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ABSTRACT Big data-based acquisition and storage system (ASS) plays an important role in the design
of industrial data platform. Many big data frameworks have been integrated compression and serialization
method. These methods cannot meet the needs of industrial production information management for requir-
ing time-consuming and mass storage. Based on the existing big data frameworks, we propose an enhanced
industrial big data platform in order to reduce the data processing time while requiring fewer data storage
space. Specifically, this paper focuses on evaluating the impact of multiple compression and serialization
methods on big data platform performance and tries to choose optimal compression and serializationmethods
for the industrial data platform. Compared to the methods integrated in Hadoop and Spark, the experimental
results showed the data compression time of the platform has been reduced by 73.9% with a less than 96%
the size of data compressed, furthermore, the data serialization time has been reduced by 80.8%. With the
increasing amount of data, it takes less time to compare with benchmark methods.

INDEX TERMS Big data, acquisition and storage system (ASS), industrial data platform, data acquisition,
data storage, data compression, serialization.

I. INTRODUCTION
Big data analysis of industry is considered as a necessary
aspect for further improvement in order to improve the
profit margin of industrial production and operation, and
represents the next frontier of innovation, competition and
productivity [1]. Nowadays, industrial data platform is the
core component of industrial data storage, computation and
analysis for the management of intelligent plant. With the
increasing number of intelligent equipments used in intell-
igent plant, however, intelligent plant can acquire a large
quantity of data of Radio Frequency Identification (RFID)
and intelligent equipments, thus providing rich data sets for
manufacturing industry [2]–[7]. The current trend in indus-
trial systems is to use different big data engines as a means of
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processing a large quantity of data that cannot be processed
by ordinary infrastructures. Industrial infrastruct- ure faces
a large number of problems, including challenges such as
defining different efficient architecture settings for differ-
ent applications and defining specific models for industrial
analysis.

In recent years, Spark and Flink have been well studied
and applied on the Internet. The MapReduce is a computing
framework used by most industrial enterprises at present.
Iterative computing is involved in many aspects of industrial
data analysis, which is used to seek optimal control and
management solutions. However, the MapReduce framework
is ineffective in iterative computing and the performance
of the Spark framework has some obvious advantages over
the MapReduce [8], [9]. There have been many hot issues
and difficult problems in the research of industrial big data
platforms: reducing the data processing time and the size of
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space for big data acquisition and storage, optimizing the
performance of computing framework, providing a wealth of
function, improving system stability.

Our motivation for this study is to look for an efficient
plan for acquiring and processing industrial data. Moreover,
we need to find compression and serialization method which
have good performance in the time of data processing time
and the space of data storing. Furthermore, we aim at design-
ing an industrial data platform with higher real-time perfor-
mance and higher compression ratio. Based on the above
considerations, we design and implement an industrial data
platform, which integrated both LZ4 and Protobuf method for
data processing. The LZ4 is used for data compression, and
the Protobuf is used for data serialization. Based Flume and
Sqoop, we build up a data acquisition module in the industrial
data platform. Meanwhile, the Hadoop is adopted to store
data acquired by intelligent equipments in intelligent plant.
In order to enhance the data analysis capabilities of the indus-
trial data platform, both the Spark and the Flink are integrated
into the computing system. In addition, the industrial data
platform adopt Django as front-end framework for the sake
of system stability and system maintenance management.

The structure of this paper is as follows. In Section I,
we introduced the motivation of this research. In Section II,
we introduce the relevant background. We build the data
platform for industrial data analysis based on big data in
Section III. Then, we show some results of the acquisition and
processing system in Section IV. In Section V, we discuss the
conclusions of this research.

II. BACKGROUND
As the core of the new generation of information technol-
ogy and industrial development, industrial big data is deeply
affecting all aspects of the whole industry chain, such as
R&D, manufacturing, operation management and sales ser-
vice of China’s manufacturing industry [10], [11]. In the
future, it will promote the transformation and promotion of
traditional manufacturing. It can promote the manufacturing
strategy of ‘‘Made in China 2025’’.

