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ABSTRACT The standard formulation of the K -means clustering (Lloyd’s method) performs many unnec-
essary distance calculations. In this paper, we focus on four approaches that use the triangle inequality
to avoid unnecessary distance calculations. These approaches are Drake’s, Elkan’s, Annulus, and Yinyang
algorithms. We propose a hybrid MPI/OpenMP parallelization of these algorithms in which the dataset and
the corresponding data structures storing bounds on distances are evenly divided among MPI processes.
Then, in the assignment step of aK -means iteration, eachMPI process computes the assignment of its portion
of data using OpenMP threads. In the update step of the iteration, the cluster centroids are computed using
a hierarchical all-reduce operation. In the computational experiments, we compared the strong scalability of
these four algorithms with the scalability of Lloyd’s algorithm, parallelized using the same approach. The
results indicate that all four algorithms maintain an advantage in computing time over Lloyd’s algorithm.
A comparison with two software packages, whose sources are publicly available, in the same computing
environment, shows that our implementations are more efficient.

INDEX TERMS Clustering, K -means, triangle inequality, MPI, OpenMP, hybrid parallelization.

I. INTRODUCTION
Clustering [1], [2] is an unsupervised classification technique
that is widely applied in many diverse areas, such as biology,
social science, and image processing. The aim of clustering
can be defined as dividing a set of objects into K disjoint
groups, called clusters, in such a way that objects within one
cluster are very similar, whereas objects in different clusters
are very distinct. In this work, it is assumed that the number
of clusters K is known a priori.

The clustering problem can be formulated as the problem
of searching for a K -partition of the data which minimizes a
certain criterion function. The sum of squared error (SSE),
which is defined as the sum of squared distances (e.g.,
Euclidean) from each data item to the centroid of its cluster,
is one of the most common criterion functions. The cluster-
ing problem with the SSE criterion based on the Euclidean
distance is known to be NP-hard [3]. For this reason, heuris-
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tic methods, for instance those based on an iterative ‘‘hill
climbing’’ approach, must be employed. These methods do
not guarantee finding the optimal solution. Instead, they stop
searching after a local convergence in which no improve-
ments in the neighborhood of the current solution can be
found.

TheK -means algorithm [4], [5], arguably themost popular
clustering method, belongs to a group of such hill climbing
approaches. It is an iterative refinement algorithm which,
given an initial clustering solution (i.e., a set of cluster cen-
troids), produces a sequence of solutions with decreasing
values of the SSE criterion. An iteration of the algorithm
consists of two steps: an assignment step and an update step.
In the assignment step, each data item is assigned to the
cluster with the closest centroid. In the update step, cluster
centroids are recalculated based on the assignment of data
items. The algorithm is usually stopped when the cluster
membership stabilizes.

Interest in clustering algorithms has been renewed recently
due to the dramatic growth of volumes of data (‘‘big data’’)
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available from services and resources, such as social net-
works (e.g., Facebook and Twitter), cloud storage systems,
and sensor networks. These huge volumes of data present an
opportunity for useful analysis but create their own problems
related to storage, processing, and analytical operations [6].
Data clustering is a potential method for overcoming some of
these problems by producing clusters/summaries of the entire
dataset in a compact and informative form. In this application
of iterative clustering methods, sequential implementations
cannot get the job done in an acceptable amount of time.
Moreover, data are unlikely to fit in the memory of a single
computer. For this reason, some form of distributed and/or
parallel processing is necessary.

Computer clusters of shared memory nodes are the most
widespread parallel architecture. A single node of a clus-
ter usually consists of several multi-core chips sharing
memory, with non-uniform memory access (NUMA). The
nodes are interconnected via a high-speed network. For such
architecture, it is natural to consider a hybrid program-
ming model, which employs a shared memory paradigm
(e.g., OpenMP [7]) for parallelization within a node, and
a message-passing paradigm (e.g., MPI [8]) for communi-
cation across nodes. Although this model lacks some fea-
tures (e.g., fault tolerance) of higher-level approaches, like
MapReduce [9] or Spark [10], it fits well with the hierarchical
architecture of a computer cluster, which gives it the possibil-
ity of attaining the highest performance [11], [12].

The main contribution of this work is the design, imple-
mentation, and experimental evaluation of hybrid parallel
MPI/OpenMP versions of five variants of the K -means
algorithm: the well-known Lloyd’s algorithm [4] and
newer Drake’s algorithm [13], [14], as well as Elkan’s [15],
Annulus [14], [16], and Yinyang [17] algorithms. Whereas
Lloyd’s algorithm is a brute-force method in which each
iteration must compute the distance between each cluster
centroid and each data item, the latter four algorithms use
the triangle inequality to skip some distance calculations.
This approach can substantially reduce computing time.
However, it can pose problems in terms of parallelization
because of the possibility of load imbalance. This paper
tries to answer the question of whether the superiority
of these four algorithms, as demonstrated for their sin-
gle node (computer) implementations (e.g., [16], [17]), can
be maintained in a parallel implementation in a cluster
system consisting of dozens of multi-core nodes. To our
knowledge, such multi-node parallelization of the triangle
inequality accelerated methods have never been attempted
before.

The rest of the paper is organized as follows. The next
section presents research related to our work. Section III
describes the five variants of the K -means algorithm inves-
tigated in the paper. Section IV presents the method of par-
allelization of these algorithms. Section V shows the results
of computational experiments demonstrating the scalability
of the algorithms on a computer cluster. The last section
concludes the paper.

II. RELATED WORK
The K -means algorithm is very popular and widely used.
In [18], it is nominated as one of the top 10 data mining
methods. The batch version (Lloyd’s method), which is con-
sidered in this paper, was invented by Lloyd in 1957, but was
published only in 1982 [4]. Independently, it was proposed
in [19].

There are several lines of research on improving the effi-
ciency of the K -means algorithm. Since both the number
of iterations and the quality of the final solution depend on
the initial clusters, some researchers have tried to devise
new initialization methods to improve effectiveness (final
SSE) and/or efficiency (number of iterations). A standard
mean of initialization is to choose random data objects,
using the uniform distribution, as cluster centroids [5].
K -means++ [20], a popular initialization method, initial-
izes cluster centroids by objects chosen with the probability
proportional to the squared shortest distance to the already
initialized centroids. It has been demonstrated [20] that ini-
tialization by K -means++ improves both effectiveness and
efficiency. Amajor limitation ofK -means++ is its sequential
nature. However, a variant of the method, called K -means‖,
which can be efficiently parallelized, was proposed [21].
A brief description of other initialization methods and a
thorough experimental comparison with respect to efficiency
and effectiveness can be found in [22].

Another line of research is related to the development of
fast approximate algorithms. Most of the computation time
for iterations of Lloyd’s algorithm is spent searching for
the nearest centroid of each data item. The time complexity
of this step can be significantly reduced by replacing an
exact nearest neighbor search with an approximate nearest
neighbor search using data structures like a forest of random-
ized KD-trees [23] or a trinary-projection tree [24]. In [25],
a method which computes only distances from a cluster cen-
troid to the points belonging to the cluster closure (neighbor-
hood) was proposed. These cluster closures can be efficiently
constructed using multiple random partition trees.

The problem with approximation methods is that they pro-
duce clustering results different from Lloyd’s algorithm, and
the quality of these results can be worse than the quality of
Lloyd’s algorithm results. For this reason, many researchers
have focused on exact algorithms, which give identical results
as Lloyd’s method. Some have proposed [26], [27] using
a KD-tree structure to organize the clustered data. The
KD-tree is a binary tree constructed by recursively parti-
tioning the data using axis-aligned hyperplanes. By using
the tree to restructure the assignment step of the K -means
algorithm, many distance calculations can be skipped. This
approach works well for low-dimensional data; for dimen-
sions greater than about 20, traversing the tree becomes too
expensive [26].

