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ABSTRACT We analyze the security of RSA prime generation implemented on embedded devices by a
practical power analysis attack. Unlike previous differential power analysis-based attack on primality tests
of RSA prime generation exploiting the deterministic relationship among multiple prime candidates manipu-
lated by consecutive primality tests, we propose a collision-based power analysis attack on the Miller–Rabin
test for a single prime candidate which can recover the secret prime with a single attempt by exploiting
collision characteristics of simple power analysis resistant modular exponentiation algorithms. Hence, our
attack does not require the incremental prime search assumption and is applicable when countermeasures
against previous attacks are deployed since it also does not require the assumption of trial divisions with
small primes on prime candidates. For a realistic setting, where five 512-bit modular exponentiations are
operated on an ARM Cortex-M4 microcontroller as recommended by FIPS 186-4 standard, we successfully
recover the secret exponent to an extent that a feasible exhaustive search is needed for the full recovery
of the secret prime. This is a first practical result of recovering a full secret of modular exponentiation
which manipulates 512-bit RSA primitives with collision-based power analysis in a single attempt, where
the previous attack demonstrates the result for 192-bit ECC primitive implementations. We also present a
countermeasure against our attack which requires only one additional modular subtraction for the loop of
square-and-multiply-always exponentiation algorithm. An experimental result for the effectiveness of our
proposed countermeasure is presented.

INDEX TERMS Cryptography, digital signatures, public key, side-channel attacks.

I. INTRODUCTION
Security of RSA implementations against Side-Channel
Analysis (SCA) have been well studied until now. Most of
such researches focus on signature generation or decryption
process [1]–[13]. Resistance against SCAs of such processes
must be considered because they manipulate private key
directly by modular exponentiation and immediate forgery
can be caused if this information is exposed. Hence coun-
termeasures securing the exponent on modular exponentia-
tions have been proposed [14]–[17] and especially resistance
against single trace attacks such as Simple Power Analysis
(SPA) or Timing Attacks [1] is being a minimum requirement
for secure implementation on embedded devices.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yinghui Zhang.

However advanced single trace attacks which can be
applicable in the presence of SPA countermeasures have
been proposed [3], [5]–[8]. Walter [3] proposed Big Mac
attack which can distinguish squaring and multiplication in
a modular exponentiation by Euclidean distance with a sin-
gle trace. Inspired by the Walter’s work, Clavier et al. [5]
proposed Horizontal Correlation Analysis (HCA) which can
exploit correlation between intermediate data and power con-
sumption in a single trace. Recovery of Secret Exponent
by Triangular Trace Analysis (ROSETTA) [6] distinguish
squaring operations by exploiting inner-collisions of a long
integer multiplication (LIM) caused by the same input sin-
gle precision operations. Horizontal Collison Correlation
Attack (HCCA) [7] exploits collisions originated by the same
operand inputted in two LIMs. Hanley et al. [8] enhanced
HCCA by detecting collisions between input and output
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operand of two LIMs. These attacks, except HCA, can be
categorized as collision-based side-channel attacks.

Besides, on the practical perspective, only simulated
results of the collision-based attacks are presented except
the work of Hanley et al. [8] which demonstrates experimen-
tal results targeting 192-bit implementations of scalar mul-
tiplication on a 32-bit microcontroller and a FPGA. More
recently, Danger et al. [10] extended HCCA by exploiting
collisions of multiple multiplications in scalar multiplica-
tion targeting a 384-bit implementation on a 64-bit archi-
tecture. References [11], [12] exhibit attack experiments
applying HCCA [7] and ROSETTA [6] on specific elliptic
curves of 192-bit and 256-bit implementations, respectively.
Luo et al. [13] demonstrate side-channel vulnerabilities of a
state-of-the-art ECC library by exploiting collisions of power
and electromagnetic traces acquired from an 8-bit and a
32-bit microcontrollers. Among these attacks only the work
of Hanley et al. [8] demonstrates practical results targeting
recovery of full secret, that is, a 192-bit secret scalar, with
a single attempt. Although [10]–[13] present experimental
results to validate the principles of their attack, practical
effectiveness for the recovery of full secret with actual single
trace are unknown.

Despite the notation, so-called single trace attacks, recov-
ering a full secret of modular exponentiation or scalar multi-
plication with a single trace in real world accompanies several
difficulties. Because of the large computational costs of scalar
multiplication or modular exponentiation, acquired number
of samples of side-channel information, for example power
consumption, from a measuring device such as an oscillo-
scope is large where the memory of the measuring device is
limited. This causes low sample Points Per Clock (PPC) of
target device and consequently exploiting collision becomes
difficult because determining points of interest (POIs) on
which targeting collision leakage exists in unit operations of
scalar multiplication or modular exponentiation is difficult.