A. DATA ACQUISITON IN INDUSTRY
There are massive multi-source heterogeneous data inside
and outside the plant [12]. The data platform needs to connect
multiple types of data in equipments, production lines, prod-
ucts and industrial software. At present, industrial data lack
effective interoperability standards or low-cost acquisition
schemes. This leads to high costs of data collection and
integration of equipments and systems. Thus, it is difficult to
support functions of industrial data analysis and application
development.

B. DATA ANALYSIS AND INDUSTRIAL BIG DATA PLATFORM
There are a large number of data analysis requirements in
the plant. The data platform needs to support multiple types
of data analysis and data visualization services, such as

Finite Element Analysis [13], Optimization, Deep Learn-
ing [14]–[19], Knowledge Mapping [20], Digital Twins [21].

Generally, big data platform include three modules, which
are data acquisition module, data storage module and data
computation module [22]. The data acquisition module pro-
vides a data source for data analysis of the big data platform,
and the data storage module provides data source and storage
space of the data computation module. It provides data cal-
culation, machine learning, graph analysis, data query, which
is the core component of data analysis. The computation
module computes massive amounts of data, mines useful data
value information, and provides decision-making grounds for
industrial decision makers.

Both Sqoop and Flume are the main framework for data
acquisition modules [23], [24]. The Sqoop is used for data
interaction between Hadoop and relational database, and
imports relational database data into Hadoop distributed file
storage system (HDFS) [25], [26]. As a data acquisition
framework, the Flume supports the development of various
data senders in the log file system to acquire their data, which
simply processes the data and then stores the processed data
in HDFS, Hive, or turns it into a producer of Kafka.

The data storage module mainly uses the HDFS [27].
Hive [28], Shark [29] and Spark SQL [8] support data opera-
tions by Structured Query Language (SQL), but the efficiency
of the three operations is increasing in steps. Spark SQL is
about two orders of magnitude more efficient than Hive.

There are many types of computing frameworks in the
big data ecosystem, including MapReduce, Spark, Storm,
Flink and so on [30]. The MapReduce is almost eliminated
because of requiring constant serialization, which seriously
wastes computing system resources. Moreover, many plat-
forms for industrial big data are developed based on MapRe-
duce computing framework. Obviously, the performance of
these data platform is inefficient. The Spark, however, is the
most active framework for the big data ecosystem. In addi-
tion, the Spark is based on memory, and it can automatically
adjust the memory usage. When the memory is insufficient,
it will automatically transfer the location of data computation
from memory to disk. The speed at disk computing is also
nearly 10 times faster than MapReduce [31]. Furthermore,
Marhout’s R&D team is no longer maintaining and perfecting
for MapReduce, but the machine-learning module needs to
be updated constantly in the field of industrial data analysis.
Therefore, in this study, the Spark computing framework is
used instead of the Hadoop computing one.

III. PLATFORM ARCHITECTURE
According to industrial data acquisition and processing
requirements, this paper designs an industrial big data plat-
form. The overall framework of the industrial data platform
is shown in Figure 1. The data platform includes six layers in
terms of data flow. These six layers are device layer, acqui-
sition layer, storage layer, computing layer, service layer and
display layer, which correspond in turn to data acquisition,
data storage, data analysis, service package and front end of
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FIGURE 1. Overall architecture of industrial data analysis platform.

industrial data. This study focuses on the acquisition layer,
the storage layer and the computing layer.

There are many forms of industrial data distribution, so the
data acquisition module of this platform adopts Sqoop and
Flume. The Sqoop acquires a lot of data stored in relational
databases in the industry, and the real-time requirement of
these data is not high. And the Flume acquires real-time
data acquired by the intelligent equipments. In the industry,
dynamic data, like that of safety monitoring and that of equip-
ment operation status, is acquired by Flume. And then these
data is transmitted to the message queue of Kafka. The Kafka
becomes the provider of real-time consumption of dynamic
data for Spark Streaming and Structured Streaming. Some
managers of the plant need to query historical data, so the data
acquired from Flume needs to be stored in HBase or HDFS.
Yet Another Resource Negotiator (YARN) is adopted by the
resource scheduling framework, it supports all computing
frameworks and facilitates integration of Spark and Flink.
The computing framework uses Spark SQL for batch process-
ing, Spark Streaming for micro-batch processing, Structured
Streaming and Flink for stream processing. The results are
encapsulated by web services in the service layer, and then
the encapsulated data is transmitted to the display layer which
integrates Echart, H5 and Hue by Django. Then the user
can get the data analysis results by the display interface.
In addition, ZooKeeper completes the collaborative manage-
ment and high availability patterns of some distributed big
data frameworks of the whole industrial data platform.