In [28], it was noticed that some cluster centroids, called
static centroids, do not move in consecutive iterations. If the
update step moves the assigned centroid closer to a point,
all static centroids cannot be closer to this point than its
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assigned centroid. Thus, the calculations of distance to the
static centroids can be avoided.

All four accelerated algorithms considered in this paper
belong to a group of methods that maintain an upper bound
on the distance to the currently assigned cluster centroid and
lower bounds on distances to some other cluster centroids.
The bounds can be efficiently updated using the triangle
inequality. This line of research was started with Elkan’s
algorithm [15]. Apart from using K lower bounds (one for
each centroid), hismethod in each iteration computes amatrix
of pairwise distances between cluster centroids. Using the
triangle inequality, lower and upper bounds, and the matrix,
the algorithm is able to omit many unnecessary distance
calculations, generating significant speedup. However, main-
taining the bounds and the matrix requires additional O(KN )
memory, where N is the number of clustered items and
O(K 2) time, which may not be feasible for large K . For
small dimensional feature spaces, the gains from the avoided
distance calculations may be offset by the additional effort
required for maintaining the bounds and the matrix. As a
result, Elkan’s algorithm may, although rarely, run slower
than Lloyd’s method [17].

Hamerly’s algorithm [29] is a simplification of Elkan’s
method. It uses only one lower bound on the distance
to the second-closest centroid. Instead of maintaining the
matrix of inter-centroid distances, the algorithm maintains,
for each cluster centroid, the distance to the other closest cen-
troid. Annulus algorithm [14], [16] improves on Hamerly’s
method by considering, in the inner loop of the assignment
step, only the centroids in an annular region centered by the
origin. For low-dimensional feature spaces, these two algo-
rithms yield a shorter computing time than Elkan’s method.
Their important advantage is much lower memory complex-
ity. However, in high-dimensional spaces, their single lower
bound is not efficient enough in comparison to the K bounds
of Elkan’s method, and the algorithms may run slower.

Drake’s algorithm [13], [14] combines the strengths of
Elkan’s and Hamerly’s/Annulus methods by maintaining
1 < B < K lower bounds to the B next-closest centroids,
excluding the currently assigned closest centroid. The com-
putational experiments [16] indicate that the algorithm per-
forms very well for the medium-dimensional feature spaces.
However, Annulus and Elkan’s algorithms can be more effi-
cient in low and high dimensions, respectively.

The recently proposed Yinyang algorithm [17] also main-
tains 1 < B < K lower bounds on distances to groups of cen-
troids. These groups are formed at the start of the algorithm
by using the K -means method to divide K initial centroids
into B clusters. The B lower bounds of the Yinyang algorithm
are, similar to Drake’s method, a compromise between the
K lower bounds of Elkan’s algorithm and the single lower
bound of Hamerly’s and Annulus algorithms. Computational
experiments have demonstrated [17] a consistent speedup of
the Yinyang algorithm over Elkan’s and Drake’s methods.
In [30], a new method for obtaining the lower bounds for the
Yinyang algorithm using Euclidean distance was proposed.

MPI [8] and OpenMP [7] are de facto open standards for
parallel programming in a distributed and shared memory
model, respectively.

The idea of parallelizing K -means algorithms is not new.
However, research efforts in this direction mostly either focus
on Lloyd’s algorithm or are limited to single-node paralleliza-
tion using threads. A parallel version of Lloyd’s algorithm for
distributed systems implemented using MPI was described
in [31]. A hybrid parallelization of Lloyd’s method based
on MPI and OpenMP was proposed in [32]. Contrary to
our method, that approach employed a reduction algorithm
with a linear computational complexity depending on the
number of cores. More recent implementations of Lloyd’s
algorithm were developed for architectures used in modern
supercomputers. In [33] a version for systems using a high
bandwidth scratchpad DRAM, which is physically bonded to
a die containing compute cores, was proposed. An example
of such architecture was discontinued Intel Knights Landing
many-core processor. In [34] a parallel version of Lloyd’s
algorithm for shared memory systems, which efficiently uti-
lized both caches of a multi-core machine and available
Single Instruction Multiple Data (SIMD) units, was pro-
posed. The algorithm was tested on a system with two quad-
core Intel CPUs giving a significant speedup over a naive
implementation. [35] and [36] describe two implementations
of Lloyd’s algorithm for the SW26010 many-core processor
used in Sunway TaihuLight supercomputer (at the time of
writing this paper it was third on the Top500 supercomputer
list [37]). While the previous work focuses on fine-tuned
kernel running on a single processor, the latter discusses the
implementation on thousands of nodes of TaihuLight.

Very few authors have tried to combine exact accelerated
algorithms with multi-node parallelization. In [38], a parallel
formulation of a KD-tree-based algorithm was proposed. The
algorithm, which uses static partitioning of the tree, was
implemented using MPI bindings for Java. The method was
later extended with dynamic load balancing [39]. Accord-
ing to our knowledge, a hybrid parallelization of triangle
inequality-accelerated exact K -means algorithms based on a
message-passing model for inter-node communication and a
shared memory model for intra-node communication has not
yet been proposed.

There are several papers that have compared different
triangle inequality-based accelerated K -means algorithms.
However, in all the cases, these comparisons were lim-
ited to single-node parallelization using threads or higher-
level primitives. The original implementation of the Yinyang
algorithm [17] was compared to Elkan’s and Drake’s meth-
ods. All three algorithms were parallelized using a high-level
Graphlab package [40] for graph-structured algorithms. This
package was implemented in C++ using POSIX threads.
In [16], a comparison of seven triangle inequality-based

algorithms, along with their parallelization based on POSIX
threads, was described. This work included experimental
evaluation of parallel efficiency and speedup on a sin-
gle 12-core system. A more recent review [41] involved a
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comparison of triangle inequality-based acceleration
methods, including the Yinyang algorithm and its simplified
version, implemented using C++11 threads on a four-core
system. This paper also proposed a modified bound update
rule, which inmost cases reduces the runtime of theK -means.
Another contribution of [41] was a demonstration that opti-
mized implementations of triangle inequality-basedK -means
using low-level mechanisms, like threads, may outperform
implementations using high-level counterparts by a large
margin, which was shown by an example of a fine-tuned
version of the Yinyang K -means compared to the original
implementation [17] in Graphlab.

Another research direction is related to implementa-
tions of K -means algorithms on parallel accelerators, e.g.,
Graphics Processing Units (GPUs) and Field Programmable
Gate Arrays (FPGAs). GPU versions of Lloyd’s algo-
rithm include [42] and [43]. Among several realizations on
FPGAs, [44] and [45] are the most related to our work. The
former describes implementation of a simplified version of
Elkan’s algorithm [15], which does not use inter-centroid
distances. The latter presents an implementation of the
KD-tree based filtering algorithm [26] for low-dimensional
data. One disadvantage of accelerators is that available mem-
ory resources are usually much lower than host memory
capacity, which is a limiting factor in applications to big
data clustering. For instance, both the aforementioned FPGA
implementations use on-chip memory to store auxiliary data
structures (upper and lower bounds or a KD-tree). On-board
memory available to a GPU accelerator usually has lower
capacity than the host memory. To tackle this problem, some
GPU implementations try to process data in batches [43].
In such cases a host-accelerator link can be a bottleneck.