On the other hand, it can be said that studies on security
against SCAs of RSA key generation relatively less high-
lighted until recently, since this have been considered to be
one-time process such as the device personalization before a
device is released to a user. However, a need for key gener-
ations during the device life-time is rising in today’s mobile
and Internet of Things environments.

An RSA key generation accompanies generation of primes
p and q to calculate an RSA modulus n = p · q and standard
such as NIST FIPS PUB 186-4 [18] presents recommenda-
tions of provable and probable prime generation processes.
Compared to provable prime generation, the latter one is
preferred for its efficiency in time and memory usage [19].
Probable prime generation is composed of generation of ran-
dom prime candidate and primality test, that is, the Miller-
Rabin test, for the candidate and these are repeated until
the candidate is determined to be a prime. However, both
processes are expensive to operate iteratively on embedded
devices. Hence, to reduce the cost of iterative access to the
Random Number Generator (RBG), Brandt and Damgård

proposed the incremental prime search technique which is
composed of generating one odd random number from RBG
as a seed for prime candidates and incrementing the seed by a
fixed constant value repeatedly to acquire other prime candi-
dates [20]. On the other hand, for the efficiency of primality
test process, trial division with small primes or prime sieve
methodology proposed [19], [21] to minimize the number of
expensivemodular exponentiation in theMiller-Rabin test for
composite candidates.

If at least one of primes p and q, say it is p here,
is exposed, an adversary can calculate the secret private
key dpriv = e−1 mod ((p− 1)(q− 1)) because e is a pub-
lic key and q can be calculated by factorizing n = p ·
q where n is also a public key. Hence security against
SCAs on implementations of prime generation must be
considered and relevant literature have been published.
Finke et al. [22] and Bauer et al. [23] focus on trial division
or prime sieve for prime candidates assuming basic SPA
and Timing Attack countermeasures on primality tests are
applied. Vuillaume et al. [24] proposed attacks on the primal-
ity tests and pointed out such countermeasures are insufficient
but they assumed an incremental prime search of [19], [20].

Our contribution is threefold. First, we propose a practical
collision-based power analysis on the Miller-Rabin test of
RSA prime generation which can recover a secret prime
with a single attempt by exploiting collision characteristics
of SPA-resistant modular exponentiation algorithms. Unlike
previous work [24] attacking the primality test by a Differ-
ential Power Analysis (DPA) depending on the determinis-
tic relationship among prime candidates manipulated by the
consecutive primality tests, that is, multiple Fermat tests or
multiple Miller-Rabin tests with different prime candidate
inputs, our attack targets a single prime candidate manipu-
lated by a single Miller-Rabin test. Hence our attack does not
require the incremental prime search assumption and neither
additional template attacks nor fault attacks to compensate
the small number of recovered bits caused by the limitation
of the DPA as shown in [24]. Also, our attack is applicable
when countermeasures against previous attacks of [22]–[24]
are deployed since it does not require assuming trial divisions
with small primes on prime candidates for the Miller-Rabin
test. Secondly, we demonstrate a first practical result of
recovering a full secret of 512-bit modular exponentiation
operating 512-bit long integer multiplications while previous
work [8] recovered a 192-bit secret with a single attempt.
Comparing with other works [9]–[13], where practical results
of attacking at maximum 384-bit ECC primitives are pre-
sented, attacking 512-bit RSA primitives hasmore difficulties
such as low PPC problems and issues on extracting POIs
since it requires more power consumption samples to acquire
from a measuring device with limited resources. We present
detailed methodology addressing such difficulties for a real-
istic setting where only five 512-bit modular exponentiations
for the Miller-Rabin test on a single prime candidate are
operated on an ARM Cortex-M4 based STM32F405 micro-
controller [25] as recommended by FIPS 186-4 standard.
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As result, we recovered a 512-bit prime with only three-bit
failure and for the remained secret, a feasible exhaustive
search is needed while previous attacks [22]–[24] require
the lattice-reduction technique [26] since it is unafford-
able by the exhaustive search to recover the remained bits.
Finally, we propose a new countermeasure for the square-and-
multiply-always exponentiation algorithm against our attack
which requires only one additional modular subtraction for
each loop. An experimental result is also presented to show
the effectiveness of our countermeasure.

This paper is organized as follows. In Section 2, we briefly
introduce about RSA prime generation and the Miller-Rabin
test and previous attacks. Next, we analyze and perform
experiments exploiting collisions on exponentiations in the
Miller-Rabin test. In Section 4, we propose a simple counter-
measure against our attack and present discussions. We con-
clude this paper in Section 5.

