
Received February 6, 2019, accepted March 12, 2019, date of publication April 2, 2019, date of current version April 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2907865

MulNet: A Flexible CNN Processor With Higher
Resource Utilization Efficiency for
Constrained Devices
MULUKEN TADESSE HAILESELLASIE AND SYED RAFAY HASAN
Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN 38505-0001, USA

Corresponding author: Muluken Tadesse Hailesellasie (mthailesel42@students.tntech.edu)

ABSTRACT Leveraging deep convolutional neural networks (DCNNs) for various application areas has
become a recent inclination of many machine learning practitioners due to their impressive performance.
Research trends show that the state-of-the-art networks are getting deeper and deeper and such networks
have shown significant performance increase. Deeper and larger neural networks imply the increase
in computational intensity and memory footprint. This is particularly a problem for inference-based
applications on resource constrained computing platforms. On the other hand, field-programmable gate
arrays (FPGAs) are becoming a promising choice in giving hardware solutions for most deep learning
implementations due to their high-performance and low-power features. With the rapid formation of various
state-of-the-art CNN architectures, a flexible CNN hardware processor that can handle different CNN
architectures and yet customize itself to achieve higher resource efficiency and optimum performance
is critically important. In this paper, a novel and highly flexible DCNN processor, MulNet, is proposed.
MulNet can be used to process most regular state-of-the-art CNN variants aiming at maximizing resource
utilization of a target device. A processing core with multiplier and without multiplier is employed to achieve
that. We formulated optimum fixed-point quantization format for MulNet by analyzing layer-by-layer
quantization error. We also created a power-of-2 quantization for multiplier-free (MF) processing core of
MulNet. Both quantizations significantly reduced the memory space needed and the logic consumption
in the target device. We utilized Xilinx Zynq SoCs to leverage the one die hybrid (CPU and FPGA)
architecture. We devised a scheme that utilizes Zynq processing system (PS) for memory intensive layers
and the Zynq programmable logic (PL) for computationally intensive layers. We implemented modified
LeNet, CIFAR-10 full, ConvNet processor (CNP), MPCNN, and AlexNet to evaluate MulNet. Our
architecture with MF processing cores shows the promising result, by saving 36%–72% on-chip memory
and 10%–44% DSP48 IPs, compared to the architecture with cores implemented using the multiplier.
Comparison with the state of the art showed a very promising 25–40×DSP48 and 25–29× on-chip memory
reduction with up to 136.9-GOP/s performance and 88.49-GOP/s/W power efficiency. Hence, our results
demonstrate that the proposed architecture can be very expedient for resource constrained devices.

INDEX TERMS DCNN, MulNet, constrained devices, hybrid embedded system.

I. INTRODUCTION
Leveraging deep convolutional neural networks (DCNN)
for various application areas has become a recent inclina-
tion of many machine learning practitioners due to their
impressive performance [1]. These include applications rang-
ing from (but certainly not limited to) image processing,

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

computer vision, automotive applications to computational
biology, computational finance and natural language pro-
cessing. Research trends show that the state-of-the-art net-
works proposed in past few years are getting deeper and
deeper and such networks have shown significant perfor-
mance increase [2], [3]. However, as the networks get
deeper it also implies more training time, increase in com-
putational intensity and memory-footprint. This is particu-
larly a problem for inference-based applications on resource

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

47509

https://orcid.org/0000-0002-6740-9893

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

constrained computing platforms.With the rapid formation of
various state-of-the-art convolutional neural network (CNN)
architectures a flexible CNN hardware processor that can
handle different CNN architectures and yet customize itself
to achieve higher resource efficiency and optimum perfor-
mance is critically needed. In terms of hardware platform,
Field Programmable Gate Arrays (FPGAs) are becoming the
dominating choice for high performance and low-power deep
learning processor design [4]–[7]. FPGA technology is also
in a trend of rapid advancement in the past few years due to
increment in its capacity and ease of usage for the designers.
FPGAs are suitable for computationally intensive algorithms
resulting in a faster computational speed and higher energy
efficiency compared to other hardware rivals [7]–[9]. In the
past three years, a number of FPGA-based CNN proces-
sor architectures have been proposed [12]–[25]. A few of
the highlights of these approaches include, parameter reduc-
tion [11], [26], binary weight quantization [20], [21], [24],
optimization for power [12], memory bandwidth optimiza-
tion [15], [16], [23], pipelining, parallelism and batch-based
processing [10], [13], [25], computation load reduction [14],
and dataflow optimization [19], [22]. Among the various
tools available for implementation of CNN architecture on
various FPGAs, Vivado HLS and OpenCL are the most com-
monly used in literature for the sake of productivity at the cost
of hardware efficiency and performance [5], [8], [9]. Most of
the FPGA-based architectures proposed in these literatures
are tailored or optimized to a particular CNN architecture.
This approach, however, is not quite effective as it requires
designing a tailored CNN hardware processor for every new
network. This problem is more intensified by the different
number of parameters each network has (different kernel
sizes, input dimensions, feature dimensions, number of layers
and the number of kernels in each layer), that the hardware
processor has to acclimate. Hence, a highly flexible architec-
ture that can mold itself into the given CNN and yet achieve a
higher resource utilization efficiency is critically important.
In this work we are proposing a highly flexible architec-
ture, MulNet, that can process most regular CNN variants.
Additionally, as stated earlier, convolution operation is the
most computationally intensive task in almost every state-of-
the-art CNN. The existing literature address this problem by
optimizing the processing core multiplier unit for convolu-
tion.We are also exploring to relieve this problem by utilizing
binary logic relation and judicious quantization to replace
the actual unit entirely with inexpensive shift register units.
To the best of our knowledge none of the aforementioned
references have proposed a highly flexible architecture uti-
lizing multiplier-free (MF) processing cores by formulating
their own quantization format to achieve higher resource
utilization on the target devices.