Practically every machine learning library includes a
K -means method. Among them, MLPACK [46] includes
single-threaded versions of Elkan’s, Hamerly’s, and KD-tree-
based algorithms. A version of Lloyd’s method, with some
optimizations for sparse data, is part of the MLlib machine
learning library [47] for the popular Spark big-data process-
ing engine [10]. Compared to our approach, implementations
of distributed machine learning algorithms in Spark offer two
important advantages: fault tolerance and no requirement to
store the dataset and the bounds in memory. However, their
performance can be of one order of magnitude slower than
the performance of implementations on HPC platforms using
MPI/OpenMP [48].

III. FIVE VARIANTS OF THE K -MEANS ALGORITHM
We assume that clustered items are represented by N feature
vectors x(1), x(2), . . . , x(N ), x(i) ∈ RM , where M is the
dimension of the feature space. We also assume that cluster
assignment of feature vectors is stored in an array a, where
a(i) ∈ {1, 2, . . . ,K } for i = 1, . . . ,N .

The SSE criterion is defined by:

SSE =
N∑
i=1

d2(x(i), c(a(i))), (1)

FIGURE 1. Pseudo-code of Lloyd’s algorithm.

where d(x, y) is a distance (e.g., Euclidean) and c(j) ∈ RM is
the centroid of the j-th cluster for j = 1, . . . ,K .

A. LLOYD’S ALGORITHM
Lloyd’s algorithm, commonly referred to as the K -means
algorithm, is the most popular technique for local minimiza-
tion of (1). The method, shown in Fig. 1, consists of the
alternate application of two steps: an assignment step and
an update step. In the former step (lines 3-4), each feature
vector x(i) is assigned to the cluster represented by the closest
centroid. In the latter step (lines 6-10), the cluster centroids
are computed as sample means by accumulating the so-called
sufficient statistics: sums of feature vectors assigned to each
cluster in y(1), y(2), . . . , y(K ), and counts of feature vectors
assigned to each cluster in z(1), z(2), . . . , z(K ) (lines 6-9).
Next, for each cluster, its sum is divided by the count, giving
new centroid coordinates (line 10).

For the sake of simplicity in Fig. 1, we have omitted the
case of an empty cluster, i.e., a cluster centroid which is not
the closest centroid to any of the feature vectors. In such
a case, the corresponding z(j) will be equal to zero, and a
division by zero will happen in line 10 of Fig. 1. There
are several possible methods for dealing with empty clusters
(e.g., choose as a new centroid the feature vector, which
contributes most to SSE). In our implementation, we used the
simplest approach, which replaces the centroid of the empty
cluster with a random feature vector. This method was chosen
because it did not impede parallelization.

It can be shown [49] that both assignment and update steps
reduce the SSE, and thus the algorithm converges to a local
minimum. The iterations of the algorithm are terminated
when the cluster membership vector a stabilizes (which is
equivalent to SSE ceasing to improve), although alternative
stopping criteria based on minimal relative improvement of
SSE or a maximal number of iterations can be employed.

The computational complexity of the assignment step of
Lloyd’s algorithm is O(NKM ) for K clusters and N fea-
ture vectors in M dimensions. Because usually K � N ,
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the computational complexity of the update step is O(NM ).
The complexity of the whole algorithm is O(wNKM ), where
w is the number of iterations.

This paper is mostly concerned with applications of the
triangle inequality to optimize the costlier assignment step.
There is, however, one possible optimization of the update
step: If we keep the sufficient statistics y and z between
consecutive K -means iterations, summing over all feature
vectors (lines 7-9 of Fig. 1) is not necessary. Instead, we
can update y and z for feature vectors, which changed the
cluster membership [17], [29]. By doing so, we incur the cost
of one vector addition and one subtraction for each feature
vector that changed membership. Thus, this optimization is
beneficial if less than one-half of feature vectors change
cluster membership in an iteration. Following the authors
of the original papers [4], [13], [15]–[17], we implemented
this optimization in the Annulus and Yinyang algorithms; our
implementations of Lloyd’s, Elkan’s, and Drake’s algorithms
did not use it.

B. ELKAN’S ALGORITHM
The triangle inequality states that if we have three vectors in
v1, v2, v3 ∈ RM , then:

d(v1, v3) ≤ d(v1, v2)+ d(v2, v3). (2)

Elkan’s algorithm [15] uses this inequality in multiple ways
to avoid distance calculations. In addition to the variables
x, a, c maintained by Lloyd’s method, the algorithm main-
tains, for each feature vector x(i), an upper bound u(i) and
K lower bounds l(i, k); u(i) bounds the distance between x(i)
and the centroid of its assigned cluster c(a(i)), whereas for
each k ∈ {1, . . .K }, l(i, k) bounds the distance between x(i)
and c(k). At each stage of the algorithm, the bounds must
satisfy the following conditions:

u(i) ≥ d(x(i), c(a(i))), (3)

and

l(i, k) ≤ d(x(i), c(k)). (4)

If u(i) ≤ l(i, k), then from (3) and (4) we get d(x(i), c(a(i))) ≤
d(x(i), c(k)), which means that the centroid c(k) cannot be
closer to x(i) than the centroid of the currently assigned
cluster c(a(i)). Thus, the calculation of the distance from x(i)
to c(k) is not necessary.

Maintaining the bounds, Elkan’s algorithm must account
for the drift (movement) of centroids. Denoted by δ(k), the
drift of a centroid c(k) is the result of the update step. After the
update step, lower and upper bounds are recalculated using
the following rules:

l(i, k)← l(i, k)− δ(k), u(i)← u(i)+ δ(a(i)). (5)

It is easy to show [15], using the triangle inequality, that the
above update rules ensure that conditions (3) and (4) hold in
each iteration.

Elkan’s algorithm also uses the triangle inequality by
exploiting a lemma provided by Phillips [50]. The lemma

FIGURE 2. Pseudo-code of Elkan’s algorithm.

states that for each centroid c(k), if d(c(a(i)), x(i)) ≤
1
2d(c(k), c(a(i))) then d(x(i), c(a(i))) ≤ d(x(i), c(k)). In this
case, the calculation of the distance to c(k) is not neces-
sary. To efficiently use Phillips’ lemma, the algorithm at the
beginning of each iteration pre-computes an inter-centroid
distance matrix C(k, j) = d(c(k), c(j)) for each k 6= j.
Moreover, the algorithm tries to avoid computing distance
where possible by exploiting the fact that d(x(i), c(a(i))) ≤
u(i). Thus, if u(i) ≤ 1

2d(c(k), c(a(i))), then the premise of
Phillips’ lemma is satisfied and we do not have to compute
the distance to c(k).
The whole algorithm, based on a re-formulation of

Elkan’s ideas in [16], is presented in Fig. 2. At the begin-
ning, the lower and upper bounds must be initialized
(lines 2-4). Following [16], we take as a(i) an index of an
arbitrary centroid and ensure that in the first iteration, all the
lower bounds overlap the corresponding upper bound. This
initialization guarantees that tight lower and upper bounds in
the first assignment step will be obtained.

Before the assignment step, the algorithm pre-computes
the inter-centroid distance matrixC (line 6) and, for each k =
1 . . . ,K , s(k), one-half the shortest distance from centroid
c(k) to any other centroid (line 7). In the assignment step
(lines 8-21), Phillips’ lemma is used in two tests: the outer
test (line 9) and the inner test (line 13). If u(i) ≤ s(k), then any

42284 VOLUME 7, 2019



W. Kwedlo, P. J. Czochanski: Hybrid MPI/OpenMP Parallelization of K -Means Algorithms Accelerated Using the Triangle Inequality

other centroid cannot be closer to the feature vector x(i) than
c(a(i)). Thus, the algorithm skips the inner loop, iterating over
all the centroids (lines 11-21). In the inner loop, the algorithm
uses Phillips’ lemma and lower bounds in an inner test to
skip the calculation of distances where possible. It also uses
the following optimization: If the inner test fails and u(i) is
not an exact distance between x(i) and c(a(i)), then it may be
beneficial to recompute u(i) as the exact distance (i.e., tighten
the upper bound) and check the test again (line 17). To avoid
multiple calculations of this distance, the algorithm uses the
logical variable r . If r = false, then the upper bound is tight.
After the assignment step, Elkan’s algorithm performs the

update step (line 22) and recalculates the bounds (lines 23-26)
according to (5).