II. PRELIMINARIES
A. RSA PRIME GENERATION AND MILLER-RABIN
PRIMALITY TEST
We briefly describe here about RSA prime generation on the
basis of NIST FIPS 186-4 [18] standard. AnRSA key consists
of public key (n, e) and private key (n, dpriv), where n is a
modulus which is a product of two primes p and q, that is
n = p · q, e is a public key exponent and dpriv is a private key
exponent which satisfy dpriv = e−1 mod φ(n), where φ(·) is
Euler’s totient function. Therefore, to establish an RSA key
pair, generation of two primes p and q with the same length
must be preceded. Recommendation of the standard consists
of provable and probable prime generations corresponding
to Appendices B.3.2 and B3.4 and Appendices B.3.3, B.3.5,
and B.3.6, respectively. In this paper we focus only on the
security of probable prime generations basically composed of
generation of prime candidates and probable primality tests.

Since the cost of access to random number generator on
embedded devices is high, a method of generating a random
number and incrementing it by deterministic way [19], [20]
for prime candidates is proposed. On the other hand, primality
tests on the prime candidates are also expensive, hence trial
divisions with small prime factors [19] are done for each
prime candidate to reduce the number of primality tests on
composite candidates. Then, for a prime candidate passed
trial division process, a primality test, that is, theMiller-Rabin
primality test is performed.

The Miller-Rabin test determines whether an input odd
integer w is prime. During its operation, as described in
Alg. 1 [18], d and r is computed such that w − 1 = 2r · d
then modular exponentiation ad mod w is performed with
different random bases a, k times at maximum in the case
w is a probable prime. If this exponentiation is naively imple-
mented an adversary can recover the exponent d by perform-
ing SPA [1]. After d is recovered, the adversary can guess r
exhaustively since with high probability r is small value and
then calculate x = 2r̃ · d̃ + 1 where r̃ and d̃ denote candidate

Algorithm 1 Miller-Rabin Probabilistic Primality Test
Input: odd integer to be tested for primality w, number of
iterations of the test to be performed k
Output: PROBABLY PRIME or COMPOSITE
1: Let r be the largest integer such that 2r divides w− 1
2: d = (w− 1)/2r

3: for i = 1 to k do
4: Obtain a random integer a of length(w) from an RBG,
such that 2 ≤ a ≤ w− 2
5: z = ad mod w
6: if ((z = 1) or (z = w− 1)) then go to Step 13
7: for j = 1 to r − 1 do
8: z = z2 mod w
9: if (z = w− 1) then go to Step 13
10: if (z = 1) then go to Step 12
11: end for
12: Return COMPOSITE
13: continue
14: end for
15: Return PROBABLY PRIME

values of the correct r and d respectively. By calculating
GCD(x, n) for every guess of r and finding the case that
results in GCD(x, n) = x, the adversary can recover the one
secret prime p (or q) as for the case x = p (or q) then recover
the another secret prime q (or p) by factorizing n = p·qwhere
n is known because it is public key of RSA cryptosystem.
Hence security against SPA [1] revealing the exponent, which
can be led to exposure of secret primes during the modular
exponentiation should be considered basically when RSA
prime generation is implemented on embedded devices.

B. SIDE-CHANNEL ATTACKS ON RSA PRIME GENERATION
Besides, SCAs on RSA prime generation have been studied
until recently. Finke et al. [22] proposed an attack on trial
division process exploiting the facts that the process is termi-
nated immediately when the candidate is divided by a small
prime factor and prime candidates are incremented by a con-
stant value. By observing prime factors which terminate the
process by SPA and formulating relations between prime fac-
tors and prime candidates they can recover partial information
of a secret prime. Bauer et al. [23] attacked on a regular trial
division process which can thwart the attack of [22] but their
attack still depends on the relations between incrementing
prime candidates and small prime factors of trial division
process. Unlike [22], [23], Vuillaume et al. target primal-
ity tests [24] but their attack still requires the incremental
prime candidate search assumption to exploit their formula
to reveal the secret prime. Therefore, all previous attacks
can be thwarted by making the generation of prime candi-
dates undeterministic and for all cases recovered informa-
tion is limited since side-channel information is restricted by
nature of prime generation process (to loosen this restriction,
Vuillaume et al. [24] employ a fault attack [9] but we do not
focus on fault attacks in this paper), thus they should associate
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the lattice-reduction technique by Coppersmith [26] to com-
pensate the unrecovered secrets. Our proposed attack only
targets the Miller-Rabin primality test itself not assuming the
incremental prime candidate search or the trial divisions and
recovers the secret information to the level of requiring a
feasible simple exhaustive search for the remaining secret.
Thus previous attacks can be incorporated with our attack
when an RSA prime generation is naively implemented and
even when countermeasures applied to thwart previous ones,
our attack is still applicable since the Miller-Rabin primality
test on prime candidate is mandatory for any probable prime
generations.

C. SPA-RESISTANT EXPONENTIATION ALGORITHMS
AND SINGLE TRACE ATTACKS
We focus on the security of the Miller-Rabin test hereafter.
As noted in Subsection A, for secure implementation of the
Miller-Rabin test, SPA-resistant exponentiation algorithms
are employed such as square-and-multiply-always [14],
Montgomery ladder [15], [16] and side-channel atomic expo-
nentiation [17]. The former two algorithms operate exponen-
tiation by executing twomultiplications per one loop whereas
the rest iterates onemultiplication regularly. Therefore, for all
three cases where such exponentiation algorithm is applied
respectively, an adversary cannot distinguish between squar-
ing and multiplication by observing the power consumption
of each operation.