In this paper, a novel and highly flexible DCNN pro-
cessor architecture, MulNet, is proposed. MulNet can be
used to process most regular CNN variants aiming to max-
imize resource utilization of a target device by creating a
novel architecture with configurable number of multiply and

accumulate, and pooling (MAP) cores. MAP cores with
multiplier and without multiplier is employed to achieve
higher resource efficiency. We formulated quantization for
trained weights and feature maps by analyzing the layer-
by-layer quantization error between quantized network and
original 32-bit float network. We also created a power-of-2
quantization for a MF processing cores of MulNet. Both
quantization significantly reduced the memory space and the
logic needed in the target device. We stored weights, input
image and feature maps on external DDR. Weights and input
features of the layer under execution are loaded on-chip for
current computation with one-time transfer of each feature
pixel and maximum data reuse across all weights. We uti-
lized Xilinx Zynq SoCs to leverage the one die hybrid (CPU
and FPGA) architecture. We devised a scheme that utilizes
the processing system (PS) for memory-centric layers and
the programmable logic (PL) for computation-centric layers.
We implemented Modified LeNet, CIFAR-10 Full, ConvNet
Processor (CNP), MPCNN, and AlexNet to evaluate MulNet.
Our architecture with MF processing cores shows promising
results, by saving 36%-72% on-chip memory and 10%-44%
DSP48 IPs, compared to the architecture with cores imple-
mented using multiplier. Comparison with the state-of-the-art
showed a very promising 25-40x DSP48 and 25-29x on-chip
memory reduction with up to 136.9 GOP/sec performance
and 88.49 GOP/sec/watt power efficiency. Hence, our results
demonstrate that the proposed architecture can be very expe-
dient for resource constrained devices. The following are the
main contributions of this work:
• A novel and highly flexible CNN processor architec-
ture, MulNet, is proposed that can be used to process
any regular CNN variant aiming to maximize resource
utilization of a target device

• Implemented hardware optimized MulNet on hybrid
embedded architecture by devising hardware-friendly
data loading, on-chip memory addressing and task
scheduling

• Formulated and evaluated different fixed point and
power-of-2 quantization formats by analyzing a
layer-by-layer quantization error across different bit
widths

• Demonstrated the functionality of proposed MulNet
on CNP, MPCNN, Modified LeNet, CIFAR-10 and
AlexNet CNNs

The rest of this paper is organized as follows: Section II
presents some introductory concepts on CNN and the dif-
ferent layers. Section III discusses the framework we devel-
oped for design and evaluation of MulNet. Section IV
addresses MulNet architecture and its data flow in detail.
Section V presents evaluation of MulNet and a comparison
with the state-of-the-art. Section VII discusses the strategies
we devised to implement AlexNet leveraging our proposed
architecture, MulNet. In Section VIII we reported MulNet’s
accuracy performance on different CNN benchmarks and
across different datawidth. Section IX concludes the
paper.

47510 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

II. PRIMER ON CONVOLUTIONAL NEURAL
NETWORK (CNN)
History of learning systems goes back to the time when Arti-
ficial Neural Networks (ANN) were developed to emulate
human brain. Our brain is composed of millions of neurons
interconnected to each other allowing us to make complex
decisions in a very short time. Similar to that, ANN is com-
posed of simple connected units called perceptron, where
each perceptron is activated by real-valued inputs, computing
the equation below to output 1 when the linear operation of
the inputs is greater than zero, and 0 otherwise [27].

σ (x1, x2, ...) =

{
1, when w0x0 + w1x1 + ...+ wnxn > 0
0, otherwise

where x1, x2...xn are inputs and w1, w2...wn are real-valued
constants called weights which relate the input with the out-
put, shown in Figure 1.

FIGURE 1. Perceptron and Artificial Neural Network Structure [27].

Basic perceptron, however, has limitation as it is not
able to represent complex functions. This limitation lead to
an idea of creating multi-perceptron structure called Multi-
Layer Perceptron (MLP), shown in Figure 1. In MLP we
have network of perceptrons divided into layers; input layer,
hidden layer and output layer. Depending on the network,
more than one hidden layer can be used to build the network.
MLPs are able to learn very complex functions and have
been used for various tasks. Training MLPs is done using
back-propagation, an algorithm using gradient descent search
in the network’s weight space reducing the error between
the network output and the expected output iteratively [27].
Researchers have shown that such small sized neural network
performed well in different applications [27]. In recent years,
researchers have extended this concept of conventional NN
(called shallow-NN) by adding more layers and complex
functions in order to learn more abstract features from the
data (deep-NN or DNN). Such deep networks become pop-
ular in the past decade by out-performing the conventional
shallow networks [1]. Convolutional neural network (CNN)
is one of such deep neural network architectures designed
to have a sequence of convolution and pooling operations
(both of these operations are explained later on in this section)
applied on an input data followed by fully connected layers

FIGURE 2. Convolutional Neural Network Structure.

resulting in the classification probabilities of the input data.
CNN is also one of the most widely used DNN algorithm
in numerous computer vision applications. Fig. 2 shows the
basic convolutional neural network structure with all the
above mentioned operations.

A. CONVOLUTIONAL LAYER
Convolutional layer is the main layer in CNN (it is appear-
ing twice in Figure 2), this layer performs convolution over
the input image using kernels and produces an output fea-
tures (distinct and useful observation grasped from the input
image). Kernels also called filters or weight vectors are small
sized real-valued matrix that are applied on the image to
transform the information encoded in the data. Convolution
operation is needed to extract the relevant information by
suppressing the distracting information inside the input data.
Convolutional layer is usually used in the early stages of
the network. The basic operation of a convolutional layer
in a feed-forward phase is shown in Figure 3. Each kernel
function (weight matrix), whose dimension is represented by
K, is convolved with K × K window of the input image
and then added to produce one pixel of the feature map for
the next layer. Each kernel function slides over the input
image by stride size (the number of steps the window of the
input images slides for the next convolution). This stride, dot
product of K × K window of the input with K × K kernel
matrix, and summation operation is repeated until the kernel
function covers the whole input image. Therefore, if N × N
image is convolved with K × K kernel function it results in
features with dimension (N−K+1)× (N−K+1), for stride
size of one.

B. POOLING LAYER
Convolutional layers are normally followed by pooling lay-
ers in most CNNs. Pooling layers perform down-sampling
of input features. Similar to convolutional layer, the sliding
window in pooling layer is also shifted by n number of
rows/columns. This results in combining features by ignoring
small distortions/shifts. In other words, by combining fea-
tures into one, pooling layer enforces spatial invariance. Pool-
ing layers also help in reducing the input feature dimension
and resulting in less computational overhead for the following
layers. The most common pooling operation is max-pooling
which transforms an input feature by taking the maximum of
the values in a slidingwindow over the input feature. In Fig. 3,
aMaxPooling operation on a 1× 6× 6 feature resulting in a
reduced feature size 1×4×4 is shown. The 3×3 green area of
MaxPooling within the input feature in Fig. 2 is representing
the sliding window.

