in the design of humanlike
algorithms. Furthermore, a P&C-UAV platform is built to
confirm the proposed method is practically feasible.

Still, there are several issues in need of attention and
further investigations, including dynamic objects and multi-
UAV cooperative recognition.
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