In this situation, the adversary can consider more advanced
single trace attacks such as Big Mac attack [3], Horizon-
tal Correlation Analysis [5], Horizontal Collison Correlation
Attack [7], Recovery of Secret Exponent by Triangular Trace
Analysis [6] or Improved Horizontal Collision Correlation
Attack (IHCCA) [8]. Modular exponentiations operated in
the Miller-Rabin test are inherently immune to HCA [5]
because the adversary cannot compute the intermediate val-
ues of exponentiations where their bases are random for
each operation. Eventually, so-called collision-based attacks
of [3], [6]–[8] can be considered. However, their experimental
results are introduced by simulations [6], [7] or for Ellip-
tic Curve Cryptography (ECC) implementations [8], where
bit length to be recovered is smaller compared to modular
exponentiations of the Miller-Rabin test, since these attacks
require precise extraction of POIs where power consump-
tion leaks information for determining a collision. For such
extraction of POIs, adequate PPC which can be achieved by
low clock frequency of target device given limited maximum
sampling rate by a measuring device, that is, an oscillo-
scope, is preferable. Unlike attacking ECC case [8], modular
exponentiation algorithm takes much more time, moreover
it manipulates longer bit length, that is, 512-bit, 1024-bit,
or 1536-bit for the Miller-Rabin test, such that requires oper-
ating in higher clock frequencies. Besides, minimum number
of rounds for the Miller-Rabin test recommended by FIPS
186-4 [18] also hinders the adversary because exploitable
power consumption traces to compensate low PPC prob-
lem by utilizing multiple traces, for example, reducing the

noise by averaging traces, are limited. In the next section,
we describe detailed methodology of addressing these prob-
lems and extract relevant POIs then recover the secret prime
manipulated in the Miller-Rabin test.

III. PRACTICAL COLLISION-BASED POWER ANALYSIS
ON THE MILLER-RABIN TEST
In this section, we present a collision power analysis on mod-
ular exponentiations in the Miller-Rabin test. As described
in Section II.A, the exponent d should not be disclosed to
an adversary. As bases are random and an adversary cannot
choose them, DPA-like attack [2], [5] is not possible. Thus,
for the Miller-Rabin test SPA-resistant modular exponenti-
ation is required since SPA can reveal the exponent from a
single power trace.

In the following, we analyze vulnerabilities of
SPA-resistant exponentiation algorithms which can cause
collisions in power consumption traces. Next, we illustrate
details of our attack with practical experiments. As described
in the previous section, we have low PPC problem and limited
number of power consumption traces of modular exponentia-
tions.We present a sequence of techniques to extract points of
interest defeating the low PPC problem and perform collision
power analysis on modular exponentiations in the Miller-
Rabin test for a single prime candidate.Moreover, we propose
a further analysis technique utilizing the secret exponent
candidates recovered from the latter attack and enhancing our
attack result, then finally, recover 512-bit secret prime with
only three-bit failure.

A. COLLISION CHARACTERISTICS OF SPA-RESISTANT
EXPONENTIATION ALGORITHMS
A single power trace of modular exponentiation consists of
multiple subtraces corresponding to field multiplications. For
example, in Alg. 2, two field multiplications are executed
each loop, n times. Assuming an adversary can detect when
two field multiplications have the same input in (at least)
one operand, namely when collision occurs, it can recover
the secret exponent bit by bit exploiting following collision
characteristics. Note that the adversary does not need to know
the input value of field multiplications.

Square-and-multiply-always exponentiation can be
described as Alg. 2. Suppose the adversary is to recover a
bit of secret exponent d , for example, when i = s and R0 has
an intermediate value of xs, two inputs of field multiplication
in Step 3 in Alg. 2 can be represented as [xs, xs]. Then we can
write down the next input sequence of field multiplications
as:

• Step 5 (or 7): [x2s , x]
• Step 3 if (ds = 1): [x2s · x, x

2
s · x]

• Step 3 if (ds = 0): [x2s , x
2
s ]

As shown above, only in the case of ds = 0, the first operand
inputs of field multiplications of Step 7 and Step 3 of the next
loop have collision.
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Algorithm 2 Square-and-Multiply-Always
Input: x, d = (dn−1, ..., d0)2
Output: y = xd

1: R0← 1; R1← x; R2← 1
2: for i = n− 1 down to 0 do
3: R0← R0R0
4: if (di = 0) then
5: R2← R0R1
6: else [if (di = 1)]
7: R0← R0R1
8: end for
9: Return R0

We can find the collision characteristic of Montgomery
Ladder of [15] described in Alg. 3. Depending on the secret
bit value, field multiplications of Step 4–5 or Step 7–8 are
operated. In the former case, the first operand of multipli-
cations has collision unconditionally for R0 is updated after
processing of Step 5 is completed. On the other hand, if di =
1, only the second operand has collision in the similar way.
Hence, after investigating the position of collision of two
subtraces of field multiplications, the adversary can detect
whether Step 4–5 or Step 7–8 have operated and also deduce
the secret exponent bit (Hanley et al. proposed a simple
countermeasure to avoid this kind of attack in [8] but we
describe this for the completeness).