VOLUME 7, 2019 47511

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 3. Convolutional Layer Operation for Input (7×7) with Three Kernels (3×3) Resulting in Three Features (5×5) [25] and MaxPooling Operation on a
(1×6×6) Feature Resulting in a (1×4×4) Feature.

FIGURE 4. Our Methodology for Design and Evaluation.

C. FULLY CONNECTED(FC) LAYER
Fully connected or inner product layers are used in the last
stage of CNN for classification operations. Fully connected
layer performs linear transformation over the input features
by applying matrix multiplication with the weight vectors.

III. FRAMEWORK OF MULNET
This work proposes a highly flexible CNN processor
architecture with higher resource utilization efficiency. The
methodology we developed for both design and evaluation
of our proposed CNN processor is shown in Figure 4. This
step includes creating a new network or utilizing existing
CNN networks. Creating or collecting a dataset is for training
the network is the next process. This involves collecting a
large data, cleaning the data and generating the right training
and validation data format. For training the network we used
Caffe from Berkeley Vision and Learning Center [28] which
we built on Tesla K80 GPU. Caffe is one of the early deep
learning frameworks used for training deep learning net-
works. Since it uses a simple text-based file format to define
the network and the training optimization hyper-parameters
it eases the training complexity. After training Caffe returns

the trained model in a file called caffemodel. This file con-
tains the individual weight values that the network learned
during training which are represented in 32-bit float. The last
process in this stage is Network Analysis and Quantization.
We developed two quantization formats. For the first one,
we converted the 32-bit weight vectors into fixed point Q(I.F)
format for arbitrary I and F size where I is the integer part bit
width and F is the fractional part bit width. This conversion
however is made based on the network analysis which per-
forms the layer-by-layer quantization error. For the second
one, we quantized the 32-bit weight vectors into power-of-2
exponent format for MF MAC operations. Both techniques
are discussed in detail in Section V. All the aforementioned
tasks are purely software based accomplished using Python
and Caffe IDE.

The next stage of our framework is designing the hard-
ware processor for the CNN network defined in the previous
stage. The first task in this stage is register transfer level
(RTL) design and simulation using Vivado HLS develop-
ment environment. Vivado HLS is a tool from Xilinx that
transforms a C specification in C, C++, SystemC into an
RTL implementation that can synthesize into a Xilinx field

47512 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

programmable gate array (FPGA). Using this tool, we devel-
oped MulNet, a highly flexible CNN processor architecture
both in terms of mapping various regular CNN architectures
into one hardware and its capability to compute on various
weight and feature quantization. A more detailed discussion
on MulNet is presented in Section IV. The main challenge
in creating MulNet is to make it generic enough and yet be
able to tailor it to a specific network with optimum hardware
consumption and faster computation time. This is particularly
a challenge as different networks have different kernel sizes,
input dimensions, feature dimensions, number of layers and
the number of kernels in each layer. We created customizable
functions that are common and can be used in most CNN
variants, for instance data loading functions from DDR to on-
chip memory, on-chip memory addressing functions, a MAC
computing functions, data offloading function from on-chip
to DDR and interfacing functions. We utilize these functions
and develop a new scheduling for that particular network
depending on its work load and network structure. Regarding
the actual implementation, this process requires the network
definition, the target hardware and a timing constraint as an
input, as shown in Figure 4. The network definition, as stated
above, is used to create task scheduling of a CNN network in
the hardware. The target device and the timing constraint are
used by Vivado HLS Synthesizer to estimate if the hardware
created fits in that target device and if the hardware created
meets the clock frequency specified in the timing constraint
file, respectively. This is followed by verifying the func-
tionality of the designed hardware through simulation and
Co-Simulation. Vivado perform C/RTL Co-Simulation by
generating RTL testbench from the C testbench for simulating
the RTL and verifying if the C code produce the same result
as the synthesized RTL. A successful run through these tasks
lead to generating an IP core with the right interfaces for inte-
gration. The FPGAs we targeted are Zynq SoC based FPGAs.
This FPGA family is based on the Xilinx All Programmable
system-on-chip (AP SoC) architecture. This hybrid architec-
ture integrates a dual-core ARM Cortex-A9 MPCore-based
processing system (PS) and Xilinx programmable logic (PL)
in a single device. ARM Cortex-A9 MPCore CPUs are the
central hub of the PS which includes on-chip memory, exter-
nal memory interfaces, and a set of I/O peripherals [35].
We leveraged this architecture by using the PS as a central
coordinator for the whole computation, and memory centric
tasks while using the PL for computationally intensive tasks.
TheVivadoHLS generated IP is then required to be integrated
with the CPU cores through the processing systemwrapper in
Vivado Design Suite, DDR external memory and the system
reset unit. This integration is done in Vivado IP Integrator.
After the integration one top-level HDL wrapper is generated
which needs to be synthesized and implemented using the
timing and target device as constraints. This generates a
bitstream that is used to configure the Zynq device.

The last stage of our methodology is application devel-
opment to coordinate the whole computation using Soft-
ware Development Kit (SDK) on the actual hardware, shown

in Figure 4. In general, SDK provides a variety of Xilinx
software packages, including drivers, libraries, BSP (board
support packages), and complete operating systems for devel-
oping a software platform. When the SDK is launched, after
the bitstream is generated, it starts with an auto generated BSP
files for a target device, and functions to access peripherals.
These functions expose the IP level function, port level inter-
faces and interrupt functions. In our framework we utilize
these functions as follows: all the interface ports defined in
our CNN processor IP are exposed using their corresponding
get/set functions to write and read data from the IP in that
port. Using these functions that run on the CPU cores we
then write a C/C++ based application to coordinate the CNN
computation which includes functions to reading and loading
weight vectors and input data to DDR, to initialize the IP,
to start the IP and to read the computed output from the IP.

FIGURE 5. Block diagram showing PL, PS, and DDR inside Zynq SoC
System. MulNet is fully implemented in PL interfaced via AXI with the
other subsystems.