A. DATA ACQUISITION
The system transmits data by three channels. Firstly, data
flow is a timeless computing module consisting of Flume,
Kafka, Structure Streaming and Flink. Secondly, data flow
is a data query module consisting of Flume, HBase, Spark

SQL and Table. Thirdly, data flow is a visual analysis module
consisting of Flume, HBase, Spark Streaming and Flink.

The data serialized method of the acquisition framework
is upgraded. The specific acquisition scheme is as follows.
The module for Flume data acquisition is shown in Figure 2.
The information configured of Flume requires three parts:
Source, Channel, and Sink. The Source receives the event
from the server or log file and puts it into the Channel in
bulk. Data transmission of Flume is divided into two data
transmission channels, so you need to set KafkaChannel,
HBase- Channel, KafkaSink and HBaseSink. The informa-
tion configured of Sources requires to configure type, Chan-
nel, Internet Protocol Address (IP), Port and selector type.
The specific configuration information is shown in Table 1.

The data acquisition method of Sqoop relational database
is shown in Figure 3. After receiving the shell command
or Java API command from the client, the Sqoop converts
the command to the corresponding MapReduce task by task
translator in Sqoop, and then transfers the data from relational
database to Hadoop to complete the copy of the data. The
Sqoop operates on relational databases by four ways. First
of all, the Sqoop gets data from all MySQL databases. Then
Sqoop sends these data to HDFS. Next, Sqoop imports data
from MySQL to Hive. Last, Sqoop exports data from Hive
to MySQL.

B. DATA STORAGE
Hadoop is adopted by the data storage framework. Both file
storage and inter-cluster communication on HDFS require
data compression. The former can increase the amount of
industrial data stored and reduce the cost. And the latter
can reduce the bandwidth consumption of data transmis-
sion between networks and reduce data transmission time.
As we know, industrial big data platform needs high stability.
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FIGURE 2. Data acquisition scheme of the data platform by Flume.

TABLE 1. Configuration information for both Kafka and HB- ase
integrated with Flume.

Therefore, all the distributed frameworks integrated by the
data platform are always adopted high availability mode.
In the paper, the high availability data stored system of HDFS

FIGURE 3. Data acquisition scheme of the data platform by Sqoop.

and HBase is built by ZooKeeper. Figure 4 shows the high
availability framework of HDFS. The high availability mode
of HBase is similar to that of HDFS. Besides, YARN in the
later computing framework also uses the same way layout.

FIGURE 4. High availability data storage system.

In Figure 4, we can see two NameNode (NN) and three
DataNode (DN) in the data platform because all versions of
Hadoop2 only support two high-availability modes for NN.
The client obtains meta information through the NNwhen the
data is written to the DN specified by the metadata. We select
LZ4 as the data compression method by evaluating various
methods.

As we know, the data compressed time and size of the
space compressed should be considered during the selection
of compression methods. Large disc capacity means high cost
of disk, compared with real-time analysis of industrial data,
however, timeliness is more important than the cost of disk.
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Furthermore, the timeliness is one of the most important
indicators in industrial production, such as intelligent plant
safety monitoring and equipment failure diagnosis. There-
fore, we give priority to the data compressed time.

There are more than 20 kinds of methods for the evalu-
ation of serialization. Among them, several methods, such
as Protobuf, Kryo, Protostuff, Fasterxml, Jackson and Java
default method, are selected to evaluate the serialization.
In this paper, we mainly evaluate the timeliness of the data
serialized method. Except for the Java default method, other
methods have no significant difference in the size of the
space including the memory space and the storage space.
Because of the poor performance of JDK, it is just as a simple
reference.