Algorithm 3 Montgomery Ladder
Input: x, d = (dn−1, ..., d0)2
Output: y = xd

1: R0← 1; R1← x
2: for i = n− 1 down to 0 do
3: if (di = 0) then
4: R1← R0R1
5: R0← R0R0
6: else [if (di = 1)]
7: R0← R0R1
8: R1← R1R1
9: end for
10: Return R0

Side-channel atomic exponentiation is similar to simple
square-and-multiply exponentiation [27] except it has no
conditional branches, as shown in Alg. 4, for the sake of
SPA-resistance. Unlike the former two algorithms, it does
not have regular sequence of two field multiplications, that
is, squaring and (dummy) multiplication. Instead, collision
characteristic is simple. If and only if when di = 1, field
multiplication of R0R1 occurs and the input value of R1 is
always x. Therefore, if the adversary can acquire the subtrace
of field multiplication R0R1, it can apply a collision power
analysis on side-channel atomic exponentiation.

Next, we present some detailed methods for exploiting
these vulnerabilities in a practical experiment. As described
in Section II.C, determining collision of power consumption

Algorithm 4 Side-Channel Atomic Exponentiation
Input: x, d = (dn−1, ..., d0)2
Output: y = xd

1: R0← 1 ; R1← x ; i← n− 1
2: k ← 0
3: while (i ≥ 0) do
4: R1← R0Rk
5: k ← k ⊕ di ; i← i−¬k
6: end while
7: Return R0

trace requires precise extraction of POIs. In attacking expo-
nentiations of the Miller-Rabin test context, this is challeng-
ing process because we have no information to utilize for
extracting POIs but power consumption traces. Moreover,
we suffer from low PPC problem comparing with attacking
ECC implementations. Our strategy is, first, to extract POIs
with noise. For this, we reconstructed power consumption
traces and removed operational dependent leakages by sub-
tracting mean traces to minimize the noise. Then we recov-
ered partial information of the secret exponent exploiting
collision characteristics we described. Finally, we combine
partial information on the same secret and utilize the result to
strengthen the POI extraction. In the following, we describe
the detail of our experiment.

B. EXPERIMENTAL RESULT
1) EXPERIMENTAL SETUP
We conduct a practical experiment of our attack on a square-
and-multiply-always based Miller-Rabin test for prime gen-
eration of RSA-1024, that is, testing a 512-bit prime, which is
implemented on ARMCortex-M4 based STM32F405 micro-
controller [25] which is embedded on ChipWhisperer [29]
CW308T-STM32F [30] target board. Alg. 2 is implemented
in C and ARM assembly language and operated at 100MHz
clock frequency. The power consumption signal is ampli-
fied ten times by CW501 differential probe [31] and then
low-pass filtered with 150MHz cutoff frequency and cap-
tured at a 500MS/s sampling rate by LeCroy HDO6104A
oscilloscope [32] (We tried to perform our attack using Chip-
Whisperer’s capture device. However, we failed to capture
the whole exponentiation power trace even though we used
the ‘‘Streaming Mode’’ which is its best feature for acquiring
power traces of a long-time operation. Moreover, our attack
might not be successful even if we could collect the whole
trace with the capture device because its maximum sampling
rate is 10MS/s while our attacks result is based on 500MS/s).

2) RECONSTRUCTING POWER CONSUMPTION TRACES
We collect five power consumption traces of Alg. 2 with
the same exponent d and different random bases x. Note
that the minimum number of rounds of the Miller-Rabin
test for 512-bit primes recommended by FIPS 186-4 is
five [18]. Field multiplications of Step 3, Step 5, and
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FIGURE 1. Example of reconstructed power consumption trace.