IV. MULNET
The framework and the MulNet architecture we presented in
this work target a Zynq SoC based platform. This is depicted
in Figure 5. MulNet is fully implemented using Zynq pro-
grammable logic (PL). It is interfaced with PS and external
DDR through AXI4. The PS runs a C++ application that
controls the start and end of MulNet computation. MulNet
is designed to process CNN networks by computing the com-
putation centric part of the network inside PL and memory
centric part using PS. This is mainly because convolution
operations take more than 90% of the total computation, and
weight and feature maps in convolutional layers are reusable
unlike fully connected layers where all weights are unique
for every single multiplication. Moreover, in Zynq SoC plat-
forms the external memory, DDR, is physically connected
to PS hence memory intensive tasks could take benefit of
this design by reducing memory traffic. Therefore, all con-
volutional, pooling and activation layers are computed in PL
and all fully connected layers are computed in PS. The high-
level MulNet architecture is shown in Figure 6. The core
units in MulNet architecture are on-chip memory, processing
cores and interfacing modules. The on-chip memory is clus-
tered into Input Block RAM (IBRAMs), Weight Block RAM
(WBRAM), Output or Feature Block RAM (OBRAM) and
Bias Block RAM (BBRAM)). The processing core we called

VOLUME 7, 2019 47513

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 6. MulNet RTL and Conceptual Architecture.

them MAP Cores (Multiply and Accumulate, and Pooling)
which compute MAC operations or max pooling operations
based on the control signal asserted. Our architecture also
utilizes external memory, DDR, for its computation by ini-
tially storing the quantized weight vectors and input image.
As the computation continues, each layer generates interme-
diate feature maps, which we stored these values in DDR
as well.

A. ON-CHIP MEMORY UNITS
The IBRAM is an on-chip block ram that is used to store the
input image or input features.MulNet’s IBRAMconsumption
vary in number depending on the size of the input features
that needs to be loaded on-chip. A single Xilinx’s block
RAM consists of a 36Kb storage area two independent access
ports [34]. The total number of on-chip memory required for
IBRAM, hence can be estimated as follows:

#IBRAM = I .Quant.bitwidth ∗Words/36K (1)

Words = MAX (∀layers(feature_size)) (2)

where Words imply the maximum layer feature size in the
network and I.Quant.bitwidth is feature map bitwidth. Hence,
we allocated the on-chip memory for the size of the largest
layer in-terms of feature size where by all other layer’s fea-
tures can be accommodated.

The WBRAM is a cluster of block RAMs that is used to
store quantized weights of the network. Similarly, number
of WBRAM consumption depends on the number of weight
vectors a layer has. For MulNet most of the available block
rams on the target device are consumed for weight storing.
This is partly because our scheme of storing all weights of a
layer on-chip and the memory partitioning applied for con-
current reading of weights for parallel convolution operation.
The total number of on-chip memory required for WBRAM,
hence can be estimated as follows:

WBRAM = W .Quant.bitwidth ∗Words/36K (3)

Words = MAX (∀layers(weight_size)) (4)

where Words imply the maximum number of weights of a
single layer in a network andW.Quant.bitwidth is feature map
bitwidth. Hence, we allocated the weight on-chip memory to

the size of the layer with maximum number of weight where
by all other layer’s weights can be accommodated.

Similarly, OBRAM and BBRAM are on-chip block RAMs
used in our architecture to store output feature maps and bias
values of a particular layer, respectively.

B. PROCESSING CORES - MAP CORES
A single MAP unit, shown in Figure 6, functions as a MAC
(Multiply and Accumulate) operator or as a Pooling operator
depending on the mode bit asserted. It is worth mention-
ing here that Figure 6 shows two types of implementation
of MAP unit, cores implemented using multiplier and MF
implementation. Each MAP unit can be implemented with
anyone of these two ways. As a MAC module it computes
the basic multiply and accumulate operation of a K × K
convolution and as a pooling operator it computes a max pool
operation of a K × K receptive area of the input features.
A single MAP unit, as a MAC operator, can take up to K
parallel inputs and K weight vectors to produce a single
output using the dot product. For a MAP cores implemented
with multipliers, the dot product is computed by performing a
multiplication operation between each ith weight from K ×K
weight arrays and each ith pixel from the K × K feature map
arrays. However, withMFMAP cores, we are shifting each ith

pixel by the magnitude of the power-of-2 exponent fed to the
cores as weight vectors. The sign of the weight is identified
based on the sign of the power-of-2 exponent which are
appended artificially. The later approach results in a higher
resource utilization efficiency, discussed in Section VI, and
brings substantial memory space savings. The dimensions
of the input vectors for the MAC can be adjusted to any
K × K convolution. The networks we chose to demonstrate
the functionality of our architecture on has a 7 × 7, 6 × 6
and 5 × 5 kernel dimensions. For the sake of simplicity,
Figure 6 illustrates a 3 × 3 convolving MAP cores only.
On the other hand, as a Pool operatorMAP cores can compute
MaxPool by comparing and selecting the maximum value
from up to K parallel input vectors, given the mode bit is set
to Pool. As shown in Figure 6, the number of MAP cores, N,
is configurable. This helps to increase the number of MAP
cores computing in parallel which is only limited by the
resources of the target device. This is also one of the features

47514 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

that makes MulNet highly flexible to fit in a small or large
target device.

C. INTERFACING WITH SUBSYSTEMS
Our processor is interfaced with subsystems inside the Zynq
system based on efficient industry standard Advanced eXten-
sible Interface (AXI) connections. This has been made handy
in Vivado HLS as the arguments of the top-level function
are synthesized into the IP’s external interfaces. Among the
three-port level AXI4 interfaces supported by Vivado HLS
(AXI4-Stream (axis), AXI4-Lite (s_axilite), and AXI4 mas-
ter (m_axi) interfaces) we utilized AXI master as a main
data transfer interface between external DDR and on-chip
memory, and AXI4-Lite is used for transferring configuration
data from the PS to MulNet IP.

D. SCHEDULING TECHNIQUE
Before MulNet starts computing, quantized and pre-arranged
weight vectors and input images are stored in DDR. The
initial memory size in bytes can be obtained if the input image
dimension, N, is known using Equation 5. Similarly, total
weight vector bytes can be calculated using Equation 6 by
multiplying the total number of individual weights, #weight,
with the bitwidth.

Input_memory_req : N 2
∗
bitwidth

8
(5)

Weight_mem_req : #weights ∗
bitwidth

8
(6)

This calculation is used for offset calculation for the right
indexing of data from DDR. On the other hand, binary format
of each weight vector and input image are generated and
re-arranged in channel-major fashion before being loaded to
DDR. Channel-major arranges weights or feature maps in all
channels first and all rows second manner, this provides an
opportunity to computemultiple convolutions at a time and/or
without pulling new weight vectors from external memory.
All these data loading functions to DDR are executed from
the PS.