A drawback of Elkan’s algorithm is memory complex-
ity. Apart from O(NM ) storage required for the learning
set, the algorithm requires O(NK ) storage for the bounds.
In situations where K � M , this may be prohibitive.

C. THE ANNULUS ALGORITHM
The Annulus algorithm [14], [16] is an extension of the ear-
lier Hamerly’s method [29], which in turn is a simplification
of Elkan’s approach. The upper bound u(i) is defined exactly
the same as in Elkan’s algorithm. However, instead of usingK
lower bounds, a single lower bound l(i) on the distance to the
second-closest cluster centroid is employed; l(i) must satisfy
the following condition:

l(i) ≤ min
k 6=a(i)

d(c(k), x(i)). (6)

If u(i) ≤ l(i), then a(i) cannot change, which allows the
algorithm to skip the innermost loop iterating over the cen-
troids. The Annulus method also uses Phillips’ lemma [50]
to skip the innermost loop by pre-computing in s(k) one-
half the distance from c(k) to its nearest other centroid.
When the bounds overlap and Philips’ lemma check fails,
the innermost loop cannot be avoided. The original Hamerly’s
algorithm [29] in this case performs the standard iteration
over all the centroids. However, the Annulus method in this
situation considers only centroids in an annular region cen-
tered by the origin of the coordinate system (Fig. 3). If

|d(x(i),O)− d(c(j),O| ≥ d(x(i), c(a(i)), (7)

where O is the origin, then it is easy to show [16] that the
centroid c(j) cannot possibly be closer to x(i) than c((a(i)).
Thus, the calculation of the distance from x(i) to c(j) is not
necessary. The pseudo-code of the Annulus method is shown
in Fig. 4. A new variable b(i) ∈ {1, . . . ,K } is required, which
represents the index of the second-nearest centroid to x(i).

The assignment step starts with a simultaneous test for
overlap of two bounds and Philips’ condition (lines 7-8).
If this check fails, u(i) is made tight (line 9) and the test
is repeated (line 10). If the test fails again, the inner loop
searching the annulus is entered. Because the search must
obtain not only new a(i) (lines 17-18) but also new b(i)

FIGURE 3. The annular region (gray ring) limiting the search for a centroid
closer to x(i ) than c(a(i )) [16]. Since c(j ) is outside the annulus, it need
not be considered during the search.

FIGURE 4. Pseudo-code of the Annulus algorithm.

(line 21), the radius of the annulus (lines 11-12) must be
wider [16] than the one depicted in Fig. 3.

The key to higher efficiency with the algorithm in com-
parison with Hamerly’s approach is the rapid determination
of centroids belonging to the annulus. The inequality in
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line 13 of Fig. 4 can be transformed to the equivalent form:

d(c(i),O) ∈ (d(x(i),O)− r, d(x(i),O)+ r) . (8)

If we pre-compute the distance between each feature vector
and the origin (once per K -means run) and sort all the cen-
troids according to their distance from the origin (once per
K -means iteration), then the set of centroids satisfying (8)
can be obtained quickly by performing two binary searches
over the sorted list of centroids.

After the update step, the algorithm recalculates the bounds
(lines 23-27). The update rule for u(i) is the same as in Elkan’s
method. The lower bound l(i) is reduced by the maximum
centroid drift. This update rule ensures the correctness of l(i)
in the next iteration [16].

D. DRAKE’S ALGORITHM
Drake’s algorithm [13], [14], [16] attempts to combine the
advantages of the Elkan’s and Annulus methods. For each
feature vector x(i), it uses one upper bound u(i) on the dis-
tance to the closest centroid c(a(i)) and 1 < B < K lower
bounds l(i, k), where k = 1, . . . ,B. The algorithm relies only
on bounds in eliminating distance calculations, abandoning
the use of Philips’ lemma, which requiresO(MK 2) additional
computational burden for computing inter-centroid distances.

The strict interpretation of lower bounds is as follows:
l(i, k), for k = 1, . . . ,B− 1, is a lower bound on the distance
between x(i) and k-th closest centroid, excluding c(a(i));
l(i,B) represents a lower bound on the distance to K −B− 1
furthest centroids. At each stage of the algorithm, the lower
bounds l(i, 1) . . . l(i,B) are maintained in increasing order.
Apart from using l(i, k) the algorithm has to track, in a
variable b(i, k) ∈ {1, . . .K } index of k-th closest centroid,
excluding c(a(i)). The pseudo-code of the method is shown
in Fig. 5.

In the assignment step (lines 5-18), the algorithm, similar
to the Elkan’s and Annulus methods, first checks whether
the upper bound u(i) is not greater than the smallest lower
bound l(i, 1). In this case, a(i) cannot change and all distance
calculations from x(i) to the centroids can be avoided. If this
test fails, then the algorithm checks (line 7) whether u(i) is
greater than the maximum lower bound l(i,B). In this case,
the bounds failed to eliminate any distance calculations. The
algorithm then computes distances from x(i) to all the cen-
troids (line 8). Next, it partially sorts, by increasing distance,
a list L of pairs consisting of centroid indices and distances
(line 9). After the sorting a(i) becomes the index of the
closest centroid and u(i) the distance to this centroid (line
10). The indices of next B closest centroids and the corre-
sponding distances to x(i) are stored in b(i, 1), . . . , b(i,B) and
l(i, 1), . . . , l(i,B), respectively (line 11).

Lines 13-18 of Fig. 5 represent a middle case between the
two extremes discussed above, in which the upper bound u(i)
is smaller than or equal to j-th (where j > 1) lower bound
l(i, j). In this situation, a new centroid closest to x(i) could
be any of the following: c(a(i)), c(b(i, 1)), . . . , c(b(i, j − 1)).
Thus, the algorithm must calculate (lines 14-15) and sort

FIGURE 5. Pseudo-code of Drake’s algorithm.

(line 16) the list of distances to the centroids in ques-
tion, obtaining new indices a(i), b(i, 1), . . . , b(i, j − 1) and
the corresponding tight bounds u(i), l(i, 1), . . . , l(i, j − 1)
(lines 17-18).

The upper bound u(i) is updated (line 23) in the same way
as in the Elkan’s and Annulus algorithms. In the update rules
for lower bounds (lines 24-27) there are two compromises
that increase efficiency at the cost of reduced tightness and
the option to perform more distance calculations in the next
K -means iteration. First, l(i,B) is reduced (line 24) by the
maximum drift of all the centroids. It could be reduced by the
maximum drift of K − B − 1 furthest centroids, but doing
so would require tracking the identities of these centroids.
Secondly, if the lower bound update (line 26) violates the
requirement that the lower bounds stay in increased order,
then the algorithm replaces l(i, k) by l(i, k + 1), thereby
ensuring the order of the bounds at the cost of their tightness.
Apparently, this strategy ismore efficient than sortingB lower
bounds and the corresponding centroid indices.
B is a parameter of Drake’s method that may be

kept constant or controlled adaptively using the following
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strategy [13], [14], [16]. Initially, B = K/4. During each
iteration of K -means, the algorithm computes the maximum,
across all i, of the value of j obtained in line 10 of Fig. 5. B in
a subsequent iteration is reduced to that maximum, subject to
limit B = K/8.