Step 7 in Alg. 2 are implemented as a sequence of
school-book multiple-precision multiplication and modular
reduction [27]. To exploit the collision characteristic of
Alg. 2, as analyzed in Section III.A, we only focus on the
multiple-precision multiplication part. In our case, it is imple-
mented with two types of functions whose power consump-
tion is different from each other, that is, a multiple-precision
multiplication is composed of one (16 words)×(1 word)
multiplication and fifteen (16 words)×(1 word) multiply-
and-accumulate functions. Since we target to determine
manipulation of the same input in the first operand of
two multiple-precision multiplications, we reconstruct power
consumption traces Ck

i with only multiply-and-accumulate
functions where i indicates the index of multiple-precision
multiplications in an exponentiation and k indicates the num-
ber of round of the Miller-Rabin test. First, we find a power
consumption trace of a single multiply-and-accumulate as a
reference and calculate correlation coefficient point by point
with the whole power consumption traces of five exponen-
tiations. Then from the point where the peak of correlation
coefficient exists, we cut the power consumption samples
with the same length of the reference. After repeating this,
we can find all multiply-and-accumulate functions and obtain
Ck
i = [M k

i,1 ‖ M
k
i,2 ‖ · · · ‖ M

k
i,15] where M

k
i,j represents the

power consumption of a multiply-and-accumulate function.
Fig. 1 shows an example of reconstructed power consumption
trace.

3) POST-PROCESSING POWER CONSUMPTION TRACES:
REMOVING OPERATION-DEPENDENT LEAKAGE
Before further analysis, we process power consumption
traces to have mostly data-dependent leakage [28] since we
have to determine manipulated data of two multi-precision
multiplications, more precisely, for recovering the j-th bit of

the exponent, Ck
2×j and C

k
2×j+1, is same or not. To this end,

we compute mean traces of Ck
i for two separate cases where

the index i is even or odd, then subtract them from each Ck
i

accordingly (2 ≤ i ≤ 2(nd−1)+1 and nd denotes the number
of bits of the secret exponent d). Alg. 5 illustrates this process.
Note that, unlikeAlg. 2, the implementation assumes themost
significant bit of d is always one for practical reason, so R0
in Step 1 starts with x and i in Step 2 starts with (n − 2).
Therefore we can recover from (n − 1)-th to the second bit,
that is, (nd − 2) bits in total, of the secret exponent.

Algorithm 5 Post-Processing Traces

Input: Ck
i

Output: post-processed Ck
i

1: for k = 1 to 5 do
2: C

k
even = (Ck

2 + C
k
4 + · · · + C

k
2×nd

)/(nd − 2)

3: C
k
odd = (Ck

3 + C
k
5 + · · · + C

k
2×nd+1

)/(nd − 2)
4: for j = 1 to (nd − 2) do
5: Ck

2×j = Ck
2×j − C

k
even

6: Ck
2×j+1 = Ck

2×j+1 − C
k
odd

7: end for
8: end for
9: Return Ck

i

4) FINDING POINTS OF INTEREST: PHASE ONE
To determine points of interest which are to be used for
our attack, we calculate a correlation coefficient vector CI
using Alg. 6. Since we have no information about the secret
exponent, we utilize all Ck

2×j and C
k
2×j+1 for all k . By the

collision characteristic of Alg. 2, some Ck
2×j and C

k
2×j+1 have

collision for the cases where the j-th bit of the exponent is
zero. For the opposite cases, using Ck

2×j and C
k
2×j+1 for find-

ing the points having collision characteristic has no effect,
moreover it results in adding noise. To minimize this noise
and maximize the effect of collision in given situation we
reconstruct Ck

i by stacking the power consumption traces of
M k
i,j vertically because utilizing as many number of traces as

possible helps reduce the noise. Fig. 2 presents the result of
Alg. 6 (lM is the number of samples of a single M k

i,j trace).

5) RECOVERING SECRET EXPONENT CANDIDATES WITH
COLLISION POWER ANALYSIS
As shown in Fig. 2, there are correlation coefficient peaks
corresponding to the collision characteristic for each of M k

i,j
despite the noise described in the previous section. By select-
ing indices from CI as points of interest on which correlation
coefficient value is larger or equal than some threshold and
extracting samples from eachM k

i,j on the basis of the points of
interest, we can reconstruct Ck

i as C̃k
i = [M̃ k

i,1 ‖ M̃
k
i,2 ‖ · · · ‖

M̃ k
i,15] where M̃

k
i,j represents the group of samples extracted

from M k
i,j. Now we can perform a collision power analysis

by calculating correlation coefficient δj between C̃2×j and
C̃2×j+1 for recovering j-th bit of the secret exponent and
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FIGURE 2. Correlation coefficient trace CI. Straight line represents the
threshold of 0.031 used for choosing points of interest.

Algorithm 6 Calculating Correlation Coefficient Trace to
Find POIs
Input: Ck

i = [M k
i,1 ‖ M

k
i,2 ‖ · · · ‖ M

k
i,15]

Output: (1× lM ) correlation coefficient vector CI
1: for k = 1 to 5 do
2: for j = 1 to (nd − 2) do
3: for m = 1 to 15 do
4: Meven = [Meven;M k

2×j,m]
5: Modd = [Modd ;M k

2×j+1,m]
6: end for
7: end for
8: end for
9: CI = CorrT (Meven,Modd )
10: Return CI

determining whether it is zero (or one) by comparing each δj
with the mean value of all δj. If δj is larger than the mean, j-th
bit is considered to be zero, if not, this bit is considered to be
one. This process is described in Alg. 8 (we can perform this
for all k = {1, ..., 5} independently using the same CI, so we
omit k in the algorithm description). Fig. 3 is an example of
1 for the case of k = 1. And Table 1 represents the result of
performing our attacks for all five number of rounds of the
Miller-Rabin test and combining them (this is described in
the next section).