Figure 7 shows the task scheduling of MulNet once it
gets started from the processing system. MulNet has two
interfaces, AXI4 interface for data loading from DDR to
on-chip and vice versa, and AXI4-Lite interface for con-
figuring MulNet from PS. As shown in Figure 7, the first
task is configuring MulNet modules which includes Weight
Module, Feature Module, Input Module and MAP Module
represented as W, F, I and M, respectively. The configuration
information contains all the layer specific data which includes
input dimension, number of input channels, number of output
channels, kernel dimension, stride size, number of padding,
layer type and memory addressing offsets. All these data are
packed using DATA_PACK directive feature of Vivado HLS.
It packs all the configuration elements into one wide vector
and allows simultaneous read and write on all elements. For
instance configuration data for the first convolutional layer
of CIFAR10 network looks like (32, 1, 20, 5, 1, 0, 0, 520,

FIGURE 7. MulNet Task Schedule for Convolution and Pooling Layers.
W, F, I, M, and LT represents Weight Module, Feature Module, Input
Module and MAP Module and Layer Type, Respectively.

15680, 1024, 0, 2264), which corresponds to input dimen-
sion, number of input channels, number of output channels,
kernel dimension, stride size, number of padding, layer type,
number of weights, weight memory offset address, feature
memory offset address, and output memory offset address,
respectively.

Once the modules are configured to the currently executing
layer parameters, the next step is loading the input data and
weights fromDDR to on-chip memory via the AXI4 interface
of the MulNet. The scheme we created transfers all input
feature maps and weight vectors of a specific layer to on-
chip memory before starting computation of that layer. This
approachworks for small tomedium sized networks but when
the network gets larger and the number of weights and input
features of a layer cannot fully fit over on-chip memory.
For that we devised another scheme where we load L lines
(rows+ channels) of the input features at a time. The number
of lines to be loaded at a time, L, is configurable per layer
basis. Following a layer-specific start and stop index is cal-
culated as shown in Algorithm 1. These indexes are memory
addresses in IBRAM corresponding to the first and the last
K × K convolution features in that layer. Algorithm 1 shows
how both start and stop indexes are calculated.

An alternative way of reading the current K × K feature
map is by calculating (x * y * ci) to read pixel value at
(x, y, ci) and iterating throughK 2 pixels by calculating (x+i *
y+j * ci+p) where i and j are between [0, K − 1], and
p ranging from the first to last channel of the feature map.

VOLUME 7, 2019 47515

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

Algorithm 1 IBRAM Indexing for 5× 5 Convolution
kernel size = kernelDim
feature size = inputDim = N
number of input channels = chIn
chInTimesN = chIn * N
if noPadding then

startIndex = ceil(kernelDim/2) - 1
stopIndex = (inputDim - 1) - startIndex

end
else if withPadding then

startIndex = ceil(kernelDim/2) - pad - 1
stopIndex = (inputDim - 1) - startIndex

end
// In Figure 8 : (left) (X , Y) = (2, 2) and
right (1, 1)
centerPixelAdd = X*chInTimesN + (chIn*Y) + chIn
for 0:2 do

x ′ = X + i− 1;
for 0:2 do

y′ = Y + j− 1;
//Calculated using adders and shifters only
addIBRAM=(x ′*chInTimesN) + (chIn*y′) +
chIn
if noPadding then

pixelValue = IBRAM(addIBRAM)
end
else if withPadding then

if x ′ < 0|x ′ > N |y′ < 0|y′ > N then
pixelValue = 0

end
else

pixelValue = IBRAM(addIBRAM)
end

end
end

end

FIGURE 8. Input Feature Indexing with and without Padding from IBRAM
for Less Hardware Consumption.

However, executing this calculation for every pixel in parallel
consumes a lot of multiplier and is not hardware friendly. For
instance, for a 5 × 5 kernel, 2*25 multipliers are required to
read all 25 pixel values. Hence, we created the scheme shown
in Figure 8. In our scheme we only calculate the central pixel
(for instance in a 5× 5 convolution, (2,2) is the central pixel)
once, which is derived from the start and stop index, and use
adders and shifters to calculate all the neighboring pixels as

shown in Figure 8 by black arrows. The pseduo code for this
address calculation is shown in Algorithm 1. To complete
the whole convolution, this indexing iterates over the whole
feature map as shown in the green line in Figure 8. The
indexing variation when the layer’s input features is zero
padded is also shown both in Algorithm 1 and Figure 8.

The next step in the task scheduler of Figure 7 is to compute
convolution or pooling based on the layer type. For convolu-
tional layers, a K × K feature is pulled from IBRAM and
get convolved with chOUT number of K × K weight vectors
repeated across each input channel. The main advantage of
this approach is it maximizes computational efficiency, as all
the chOUT convolutions can be computed concurrently with
no data dependency between each other. Moreover, each
K × K feature is accessed just once for all convolution
operations involving it. This saves a number of clock cycles
both from the memory access and convolution computation
concurrency. The MAC result for each output channel then is
stored in OBRAM. This process continues across each input
channel where each chOUT sum is accumulated on the pre-
vious one and written back to OBRAM after the summation.
The RTL for this computation is shown in Figure 6, Main
Architecture. Depending on the current computing layer
architecture, pixel wise activation is applied. MulNet has the
two most common activation functions, Sigmoid and ReLU,
implemented. Sigmoid is implemented using piecewise linear
approximation with the whole function taking a few hundred
LUTs and flops based on the technique presented in [29].
ReLU is implemented using simple comparators. Once all the
convolution for each chOUT number weight vectors across
each input channel, chIN, is computed, the data in BRAM
is offloaded back to DDR to the right offset address through
AXI4 interface of MulNet. This data flow continues until all
the convolution operations of the layer are completed, i.e.
across chIN, X, Y as shown in Figure 7 where X, Y are the
dimensions of each feature map and chIN is the number of
individual feature maps. In our proposed technique the next
layer starts execution taking the output of the previous feature
map as an input. Pooling is computed in a similar fashion as
shown in Figure 7.