E. THE YINYANG ALGORITHM
The Yinyang algorithm [17] seeks an efficient compromise
between the K lower bounds of Elkan’s method and one
lower bound of Hamerly’s and Annulus approaches. Similar
to Drake’s algorithm, it does not employ Philips’ lemma and
uses one upper bound u(i) and 1 < B < K lower bounds
l(i, k), where 1 ≤ k ≤ B. However, the lower bounds are
defined entirely differently than in Drake’s method. At the
beginning of the K -means run, cluster centroids are parti-
tioned intoB groups. In [17], it was proposed to setB = K/10
and obtain this B-partition by using the K -means algorithm,
taking centroids c(1), . . . , c(K ) as the data. The B-partition is
denoted by5 = {π (1), . . . , π (B)}, where π (k) represents the
centroid indices belonging to the k-th group. 5 must satisfy
the following two conditions:⋃

k

π (k) = {1, . . . ,K } and ∀j 6=kπ (j) ∩ π (k) = ∅. (9)

l(i, k) is a lower bound on the distance between x(i) and the
closest centroid from the k-th group, excluding the currently
assigned c(a(i)):

l(i, k) ≤ min
j∈π (k)∧j 6=a(i)

d(c(j), x(i)). (10)

If u(i) ≤ l(i, k), then the calculations of distances to all
the centroids from the j-th group can be avoided. However,
if u(i) > l(i, k), then the Yinyang algorithm makes one final
attempt to avoid distance calculations to some centroids from
the k-th group via a local filtering step. For each j ∈ π (k),
the algorithm tests the following condition:

l∗(i, k) < l ′(i, k)− δ(j), (11)

where l∗(i, k) is the exact distance to closest centroid found
thus far from the k-th group, excluding c(a(i)), l ′(i, k) is the
value of the lower bound before the update step, and δ(j)
is the distance moved by c(j) as a result of the update step.
In [17], it is shown, using the triangle inequality, that in this
case, c(j) cannot be either the new closest centroid or the
closest centroid from the k-th group, excluding c(a(i)), which
is needed to tightly compute the lower bound l(i, k). Thus,
the calculation of the distance from x(i) to c(j) can be omitted.
The pseudo-code of Yinyang K -means, shown in Fig. 6,

is structured differently [17] from the three earlier triangle
inequality-based methods. After the partition of the initial
centroids into B groups (line 1), a single assignment step from
Lloyd’s algorithm (lines 2-5) is performed that allows tight
upper (line 4) and lower bounds (line 5) to be obtained. Next,
the algorithm enters the main loop of K -means (lines 6-22),
which starts with the update step (line 7). After the update
step, the algorithm computes the drift of both each centroid

FIGURE 6. Pseudo-code of the Yinyang algorithm.

FIGURE 7. Local filtering in the Yinyang algorithm.

(line 8) and each group (line 9). Next, it iterates over all
feature vectors (lines 10-21), first updating the upper (line 11)
and lower bounds (lines 13-15), and second recalculating,
if necessary, the assignments a (lines 16-21).
In the assignment step the algorithm first checks

(lines 16–17), whether the upper bound is less or equal than
minimum of lower bounds. If this condition holds, none of
the centroids can be closer to x(i) than the currently assigned
c(a(i)). All the distance calculations for x(i) can be thus
avoided. If this test fails, the algorithm, similarly to Elkan’s
and Annulus methods, tightens the upper bound (line 18) and
repeats the test (line 19). If the test fails again, then some
distance calculation have to be performed. Yinyang K -means
performs the local filtering (Fig. 7), considering only the
groups which failed the group filtering test (line 20 of Fig. 6).
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In the local filtering stage, the algorithm searches for a new
assignment a(i) while also computing tightly the lower bound
for each group in question. For each centroid c(j), different
from the previously assigned c(a′) (the distance to c(a′) was
already calculated in line 18 of Fig. 6), which fails the local
filtering condition (line 5), the algorithm computes distance,
checking whether c(j) becomes the closest centroid found
thus far (lines 7-10) or the closest centroid found thus far from
the k-th group, excluding c(a(i)) (line 11).

An interesting question arises as to whether relying on a
single partitioning of centroids before the beginning of the
K -means run reduces the efficiency of the Yinyang algo-
rithm. Obtaining a high efficiency of bounds is dependent on
compact B groups being formed by the centroids. Thus,
if the centroids in a group drift in different directions, this
efficiency can be greatly reduced. In [17], the authors stated,
without giving any experimental details, that adding a re-
grouping of centroids to Yinyang K -means does not signif-
icantly improve its performance. Our own experiments [51]
seem to confirm this.

IV. PARALLELIZATION OF K -MEANS ALGORITHMS
A. MPI AND OPENMP
MPI is the de facto standard for parallel programming in a
message-passing model. The MPI specification [8] defines a
set of library calls for the Fortran and C/C++ languages. An
MPI application consists of processes running in parallel in
separate memory address spaces. Data transfer (communica-
tion) between address spaces of different processes occurs
when they exchange messages. In MPI, there are two cat-
egories of communication operations: point-to-point opera-
tions, which involve two processes; and collective operations,
which involve groups of processes.

Among the collective communication operations, an all-
reduce operation [52] plays an important role in our imple-
mentation. In this operation, each process contributes a vector
of numbers. The result of the operation is obtained by apply-
ing an associative reduction operator (the sum in our case)
to the vectors. The result is returned to all the contributing
processes.

OpenMP [7] is the de facto standard for parallel program-
ming for shared memory architectures. An OpenMP program
is executed by a group of cooperating threads. OpenMP is
implemented via a set of compiler directives and library calls
for the C/C++ and Fortran languages. The directives instruct
the compiler to manage and synchronize the threads and
balance the work. OpenMP is supported bymany open source
and proprietary C/C++ and Fortran compilers.

Thread creation and management in OpenMP follows the
fork-join pattern, in which a program starts executing in a
single (master) thread. The master thread forks additional
threads when it encounters a parallel region.When all threads
in the region finish executing their specified work, the pro-
gram performs the thread-join operation and resumes sequen-
tial execution by the master thread. OpenMP defines several

work-sharing constructs for partitioning the computation in
a parallel region. In particular, a loop construct makes it
possible to distribute the execution of iterations of a for loop
among the team of OpenMP threads.

B. PARALLEL ALGORITHMS DESIGN
From the programmer’s standpoint, the simplest method
for programming multi-core computer clusters is to ignore
the hierarchical memory structure and use a pure message-
passing model (i.e., pure MPI). This strategy, which places an
MPI process in each core of a parallel system, has some jus-
tification because most MPI implementations are optimized
to use shared memory in intra-node communication. A pure
MPI model does not require changing the existing MPI codes
or support from the MPI library for multi-threading. How-
ever, all communication between processes within a node add
anMPI layer overhead. In contrast, a hybridmodel combining
shared memory and message-passing programming better
matches the hierarchical architecture of computer clusters
and may thus offer some benefits in terms of performance.

Our implementation uses a hybrid master-only paral-
lelization [12] in which MPI calls are performed by
the master thread outside OpenMP parallel regions. The
MPI library must support multi-threading on the simplest
MPI_THREAD_FUNNELED level [8]. Practically all theMPI
libraries have such support.