6) FURTHER ANALYSIS AND RECOVERING SECRET PRIME
We perform further analysis exploiting the result of the pre-
vious section. As we have five different candidates derived

TABLE 1. Success Rate of Each Attack.

Algorithm 7 CorrT Function
Input: Two matrices A = (ai,j) and B = (bi,j) of the same
size (1 ≤ i ≤ M , 1 ≤ j ≤ N )
Output: (ρ1, ρ2, . . . , ρN )
1: for i = 1 to N do
2: X = [a1,i, a2,i, . . . , aM ,i]T

3: Y = [b1,i, b2,i, . . . , bM ,i]T

4: ρi = corr(X ,Y )
5: end for
6: Return (ρ1, ρ2, . . . , ρN )

FIGURE 3. Correlation coefficient score for k=1. Bits having values above
mean(1) =0.0331 considered to be zero bits otherwise one bits.

TABLE 2. Success Rate of Each Attack Using CID.

for one secret exponent, we can combine them by apply-
ing majority rule bit by bit. Using this combined exponent,
denoted by d̃total in Alg. 9, making correlation coefficient
trace introduced in Subsection 4) can be more sophisticated
by calculating CIs separately for only (probably) collision
occurring case and the opposite case. This results in reducing
the noise described in Subsection 4), therefore we can acquire
CIs having an order of magnitude larger and more clear peaks
as shown in Fig. 4(a). Then we calculate a differential vector
of two CIs, denoted CID, to maximize the collision charac-
teristic. Replacing CI with CID in Alg. 8 and performing the
attack again, we recover one more bit for combined result
with 0.1007 threshold value for extracting points of interest.
Table 2 represents this result.

Now we estimate the computational complexity for full
recovery of the secret exponent. Cost of exhaustive search for
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Algorithm 8 Recovering the Secret Exponent With Collision
Power Analysis
Input: Ci = [Mi,1 ‖ Mi,2 ‖ · · · ‖ Mi,15], CI
Output: Partial secret exponent d̃ = (dnd−2, . . . , d1)2
(where full secret exponent is d = (dnd−1, . . . , d0)2)
1: Prepare a score vector 1 = [δnd−2, . . . , δ1]
2: // Select POIs having values larger or equal than arbitrary
threshold then store indices in a vector IP = [i1, . . . , inP ]
3: for i = 1 to lM do
4: if (CI (i) ≥ threshold) then
5: IP = [Ip, i]
6: end for
7: // Reconstruct C̃i with only POIs extracted M̃i,j = Mi,j(IP)
8: for m = 1 to (nd − 2) do
9: C̃2×m = [M̃2×m,1 ‖ M̃2×m,2 ‖ · · · ‖ M̃2×m,15]
10: C̃2×m+1 = [M̃2×m+1,1 ‖ M̃2×m+1,2 ‖ · · · ‖

M̃2×m+1,15]
11: δm = corr(C̃2×m, C̃2×m+1)
12: end for
13: for m = 1 to (nd − 2) do
14: if (δm > mean(1)) then
15: dm = 0
16: else
17: dm = 1
18: end for
19: Return d̃ = (dnd−2, . . . , d1)2

FIGURE 4. Correlation coefficient traces (a) calculated separately
corresponding to bit value of secret exponent candidate and (b) their
differential trace. Straight line represents the threshold of 0.1007 used for
choosing points of interest.

the remaining three bits is 508C3 × 23 < 229. In addition,
we need an exhaustive search for LSB assuming MSB is
one, finally we have 230 computational complexity for full

recovery of the secret exponent. This is feasible even for off-
the-shelf personal computers.

Algorithm 9Calculating Correlation Coefficient Differential
Trace Exploiting Recovered Secret Candidates to Find POIs

Input:Ck
i = [M k

i,1 ‖ M
k
i,2 ‖ · · · ‖ M

k
i,15], d̃

k

Output: (1 × lM ) correlation coefficient differential vector
CID

1: // Combine five results bit by bit using majority rule
2: for j = 1 to (nd − 2) do
3: if (

∑5
k=1 d̃

k (j) > 2.5) then
4: d̃total(j) = 1
5: else
6: d̃total(j) = 0
7: end for
8: // Make correlation coefficient vectors separately

according to the bit value
9: for k = 1 to 5 do

10: for j = 1 to (nd − 2) do
11: if (d̃total(j) = 0) then
12: for m = 1 to 15 do
13: M0

even = [M0
even;M

k
2×j,m]