V. QUANTIZATION
In this work, we explored two quantization formats. The first
one is Q(I.F) fixed-point format where I is the integer part bit
width and F is the fractional part bit width, and the second
one is power-of-2 quantization format. For the former one,
as depicted in Figure 4, we quantized the trained weights into
8, 16 and 32 bits as follows:

decimal_value = float_value ∗ 2−F (7)

rounded_dec = round(decimal_value) (8)

binary_value = dec2bin(rounded_dec) (9)

where F is the number of fractional digits in QI.F fixed-point
format, float_value is the actual weight value, dec2bin is a
decimal to binary converter function and binary_value is the

47516 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

final quantized weight value that we stored in memory for
computation.

For power-of-2 quantization we converted the trained
weight values into the nearest power-of-2 values, and then
calculated the power-of-2 exponent that we stored in mem-
ory. This exponent is later used in our MAP cores to know
how many times a feature value needs to be shifted. For all
the cases a signed 8-bit is enough to store the exponents.
This quantization allows such convolution computation using
MF processing cores in hardware. The resource utilization
efficiency of the two quantization techniques is compared
in Figure 9. We calculated Power-of-2 quantization error
based on 32-bit weight distribution and the quantized weight
distribution percentage difference for each layer as follows:

w_perc_diff =

∑ (∀(origW−quantizedW))
∀origW

num.of .weights
(10)

std_dev =

√∑
(quantizedW − w_perc_diff)2

num.of .weights
(11)

where origW is originally trained 32-bit float weight values,
quantizedW is the corresponding quantized weight values and
num.of.weights is number of weights in that layer.
We plotted our quantization error and averaged out the

percentage value. Our technique provides an average of 3.5%
error with a 3 σ of 11. The reason we are only using a power-
of-2 bit width (8, 16 and 32) is that AXI4 only supports 32, 64,
128, 256, 512, or 1024 data bits and AXI4-Lite only supports
32 bits and 64 bits. Hence the bit width should always be a
power of two with a support of data width conversion that
doesn’t match the internal crossbar between our AXI master
MulNet IP to any memory-mapped slave.

TABLE 1. Workload of CNP, modified LeNet, MPCNN, and
CIFAR10 convolutional neural networks.

VI. EVALUATION AND STATE-OF-THE-ART COMPARISON
In order to evaluate our proposed architecture we imple-
mented five well known CNNs, ConvNet processor
(CNP) [30], Modified LeNet [26], CIFAR-10 [31] and
MPCNN [32]. Table 1 contains these workloads with their
layers, feature dimension, kernel size, number of MAP
operations, number of individual weights and total model

size of the layers. All of them are implemented using both
techniques, MAP cores implemented using multipliers and
MF MAP cores, of our proposed architecture, MulNet,
targeting Zynq XC7Z020 device running at 100MHz. The
Zynq XC7Z020 devices has 106400 Flops, 53200 LUTs,
140 BRAMs and 220 DSP slices. The CNP is a network that
is designed for face detection [30]. It has three convolutional
layers and two pooling layers. Modified LeNet is another
network created for hand written digit recognition, built from
two convolutional layers and two pooling layers. CIFAR-
10 is a 6-layer CNN that can classify 32 × 32 images into
10 different classes. MPCNN is a CNN developed for visual-
based hand gesture recognition on a 32 × 32 gray scale
images. The following sections discuss theMulNet’s resource
utilization efficiency, on-chip power estimate and state-of-
the-art comparison.

A. RESOURCE UTILIZATION
The resource utilization for the four benchmark CNN archi-
tectures is shown in Figure 9. Our architecture with MF
processing cores show a promising result by saving 36%-72%
on-chip memory and 10%-44% DSP48 IPs compared to
the architecture with cores implemented using multiplier.
We also observed that for lower bit precisions the differ-
ence between the two versions of our architecture is very
small while as the computation bit width of the architecture
increases, we see significant resource difference between
with multiplier and MF architecture. It can also be seen from
our result that, for power-of-2 quantization the on-chip mem-
ory requirement stays constant across bit width variation,
the reason for this is that we only stored the power-of-2 expo-
nent, not the actual value for which an 8-bit is always enough.
This brings considerable on-chip memory saving and cer-
tainly comes in very handy for resource constrained devices.
From all the four benchmarks, the maximum on-chip BRAM
saving is 72% (comparing with multiplier and MF architec-
tures) for CIFAR-10, the maximum DSP48 saving is 44%
for Modified LeNet and maximum saving for FF and LUT is
39% and 27%, respectively, on CIFAR-10 architecture. Based
on our experiment, it can be concluded that the technique
presented here can be more beneficial for deeper networks
(more number of layers) with a higher feature precisions
(i.e. our MF technique is better for 32-bit feature compared to
8-bit). Although the BRAM and DSP48 consumption always
have an improved trend for MF architecture, but in few cases
FF and LUT requirements remained in similar range for both
the techniques.

Comparison with the state-of-the-art is made with
[36] and [37]. Both reported 16-bit fixed point quantized
computation on the same target device as our work. Table 2
shows the improvement MulNet obtained over [36] and [37].
MulNet achieves 4.8-7.8x better on-chip memory utilization,
25-29x less DSP48 and significant Flops and LUTs saving
in both cores compared to [36] on CNP workload. For
LeNet, MulNet shows a 1.7-2.7x and 12.7-20x better on-chip
memory utilization compared to [36] and [37], respectively.

VOLUME 7, 2019 47517

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 9. Resource Utilization for Modified LeNet (MLeNet), CNP, CIFAR-10, and MPCNN for 8-bit, 16-bit, and 32-bit Computation with
Multiplier (WM) and Multiplier-Free (MF) MAP Cores: FFs and LUTs are in x100 magnitude.

47518 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

TABLE 2. Resource Utilization Comparison with the State-of-the-Art for 16-bit computation.

FIGURE 10. Performance in GOP/sec of MulNet for MPCNN, CNP,
CIFAR-10, and MLeNet.

Likewise, 1.3-1.6x and 22.6-27.2x less DSP48 compared
to [36] and [37], respectively. For CIFAR-10, MulNet gains
an improvement of about 2.7-5.1x on-chip memory and
13.6-15x DSP48 resource saving compared to [37]. MulNet
obtains an improvement of about 2.2-3.4x on-chip memory,
1.7-2x DSP48, 29.8x Flops and 21.3x LUT resources reduc-
tion compared to [32] on MPCNN workload. These results
evidently show a significant improvement both in on-chip
memory and PL resources.