Our design, similar to the pure MPI approach to paralleliz-
ing Lloyd’s algorithm [31], exploits the fact that all calcula-
tions performed by the algorithms in the assignment step are
inherently data-parallel and can be executed independently
for each feature vector given some global data. These global
data are the centroids c(1), c(2), . . . , c(K ) and, for the Elkan’s
and Annulus algorithms, the inter-centroid distance matrix
C and the vector of the shortest distances s (the Annulus
algorithm does not need to storeC). The datasetX , the assign-
ment a, and the bounds l and u are statically partitioned
by n MPI processes P1,P2, . . . ,Pn. Each MPI process is
responsible for computing the assignment for approximately
N/n feature vectors using the corresponding bounds (except
Lloyd’s algorithm, which does not use bounds). To enable
this parallel computation, each process maintains a local copy
of the centroids as well as the inter-centroid distance matrix
C and the vector of shortest distances s (where applicable).
A similar decomposition of data is used in the update step,
where each process computes partial sufficient statistics only
for its partition of feature vectors.

Each MPI process executes in k threads in each OpenMP
parallel region. Let us denote by tj,1, tj,2, . . . , tj,k OpenMP
threads of process Pj. The decomposition scheme is hier-
archically applied to the partition of data allocated to Pj.
In the assignment step, each thread computes the clus-
ter assignment for a subset of feature vectors allocated to
Pj. Similarly, in the update step, each thread is responsi-
ble for the computation of partial sufficient statistics for
a subset of vectors allocated to Pj. OpenMP facilitates
implementation of this decomposition with the parallel loop
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FIGURE 8. An example of a computer cluster node with two NUMA
domains. Each domain consists of a memory controller, to which several
cores are connected. The cores in a domain share the last level of cache
memory.

construct [7]. All the loops in Figs. 1, 2, 4–6 with the range
of iterations [1, . . . ,N ] are parallelized using this two-level
approach.

Our implementation has a compile-time parameter that
allows us to choose between OpenMP static and guided
scheduling [7] of iterations of all loops parallelized using this
hierarchical method. In static scheduling, the portion of loop
iterations assigned to a thread is known before the execution
of the loop. Each thread is responsible for computing a (in
the assignment step), for computing the partial sufficient
statistics (in the update step), and for updating the bounds
l and u (e.g., in lines 22-27 of Fig. 5) for approximately
N/(nk) feature vectors. The assignment of data to threads
does not change during the K -means algorithm run. Static
scheduling may be beneficial if the cluster nodes have a
NUMA architecture.

Fig. 8 shows an example of such architecture as commonly
used in nodes of modern computer clusters. The physical
memory is divided into two NUMA domains. The main
memory accesses performed by a core may be serviced by
a local or remote memory controller. Requests to a remote
controller have a larger latency than requests to a local one.
Parallel applications should try to improve the percentage of
local memory accesses.

Most operating systems default to a first-touch policy in
which a memory page is allocated from the NUMA domain
from which it was first accessed. In static scheduling, each
OpenMP thread accesses the same memory pages in succes-
sive K -means iterations, which thereby optimizes locality.
However, static scheduling may be susceptible to load imbal-
ance, wherein the amount of work performed by each thread
is not approximately equal. While Lloyd’s algorithm should
have perfect load balance, four accelerated algorithms may
suffer from load imbalance due to the differing effectiveness
of bounds in different threads.

Guided scheduling is performed during the execution of
a loop. Iterations are distributed to threads in chunks of
exponentially decreasing size. When a thread finishes the
execution of a chunk of iterations, it requests another chunk
from the internal work queue until there are nomore iterations
to work on. Guided scheduling does not optimize memory
access locality since the set of iterations assigned to a thread
(and the memory regions accessed) is non-deterministic.
It also has higher overhead than the static scheduling. Its
main advantage is the capability to handle poorly balanced
and unpredictable workloads.

It is important to note that in guided thread scheduling,
dynamic load balancing is performed on a subset of approx-
imately N/n iterations allocated to the MPI process. This
subset remains constant during the algorithm’s run, i.e., there
is no dynamic load balancing between processes.

Fig. 9 illustrates our approach on an example of Drake’s
algorithm. The update step, corresponding to lines 6-10 in
Fig. 1 and line 19 in Fig. 5, begins by computing partial
sufficient statistics (the vector sums and counts) by OpenMP
threads. Each thread computes the partial sufficient statistics
for a subset of feature vectors assigned to the process. In order
to compute new centroid coordinates, the partial sufficient
statistics obtained by the threads must be summed and col-
lected by each process using the all-reduce operation. This
operation is implemented hierarchically: First, by using a
minimum-spanning tree reduction algorithm [52], the master
thread of each MPI process obtains a sum of partial suffi-
cient statistics computed by the threads of the process. Next,
theMPI_AllreduceMPI call [8], performed by themaster
threads, computes the sufficient statistics and sends them to
each process. New centroid coordinates are computed from
the sufficient statistics (line 10 in Fig. 1) by each process in a
sequential manner.

C. COMPUTATION OF INTER-CENTROID DISTANCES FOR
THE ELKAN’S AND ANNULUS ALGORITHMS
Before the assignment step, the Elkan’s and Annulus algo-
rithms must compute the distances between all pairs of cen-
troids (lines 6-7 in Fig. 2 and line 5 in Fig. 4). Both algorithms
need these distances to obtain the vector of shortest distances
s. Additionally, Elkan’s algorithm requires the storage of the
distances in matrix C .
The computation of inter-centroid distances is parallelized

using a data decomposition as shown in Fig. 10. A process Pj
is responsible for the computation of a continuous block of
approximatelyK/n rows ofC . Each thread ofPj computes the
distances for a subset of approximately K/k columns of the
block. In Elkan’s algorithm, matrix C is reconstructed by an
MPI_Allgatherv call [8], which collects blocks of rows
from the processes and distributes the combined matrix to all
of them. The vector s is then computed by each process from
C using an OpenMP parallelized loop.
In the Annulus algorithm, each process searches for ele-

ments of s corresponding to the rows assigned to the process.
The centroid distances are computed by the threads using
the decomposition shown in Fig. 10. Each thread finds the
shortest distance for its subset of elements in a given row. The
row’s shortest distance is then obtained by the master thread
using theOpenMP reduce clause [7]. These steps are repeated
for each row assigned to the process. Next, the vector s is
reconstructed from the partial results and distributed to each
process by an MPI_Allgatherv operation.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the experimental results of five compared
K -means algorithms running on a multi-node computer

VOLUME 7, 2019 42289



W. Kwedlo, P. J. Czochanski: Hybrid MPI/OpenMP Parallelization of K -Means Algorithms Accelerated Using the Triangle Inequality

FIGURE 9. Hybrid MPI/OpenMP parallelization of Drake’s algorithm. Lloyd’s algorithm does not
compute the group drifts nor update the bounds. The Elkan’s and Annulus algorithms additionally
compute in parallel the inter-centroid distance matrix before the assignment step.

FIGURE 10. Decomposition of the matrix of inter-centroid distances C .

cluster are presented. The experiments had several objectives.
The first objective was the selection of the most efficient
OpenMP loop scheduling policy for each of the investi-
gated algorithms. The second objective was the evaluation
of strong scalability of the algorithms. The third objective
was the selection of the fastest algorithm running in a multi-
node setup. The last objective was the comparison of our

hierarchical MPI/OpenMP parallelization with the pure MPI
parallelization.

A. TESTING PLATFORM
All the computational experiments reported in this paper
were conducted on a Tryton supercomputer located at the
Academic Computer Centre in Gdansk, Poland. Each node
of the supercomputer has two 12-core Intel Xeon E5-2670 v3
(2.3 GHz) processors with 128 or 256 GiB DDR4 RAM. The
nodes are interconnected by the Infiniband FDR 56 Gb/s net-
work in a fat tree topology. The algorithms were implemented
from scratch in C++ and compiled by an Intel C++ compiler
(icpc version 17.0.1) using the following set of optimization
options: -Ofast -ipo -xCORE-AVX2 [53]. The pro-
grams1 were linked with the OpenMPI 1.10.1 library [54].
The library was compiled by an Intel compiler and imple-
ments the MPI-3 standard.