14: M0
odd = [M0

odd ;M
k
2×j+1,m]

15: end for
16: else
17: for m = 1 to 15 do
18: M1

even = [M1
even;M

k
2×j,m]

19: M1
odd = [M1

odd ;M
k
2×j+1,m]

20: end for
21: end for
22: end for
23: // Make correlation coefficient differential trace
24: CI0 = CorrT (M0

even,M
0
odd )

25: CI1 = CorrT (M1
even,M

1
odd )

26: CID = CI0 − CI1
27: Return CID

IV. COUNTERMEASURES
In this section, we propose a possible countermeasure
against our attack and discuss about other countermeasures.
To reduce the effect of collision characteristic of Alg. 2,
we take negative value of Ro at Step 8 of Alg. 10 so that
for the next field multiplication of Step 3 squaring with
negative value of Ro is operated. Making negative value can
be implemented as modular subtraction. As a result, inputs of
the first operand at Step 7 and Step 3 have no collision.

We present practical results of our countermeasure by con-
ducting an experiment for an implementation of Alg. 10. All
other experimental settings are identical to ones of Section III.
Fig. 5 represents correlation coefficient trace resulted from
Alg. 6. Unlike the result of Subsection 4) of Section III.B,
shown as Fig. 2, correlation coefficient peaks are negative.
By the way, negative correlation peaks also can be exploitable
for extracting points of interest. Hence we perform the attack
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FIGURE 5. Correlation coefficient trace CI. Straight line represents the
threshold of -0.3416 used for choosing points of interest.

TABLE 3. Success Rate of Each Attack on Implementation with
Countermeasure using CI.

of Alg. 8 to confirm the efficacy of our countermeasure (The
sign of inequality at Step 4 become negative since peaks of
CI is negative). As shown in Table 3 the success rate of the
attack is decreased drastically even for the combined result.

Algorithm 10 Square-and-Multiply-Always With Counter-
measure Against Our Attack
Input: x, d = (dn−1, ..., d0)2
Output: y = xd

1: R0← 1 ; R1← x ; R2← 1
2: for i = n− 1 down to 0 do
3: R0← R0R0
4: if (di = 0) then
5: R2← R0R1
6: else [if (di = 1)]
7: R0← R0R1
8: R0←−R0 //(p− R0) assuming modulus is p
9: end for
10: Return R0

We conducted another experiment similar to Subsection 6)
of Section III.B. For this time, we use actual secret exponent
d as input of Alg. 9 to evaluate the optimum result for an
adversary. As shown in Fig. 6, both peaks of CIs are nega-
tive for collision occurring and non-collision cases and their
differential vector has almost an order of magnitude smaller
peaks. Table 4 presents the result of the attack, although
CID of Fig. 6(b) seems like useful for extracting points of

FIGURE 6. Correlation coefficient traces for implementation with
countermeasure (a) calculated separately corresponding to bit value of
secret exponent and (b) their differential trace. Straight line represents
the threshold of 0.0338 used for choosing points of interest.

TABLE 4. Success Rate of Each Attack on Implementation with
Countermeasure using CID.

interest, the best success rate of the attack is still sufficiently
low compared to the results of Table 1 and 2 because the
computational cost for recovering the remaining bits become
infeasible as we analyzed in Subsection 6) of Section III.B.

A countermeasure for Montgomery Ladder against our
attack is presented by Hanley et al. in [8]. It is simply
replacing from Step 3 to Step 8 of Alg. 3 with R1−di ←
R1−diRdi . By this way, collision characteristic of Section III.A
is removed as positions of operands are switched. Neverthe-
less, IHCCA defeats this countermeasure. To the best of our
knowledge, countermeasures against IHCCA do not exist yet.
This can be our future work including countermeasures for
side-channel atomic exponentiation.

In addition to countermeasures on exponentiation algo-
rithm, a method of interleaving exponentiations for multiple
prime candidates is considerable in primality test level to pre-
vent an adversary from acquiring power consumption traces
for the same exponent.

V. CONCLUSION
We performed a practical collision-based power analy-
sis attack on the Miller-Rabin test of RSA prime gen-
eration and recovered a 512-bit secret prime with only
three-bit failure with a single attempt for a realistic setting
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where five 512-bit modular exponentiations are operated on
an ARM Cortex-M4 microcontroller as recommended by
FIPS 186-4 standard. Our attack is applicable even when
countermeasures against previous attacks [22], [23] are
deployed, also it does not require the incremental prime
search assumption on which the attack of [24] depends, thus,
countermeasures proposed to defeat the attack of [24] are
not effective against our attack. Although we proposed a
countermeasure on modular exponentiation algorithm level
to reduce the collision characteristics which we exploited,
it seems that changing in the primality test procedure, that is,
not sequentially exponentiating for the same secret exponent
is required for the higher security of RSA prime generation.
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