B. PERFORMANCE
In order to measure the performance, we calculated GOP/sec
of MulNet for all the four benchmarks presented in this
work. Figure 10 shows the results we obtained. In [36]
Venieris et al. reported 0.48 GOP/sec for LeNet,
0.74 GOP/sec for MPCNN and 3.53 GOP/sec for CNP. Com-
parison of MulNet with [36] shows a 3.5x better performance
onMPCNNwhile Venieris et al’s work shows a better perfor-
mance on CNP. However, if the reduction in resource utiliza-
tion is considered for CNP, in parallel with the performance
trade off, we find out that the performance-resource joint met-
ric (a variant of Area-Delay Product) is still favorable to our
technique. Just to give a numerical perspective, least amount
of DSP reduction, which is 25 times reduction for CNP,
is better than 23.5 times (3.53/0.15) increment in the latency
of the same architecture. Moreover, in Table 2 it can be seen
that MulNet offers even further reduction (about 40 times)
in logic elements (LUT and Flops). Hence, we claim that
our overall performance-resource metric (i.e. Area-Delay
Product) is better than the architecture in [36].

FIGURE 11. On-chip Power Estimate of MulNet on CIFAR-10, MLeNet,
CNP, and MPCNN across different bit-widths.

FIGURE 12. On-chip Power Estimate of MulNet on CIFAR-10, MLeNet,
CNP, and MPCNN across different bit-widths.

C. ON-CHIP POWER ESTIMATE
This section presents the On-Chip dynamic power of the
target devices estimated using Vivado power analyzer. The
results we obtained are plotted in Figure 12. The power

VOLUME 7, 2019 47519

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

estimate is generated by extracting the power consumption
of MulNet IP only, from the whole Zynq SoC subsystem.
We observed the power consumption increases as the number
of computation bits increase. The power estimation is mainly
contributed by clock, signal, logic, BRAM and DSP of the
target device. To further investigate, we analyzed the esti-
mated power from the power analyzer for each component
separately. We observed a distinct trend in power consump-
tion due to signal transitions, which is denoted as signals’
power in the log file. As an example, we found out that signal
power for CNP network doubled as we increased number
of bits from 8 to 16. While at the same time the signal
power for MLeNet increased only 1.5 times. Although the
power consumption for rest of the components, e.g. number
of DSPs, and BRAMs, are within the similar range, but the
higher increment in signal transition power resulted in a trend
showing higher power consumption for wider bit widths for
CNP network compared to MLenet. We attribute this fact due
to higher dimension of weight matrix size in CNP network,
which consequently require more frequent memory access,
hence more power consumption. Our results also show that
MulNet with MF processing cores achieved 2-10% dynamic
power reduction for CIFAR-10 and 3.3-4.4% for CNP com-
pared to MulNet with cores implemented using multipliers.

TABLE 3. MulNet Power Efficiency (GOP/sec per watt) for MLeNet,
CIFAR-10, CNP, and MPCNN across 8, 16, and 32 bitwidth for Cores
implemented using multiplier and MF Cores .

By leveraging the performance results discussed in
Section VI-B and the power estimate metric presented in this
section, we calculated the power efficiency for our proposed
MulNet. The power efficiency figures are reported in Table 3
in GOP/sec per watt. This metric signifies the amount of
energy MulNet dissipates to perform each of the four bench-
marks across different bitwidth. We observed that the power
efficiency of MulNet increases with increase in computation
bitwidth for all the four benchmarks. On the other hand,
MulNet with MF core tends to show slightly better power
efficiency compared to cores implemented using multipliers.

VII. ALEXNET ON MULNET
All workloads discussed above and implemented to evaluate
MulNet are relatively smaller networks compared toAlexNet.
This section describes our strategy of utilizing MulNet to
compute AlexNet on XC7Z045 Zynq FPGA, and any deeper
networks in general. Since the main challenge of deploying
deeper networks in target FPGAs is the model size, therefore
we investigated the number of parameters for each layer

TABLE 4. Layer Tasks for AlexNet Convolutional Neural Networks on
MulNet.

in AlexNet architecture to devise an efficient deployment.
In MulNet scheduling, as discussed in Figure 7, computation
of each layer is completed before moving to the next layer.
Hence, the requirement in fitting a trained model is to fit
the layer with the higher number of weights in the network.
To accomplish that, we calculated the number of parameters
in each layer of AlexNet to see if the layer with the max-
imum number of weights can fit inside the on-chip memory
available in our targeted device. In AlexNet architecture there
are 34848, 614400, 884736, 1327104 and 884736 number
of weights in Conv1 to Conv5 layers, respectively. The total
available on-chip memory in our targeted FPGA device is
545 block RAMs with 36K bits per block. Hence, from
our analysis we found out that the number of parameters in
layer Conv4 can’t fit in the 545 blocks of on-chip memory.
As a result, we devised a technique of splitting this con-
volutional layer (Conv4) into two (Conv4_1 and Conv4_2)
separate tasks, so we can fit each layer’s (task’s) weights on-
chip. Table 4 shows this task division. It also shows each
layer’s input feature dimension, kernel size, number of MAC
operations, number of weights, and total model size of the
architecture with 32-bit representation. After splitting Conv4
layer, the maximum number of weights in a single layer is
884736 (inConv3 and inConv5) whichwe stored in 512 block
RAMs with 16-bit quantization. The lowest bit quantization
for AlexNet is chosen as 16 bits. This is because of a sig-
nificant drop in accuracy for 8-bit fixed point quantization
(38.6%) and below. For the sake of optimized hardware
computation, we split the weight tensor in the 4th dimension
i.e. from K × N × H × W into two K/2 × N × H × W
dimension tensors, where K is the number of filters with
H × W spatial dimension (height and width) and N is the
number of inputs. The splitting in the K th dimension is
selected in order to avoid extra accumulation (addition) oper-
ations in the 3D convolution that occurs if other dimensions
are chosen. The K th dimension splitting of weight tensor
results in two divided output features (1 × N/2 × H × W)
in the N th dimension. Due to implementation details, such
approach is also efficient in memory reading of the parame-
ters and memory writing of the feature maps.

As discussed in section IV-D, when full parameters and
features of the currently executing layer are larger in size
compared to the available on-chip memory we utilize a
scheme where we load L lines (rows + channels) of the
input features at a time. We followed the same approach
for implementing AlexNet using our proposed architecture,

47520 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 13. Input buffer reading sequence example with channel major
fashion (shown in different colors). A line represents one full row with all
its channels. In the first iteration (L1) three lines (3 × 8 × 7 = 168 pixels)
and in each of the following data reading iterations (L2 − L6) one line
(8 × 7 = 56 pixels) is loaded to On-chip memory.