1The source code of our implementation is available at
https://bitbucket.org/wkwedlo/hybrid-triangle-kmeans/src
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B. RUNTIME MEASUREMENT METHODOLOGY
The scalability results reported in this section were based
on a wall-clock execution time measurement of runs of K -
means algorithms, excluding the time needed to load the
dataset from the file system to the memory. The algorithms
were terminated when the relative improvement of SSE (1)
between two consecutive iterations was lower than 10−6. The
execution time measurements were performed using nodes
exclusively allocated to our application by a batch system
(SLURM 16.05.07) during normal operation of the computer
cluster. In all the experiments with the hybrid MPI/OpenMP
version, all 24 cores of each allocated node were utilized
by 24 OpenMP threads. The CPU affinity of the OpenMP
threads was ensured by setting the KMP_AFFINITY envi-
ronment variable [53] to compact.
Execution time in a parallel system is non-deter-

ministic [55]. The sources of non-determinism include sys-
tem noise (e.g., interrupts, process scheduling, network
traffic), the application (e.g., load balancing), or even interfer-
ence and resource contention from other applications running
on the same system [56]. To minimize the influence of this
non-determinism, we repeated each experiment five times.
The medians of five execution times were used in efficiency
and speedup calculations.

For each investigated K -means algorithm, the experi-
ments were performed for a number of clusters K ∈

{64, 256, 1024, 4096}. First, using the K -means‖ met-
hod [21], we generated one initial solution for each value
of K . The solution was later used to initialize all K -means
algorithms running for the given value of K . Thus, for each
value ofK , all the algorithms had to execute the same number
of K -means iterations.

C. DATASET
All the clustering experiments were performed on a random
sample of a tiny images dataset,2 introduced in [57]. The
original dataset consists of 79,302,017 32x32 color images
collected from the internet. Each image is labeled with one of
75,062 English nouns. The labeling information was not uti-
lized during clustering.We used a version of the data in which
each image is represented by a global GIST descriptor [58].
A GIST descriptor of an image is a 384-dimensional feature
vector representing the texture within localized grid cells.
To fulfill the memory requirements of Elkan’s, Yinyang, and
Drake’s algorithms running on a single node, we used a
random sample consisting of 19,826,778 (approximately one-
quarter) of the vectors.

It is important to note that the vectors in the dataset were
sorted by the labels. Our sampling preserved this property:
The vectors were considered sequentially, and each vector
had a 1/4 probability of being included in the sample. This
order of vectors increased the chance of observing load imbal-
ance in the parallel system.

2The original images and the GIST descriptor version can be downloaded
from http://people.csail.mit.edu/torralba/tinyimages

FIGURE 11. Speedup of the versions using guided OpenMP loop
scheduling over the versions using static scheduling for five algorithms
and different values of K . The execution times for speedup computation
are the median from five experiments running on 64 computing nodes
(1536 cores total).

D. COMPARISON OF GUIDED AND STATIC LOOP
SCHEDULING
We begin the presentation of our results with a comparison
of two loop scheduling policies for the hybrid MPI/OpenMP
parallelization. Fig. 11 shows the speedups of the versions
using guided OpenMP loop scheduling over the versions
using static scheduling. For each of the five algorithms
and for each value of K, this speedup was computed as
tstatic/tguided, where tstatic and tguided denote the median exe-
cution times of the static and guided versions running on
64 computing nodes, respectively. The horizontal dotted line
indicates the two scheduling policies are of equal speed.
A speedup greater than one indicates that the version using
guided scheduling is faster. A speedup lower than one indi-
cates that the version with static scheduling is faster.

The results from Fig. 11 show that most of the algorithms’
gains due to guided scheduling of loop iterations, which
results in a better load balance, outweigh the losses caused by
the increased number of NUMA remote accesses to feature
vectors and bounds. One notable exception to this rule is
Elkan’s algorithm, which requires the highest memory band-
width due to the use of K + 1 bounds per feature vector.
Interestingly, the static version of Lloyd’s method, which
should have the perfect load balance, performed worse than
its guided counterpart. Perhaps in this case, the imbalancewas
caused by system noise or interference from other applica-
tions running on the computer cluster.

In further experiments reported in this section, we used
the fastest scheduling for each of the algorithms, i.e., static
scheduling for Elkan’s method and guided scheduling for the
others.

E. EXECUTION TIMES AND STRONG SCALABILITY
In this subsection, we investigate the efficiency of the par-
allelization of five K -means algorithms. For this purpose,
we ran the algorithms, increasing exponentially the number
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FIGURE 12. Parallel efficiency of (a) the Annulus algorithm, (b) Drake’s algorithm, (c) Elkan’s algorithm, (d) Lloyd’s algorithm, (e) the Yinyang
algorithm.

of allocated nodes n from 1 to 64. Table 1 shows the obtained
execution times.

Based on these results, we calculated strong scaling effi-
ciency individually for each of the algorithms as follows.

We denoted by tA(n,K ) the execution time (median of five
runs) on n nodes of algorithm A using K clusters. The effi-
ciency of algorithmA (in percentages) was defined as the ratio
of the parallel speedup (equal tA(1,K )/tA(n,K )) to the ideal
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TABLE 1. Execution times (in seconds) for different variants of the
K -means algorithm depending on the number of clusters K and the
number of nodes n. Each result is a median of five runs using the same
initial solution. Due to the very high memory complexity of Elkan’s
algorithm, obtaining the results for K = 4096 and n ∈ {1, 2} was not
possible.

linear speedup equal to n:

EA(n,K ) =
tA(1,K )

n ∗ tA(n,K )
∗ 100%. (12)

An efficiency equal to 100% indicates an ideal linear speedup,
whereas an efficiency greater than 100% indicates speedup
on n nodes greater than n (super-linear speedup). In the
context of data clustering, this may happen mostly because
of the increased total size of the CPU cache available to the
algorithms [59].

The efficiency plots are shown in Fig. 12. The plots indicate
that for the moderate number of nodes n, some of the algo-
rithms were able to achieve a super-linear speedup. This phe-
nomenon manifests stronger for slower algorithms (Lloyd’s
and Annulus) than for the much faster Yinyang algorithm.

We recapitulate the efficiency comparison with Fig. 13,
which compares the parallel efficiency of five algorithms for
the highest number of nodes (n = 64). The comparison
indicates that all the algorithms scaledwell, with an efficiency
higher than 80%, except in one case.

F. ALGORITHMIC SPEEDUP OVER LLOYD’S APPROACH
In this subsection, we investigate the speedup of the four
accelerated K -means algorithms over the standard Lloyd’s
method. The algorithmic speedup of algorithmA over Lloyd’s

FIGURE 13. Comparison of the parallel efficiency of five K -means
algorithms for the number of computing nodes n = 64 and different
values of K .

method is given as [16]:

SA(n,K ) =
tLloyd(n,K )
tA(n,K )

. (13)

Fig. 14 presents a comparison of this speedup for two extreme
values of the number of nodes n. It is evident that the
Yinyang algorithm is the fastest. Moreover, its advantage
over Lloyd’s method (and the other methods) increases with
an increase in the number of clusters K . The comparison
of Figs. 14a and 14b indicates that all four accelerated algo-
rithms are able to maintain speedup over the Lloyd’s method
when the number of computing nodes n is increased from 1
to 64.