Computing system needs to support multiple types of data
analysis and data visualization services, so the data com-
puting module of the industrial big data platform needs to
support a variety of data processing methods. Therefore,
we evaluate four high-performance data processing frame-
works. As we know, the Spark is the third-generation comput-
ing framework, whose performance is high and reliable. The
Flink is called the fourth-generation computing framework
and has high performance. Considering the functionality
and the data processing performance of different computing
frameworks, we finally chose Spark and Flink. In Table 2,
We can see that the Spark and the Flink support more func-
tions of data analysis than the other two frameworks.

TABLE 2. Data analysis methods supported by four computing
frameworks.

Computing model of big data computing framework
includes stateful and stateless data computation. Stateless
computation is used for real-time environmental monitor-
ing. Intelligent plant often need to accumulate statistics,
such as energy consumption, equipment costs, staff working
hours, etc, during the process of industrial production. The
general computation method can only compute the current
data, which is stateless computation. In this case, we need
to use big data window mechanism to implement stateful
computation.

Both the window mechanism of Spark and that of Flink
support common protocol mechanism and incremental proto-
col mechanism. All data blocks in the window are computed
by the general protocol mechanism, even if the data has been
computed. Incremental protocol only needs to consider the
data entering and leaving windows. The general protocol is

FIGURE 5. Windows mechanism of Spark and Flink computing
frame- works.

shown in Figure 5(a) and the incremental protocol is shown
in Figure 5(b). We can see that the size of window is n and
the size of sliding step is m. n must be bigger than m in
the normal operation of the system. The sampling interval
is usually small in industrial data monitoring, such as one
second or less. According to different industrial production
requirements, the period of data acquisition includes minute,
hour, month and year. N is the number of data per partition.
So N -1 is the computation times in each partition. The num-
ber of sliding times of a conventional protocol is as follows:
(N -1)∗n + n. The number of sliding times of incremental
protocol is as follows: (N -1)∗2∗m + 2∗m + 1. Therefore,
Whenm is less than half of n, the state computation adopts the
common protocol. In contrast, the state computation adopts
the incremental protocol. Whenm is equal to half of n, we can
choose either of them.

IV. RESULTS OF EXPERIMENT
Data compression and serialization perform on a
Windows 7 64-bits PC equipped with an Intel (R) Core (TM)
i5-8400 CPU@2.8GHz 2.81GHz processor, and 4GB-RAM.
Three same computers are used in the overall test of the data
platform.

A. DATA COMPRESSION METHODS
DefaultCodec is the default compression method for Java.
At present, LZO is the method integrated into Hadoop.
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FIGURE 6. The space and time of data compressed of five compression
methods.

In Figure 6(a), five data compression methods are tested
with data size of 13210 KB. The size of data compressed by
LZO is obviously larger than that compressed by the other
four methods. Specifically, the size of data compressed by
LZ4 is 96% of that compressed by LZO. Moreover, the size
of data compressed by the other three methods are 91.5% of
that compressed by LZO. The size of data compressed by
LZ4 is slightly bigger than that compressed by DeflateCodec,
GzipCodec and DefaultCodec.

Five methods of data compression take significantly dif-
ferent time to process the same amount of data as shown
in Figure 6(b). LZ4 takes far less time than the other
four methods. Specifically, the time spent by LZ4 is only
36.1% of that spent by LZO. Furthermore, LZ4 takes less
than 10% of the time that DeflateCodec, GzipCodec and
DefaultCodec do.

B. DATA SERIALIZATION METHODS
We evaluate six methods of data serialization, which
inc-ludes Protobuf, Kryo, Protostuff, Fasterxml, Jackson

and Java default method. During the evaluation, five groups
of serialized object of five orders of magnitude between
10,000 and 100 million are tested by each data serialization
method. Moreover, each group of serialized object is tested
10 times, and the average results are listed in Table 3.

TABLE 3. The data processing time of different data serializa- tion
methods in different order of magnitude.

Table 3 shows that the time spent by Kryo, Protostuff and
Protobuf are all significantly less than that done by the other
three methods when the number of serialized object tested
is 1 × 104. However, with the increasing amount of data,
the Kryo takes longer and the Protobuf takes the shortest time.