G. COMPARISON WITH THE PURE MPI VERSION
We continue the presentation of the experimental results with
a comparison of the hybrid OpenMP/MPI parallelization with
its pure MPI counterpart. We obtained the pure MPI ver-
sion by disabling OpenMP compilation and using one MPI
process per one core of a computing node, which yielded
24 MPI processes in a node and 1536 processes in 64 nodes.
We ensured the CPU affinity of each MPI process by using
-bind-to thread OpenMPI [54] mpirun script parame-
ter. Fig. 15 shows the speedups of the hybrid OpenMP/MPI
parallelization over the pure MPI parallelization. The plots
indicate that for large K , the gains of hybrid parallelizations
are very high, with the pure MPI version running several
times slower. Such dramatic differences in execution times
might indicate a misconfiguration of OpenMPI on the Tryton
supercomputer. To verify such a possibility, and to check if
the differences in the execution times were indeed caused
by more efficient implementation of reduction step in the
hybrid version, we repeated some of the experiments by
performing single runs of Lloyd’s and the Yinyang methods
on a different system (64 nodes of CrayXC40 usingCrayMPI
and an Intel C++ compiler; each nodewas equippedwith two
12-core Intel Xeons E5-2690 v3 2.6 GHz). The comparison
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FIGURE 14. Algorithmic speedup of the four accelerated K -means algorithms over Lloyd’s method for different values of K . (a) n = 1 (b) n = 64.

FIGURE 15. Speedup of the versions parallelized using the hybrid
OpenMP/MPI method over the versions using pure MPI parallelization for
the five algorithms and different values of K . The execution times for the
speedup computation were the median from five experiments running on
64 computing nodes.

of the hybrid OpenMP/MPI and pure MPI versions on the
Cray system generated very similar results to those reported
in Fig. 15. For the Yinyang algorithm, we measured speedups
of the hybrid version equal to 1.50 and 3.49 forK = 1024 and
K = 4096, respectively. For Lloyd’s method, the speedups
were equal to 2.51 and 4.87 for K = 1024 and K =

4096, respectively. Because of limited CPU time allocation,
we could not extend the scope of the experiments on Cray
XC40.

H. COMPARISON WITH EXISTING SOFTWARE PACKAGES
In this subsection, we compare the performance of our imple-
mentation with two existing parallel implementations whose
sources in C/C++ languages are publicly available. The first
software package,3 which we denote as fast-kmeans, was

3The source code is available at https://github.com/ghamerly/fast-kmeans

FIGURE 16. Algorithmic speedup of our implementation over
fast-kmeans. Execution times for speedup computations were the
medians from five experiments running on one computing node. The
fast-kmeans package is parallelized using POSIX threads and thus cannot
utilize more than one node. The Yinyang algorithm is not implemented in
fast-kmeans. Obtaining results for Elkan’s algorithm and K = 4096 was
not possible due to excessive memory requirements.

developed by Greg Hamerly and Jonathan Drake at Baylor
University. Among the K -means algorithms considered in
this paper, it contains implementations of Lloyd’s, Drake’s,
Elkan’s, and the Annulus methods. The algorithms were par-
allelized using the POSIX threads standard, allowing them to
be run on a single node of a computer cluster. In [16], exper-
iments with the package running on a system with 12 cores
were reported.

The second software package,4 which we denote as
parallel-kmeans was developed by Wei-keng Liao at
Northwestern University. It contains three versions of

4The source code is available at http://www.ece.northwestern.edu/
~wkliao/Kmeans/index.html
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FIGURE 17. Algorithmic speedup of our flat MPI (a) and hybrid MPI/OpenMP (b) versions of Lloyd’s algorithm over parallel-kmeans package
depending on the number of nodes n. Execution times for speedup computations were the medians from five experiments.

Lloyd’s algorithm: a sequential version, an OpenMP version
limited to a single node, and a flat MPI version. For the
comparison, we chose the MPI version, because it can be run
on an arbitrary number of nodes.

To ensure a fair comparison we compiled fast-kmeans
and parallel-kmeans using the same compiler, the same MPI
library, and the same set of optimization options (described in
section V-A) as our own code.We also tried to limit our modi-
fications of source codes of fast-kmeans and parallel-kmeans
as much as possible. However, to ensure a fair comparison,
we had to use the same stopping criterion and representa-
tion of floating-point numbers for all three implementations.
For these reasons, we changed the stopping criteria of fast-
kmeans and parallel-kmeans to the criterion described in sub-
section V-B, which was used by our implementation. We also
harmonized the representation of the dataset (using single
precision floating numbers) and the centroids in K -means
algorithms (using double precision floating-point numbers).
After applying these changes to fast-kmeans and parallel-
kmeans, we observed in our experiments that all three imple-
mentations needed the same number of iterations and found
the same solution, given identical initial conditions.

Fig. 16 shows the algorithmic speedups of our
implementation of K -means algorithms over the correspond-
ing algorithms from the fast-kmeans package. The results
demonstrate that our implementations run faster. There are
several factors which might contribute to the higher speed
of our implementations. One may be the use of the mini-
mum spanning tree reduction, which has a lower complexity
than the linear time reduction used in fast-kmeans. Another
may be a careful tuning of our source code, including
the use of OpenMP #pragma omp simd directive [7],
which greatly aids the compiler in generating vectorized
AVX2 instructions. Fig. 17 shows the algorithmic speedups
of our flat MPI and hybrid MPI/OpenMP versions of Lloyd’s
algorithm over the parallel-kmeans package. Two plots

using the same scale indicate that the advantage of our flat
MPI implementation, which uses identical MPI communica-
tion patterns, over parallel-kmeans, is moderate. However,
the advantage of the hybrid MPI/OpenMP version is much
greater and manifests stronger for the large number of clus-
ters K . We surmise that our more efficient implementation of
the all-reduce step contributes greatly to this advantage.

VI. CONCLUSIONS AND FUTURE WORK
In the study, we experimentally investigated the performance
of five parallel variants of the K -means clustering algo-
rithm. In the experiments, we used a sample of one of the
largest publicly available datasets. The results strongly sug-
gest that in contrast to pure MPI parallelization, our hybrid
MPI/OpenMP parallelization allows all the algorithms to
achieve very high efficiency. Moreover, the four accelerated
algorithms, running on several dozens of multi-core nodes,
maintained their advantage over Lloyd’s method, as demon-
strated in the previous single-node experiments [16], [17].
A comparison with two existing software packages demon-
strated higher efficiency of our implementation.

In the experiments, the Yinyang algorithm was the fastest
K -means method. However, it should be noted that in our
comparison, we used one high-dimensional dataset, which is
typical for the application of clustering to big-data analysis.
Experiments with low-dimensional data could result in a
different outcome.

Our work can be extended in several directions. Spark [10]
is the de facto standard for distributed in-memory big-
data processing. MLlib, its machine learning library [47],
has implemented Lloyd’s algorithm for K -means clustering.
A recently proposed variant of Spark (RDMA-Spark) [60]
can efficiently utilize high-performance interconnects, such
as Infiniband. Currently, we are investigating the possibil-
ity of implementing the triangle inequality-accelerated algo-
rithms in RDMA-Spark and comparing their performance
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with our MPI/OpenMP implementation on the same hard-
ware.

Another extension of our work could focus on implemen-
tation of triangle inequality-based methods on GPUs (or even
on clusters of GPUs, since the dataset used in this study
and the auxiliary data structures are unlikely to fit in the
on-board memory of a single GPU accelerator). Previous
studies [42], [43] demonstrated the superiority of Lloyd’s
algorithm implementation on GPUs over single-node CPU
versions. It remains to be seen if the accelerated methods
discussed in this paper, implemented on cluster of GPUs,
can achieve a similar superiority over our multi-node multi-
threaded implementation.
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