In order to make the test data more intuitive, we draw a bro-
ken line graph and draw a broken line graph every three orders
of magnitude. The broken line graph of the data in Table 3 is
shown in Figure 7. Kryo can serialize faster with fewer
objects in Figure 7(a). Kryo, Protobuf and Protostuff changed
significantly when the processing object was about 10000.
As the number of objects processed increases, processing
time increases sharply. However, Protobuf and Protostuff
show a downward trendwith the increase of processing object
data in Figure 7(a). When 10 million objects are processed,
Kryo’s performance is very poor and Protostuff’s and Proto-
buf’s have very similar performance in Figure 7(b). Protobuf
performs better than Protostuff when the amount of data
processed is more than 100 million in Figure 7(c). By evalu-
ating above five data serialization methods, we finally choose
Protobuf.

C. DATA PLATFORM
The data platform includes three parts: data acquisition mod-
ule, data computation module and data presentation module.
It takes eight steps to set up a data acquisition, storage,
computation and visualization of the platform. The display
interface of this platform is shown in Figure 8.

–First, Java Tools and SSH are configured.
–Second, distributed coordination service cluster is built.

Zookeeper is integrated into server cluster.
–Third, the data structure of intelligent equipment is ana-

lyzed. Setting Topic and Docker. Equipment data acquisition
location is specified. Flume and Kakfa are integrated.
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FIGURE 7. The time of data serialized of five methods at data level for
different processing objects.

–Fourth, Hadoop is integrated into the server cluster by
HDFS and YARN of the configuration files, and adding
packages optimized of Java to library files to configure to use.

–Fifth, Hive and HBase are integrated into the built server
logical file system. Setting table and columnFamily. Serial-
izer used the optimal Protobuf method. Sink is HBaseSink.
By some of the above operations, Flume and HBase are
integrated.

–Sixth, Spark and Flink are integrated into the built server
logical file system. Adding Java packages optimized to
library files to configure to use.

FIGURE 8. Visual display interface of industrial big data platform.

–Seventh, Hue is integrated, at the same time, indus-
trial data visualization front-end is designed by Django
frame- work.

–Eighth, the data platform is tested as a whole.
Figure 8(a) is a real-time monitoring interface. Monitoring

information includes plant temperature, humidity and PM2.5.
Three kinds of information are acquired per second. The
monitoring interface displays information for a time span
of 20s to prevent monitoring personnel from missing data.
Figure 8(b) is visualization of energy consumption, equip-
ments performance, equipment status and production efficie-
ncy after data computation and data mining.

V. DISCUSSION
Recently, there are a number of studies on data acquisition
and optimization of computing frameworkmethods, andmost
of these methods provided good performance in the field
of Internet. We consider the characteristic of real-time and
stability in industrial production in our research. Therefore,
Data platform optimization includes data acquisition, data
compression, data serialization, and system stability.

With the development of intelligent plant, the data acqui-
sition volume of plants increases rapidly. Flume can meet
the needs of data acquisition in plants. In the research of the
method of data stored, we compress data by LZ4 and serialize
data by Protobuf. Compared with the original method of
Hadoop integration, the time of processing data is greatly
reduced and the processing effect is better. Both Spark and
Flink are used in computing framework. According to the size
of sliding window, we adopt appropriate window mechanism
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to compute the data for certain time periods. Furthermore,
the selection method is given.

VI. CONCLUSION
In this paper, we start with the process of industrial data
processing and the requirement of industrial data analysis.
High availability file stored system is built to avoid single
point failure. In the process of building file stored system,
the performance of LZO provided by the framework is infe-
rior to LZ4 in the time and the size, and the time spent by
LZ4 is only 36% of that spent by LZO. The size of data
compressed by LZ4 is 96% of that compressed by LZO.

We compare the optimal serialization methods provided by
big data framework with other high performance methods to
optimize the existing framework’s method. Compared with
the other serialization methods integrated by Hadoop and
Spark, Protobuf performs better and better in data processing
as the number of serialized objects increases. Compared with
Java defaults, Protobuf takes only 7% of the time to process
data. At same time, our data platform has many data analysis
functions including machine-learning, Finite Element Anal-
ysis, Optimization and Knowledge Mapping.
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