Algorithm 2 Efficient Input Buffer Reading Algorithm with
ONE Memory Read Traffic for Each Pixel in Feature Maps.
Example Feature Map 7× 8× 8 which is shown in Figure 13
is used.
1 feature size = inputDim = N
2 Line = L = 3
3 linePerIter = 1
4 loadLinesToIBRAM(DRAM, L);
//Other configuration

5 if X < N then
6 if totalReadLines < N then
7 totalReadLines+ =linePerIter;
8 loadLinesToIBRAM(DRAM, linePerIter);

end
9 if Y < N then

//Other configuration
10 if ch < chIN then
11 processFullChannel(X, Y, ch);

end
end

end

MulNet. Figure 13 and Algorithm 2 illustrates this approach
of reading a certain portion of the input features from DDR to
on-chip memory. The main advantage of this input buffering
technique is that a pixel in a feature map (stored in DDR)
is read only once (and stored on-chip) for its computation
in the PL which significantly reduces the memory traffic
between the off-chip and on-chip memory. Figure 13 shows
a demonstrative example of our algorithm on 7 × 8 × 8
features. As shown in Figure 13, in the first iteration of
input buffering three lines of pixels are read, and in all the
subsequent iterations require to read a single line of pixels.
The input buffering iterations stops when the last line of pixel

is read. The number of lines read at a time are configurable
for each layer with the help of Algorithm 2 (line number 2 to
3 of Algorithm 2). The other constraints for selecting the
number of lines are as follows: 1) how many more block
RAMs are available after storing the layers weights; 2) the
kernel size of the layer and 3) the stride size. In the first
iteration at least a line greater than the kernel size has to
be read in order to compute the convolution over that filter
without reading features more than once. Similarly, the num-
ber of lines per iteration (the linePerIter in line number 3 of
Algorithm 2) should be greater or equal to the stride size of
the currently executing layer for the same reason. Lastly if
in the current buffering iteration, the available input block
RAMs (IBRAMs) are all occupied by the previously read
pixels, memory space of pixels whose computation has com-
pleted is overwritten by the currently read pixels. This itera-
tion continues until all pixels of the input features map are
read. Any other line variation is possible if it meets these
constraints. In our AlexNet implementation, we set L1 =
16 and linePerIter of 4 for Conv1, L1 = 4 and linePerIter of 2
for Pool1, L1 = 8 and linePerIter of 4 for Conv2, L1 = 8 and
linePerIter of 2 for Pool2 and L1 = 13 and linePerIter of 0
for Conv3 to Pool3 layers. Because of implementation details
(i.e. efficient in hardware) we select power of two numbers
except in the case of loading full feature maps on-chip (for
instance, 13 in our design).

The resource utilization of our AlexNet architecture
is shown in Figure 14. We acquire 545 BRAMs and
40 DSP48 blocks usage in 16-bit fixed point quantized
AlexNet implementation. Our MF implementation, as shown
in the last column of Table 5, uses 8-bit power-of-2 quan-
tization. This implementation consumes 274 BRAMs and
20 DSP48 blocks. The 8-bit quantized AlexNet is imple-
mented only using power-of-2 quantization as the accuracy
drop in that case is very minimal i.e. 1.16% compared
to the original trained 32-bit model. The performance of
16-bit fixed point quantized and 8-bit power-of-2 quan-
tized AlexNet using MulNet architecture in GOP/sec and in
GOP/sec/watt are comparable to the state-of-the-art methods
shown in Table 5. As shown in Table 5, our implementation
obtains 2.8x lesser on-chip memory requirement compared
to [18]. In our MF implementation (with power-of-2 quan-
tization) our architecture consumes 2x lesser on-chip mem-
ory in comparison to any best-case method available in the
literature, to the best of our knowledge. Comparison based
on DSP blocks shows that our architecture consumes 11.8x
lesser blocks compared to both [10] and [17], and 6.7x
lesser blocks compared to [18]. The power efficiency of
our implementation is calculated to be 86.15 GOP/sec/watt
and 88.49 GOP/sec/watt for WM and MF mode of MulNet
architecture, respectively. This power performance estima-
tion is calculated with the total power consumption of PL and
PS together. Moreover, MulNet achieves comparable perfor-
mance to other state-of-the-art implementation. Our results
show 1.26x, 1.02x and 0.844x better performance (GOP/sec)
compared to [17], [18] and [10], respectively. Therefore, our

VOLUME 7, 2019 47521

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

FIGURE 14. Resource Utilization of MulNet on AlexNet for 8-bit (power-of-2 quantization) and 16-bit (Fixed
point quantization) Computation with Multiplier-Free (MF) MAP Cores: FFs and LUTs are in x100 magnitude
and BRAMs are in x10 magnitude.

TABLE 5. Resource Utilization, Performance, and Power Efficiency Comparison of MulNet on AlexNet with Previous Works.

TABLE 6. Accuracy versus Bitwidth for MLeNet, CIFAR-10, and AlexNet for Originally Trained and Quantized Models with Fixed Point and
Power-of-2 Quantization Mode.

results objectively testify our claim of significant reduction
in utilizing resources, while maintaining at par performance
level.

VIII. ACCURACY EVALUATION
The accuracy of the proposed processor for different
bitwidth and quantization formats on MLeNet, CIFAR-10
and AlexNet workloads are shown in Table 6. The MLeNet
CNN is trained on MNIST dataset which is a dataset of hand-
written digits composed of 60,000 training 28×28 gray scale
images and 10,000 similar test images. As shown in Table 6,
the accuracy of the 16-bit and 32-bit fixed point quantized
model has very negligible drop of 0.08%. On the other hand,

the power-of-2 quantization results in 0.26% accuracy drop.
CIFAR-10 is trained on tiny images of CIFAR-10 dataset
which consists of 60,000 images of size 32×32 in 10 classes,
with 6,000 images per class. The dataset is divided into
50,000 training images and 10,000 test images. Similarly,
we trained CIFAR-10 network and computed 8-bit, 16-bit
and 32-bit fixed point, and 8-bit power-of-2 quantization.
The change in accuracy with respect to bitwidth changes
are also summarized in Table 6. As shown in the table, for
16-bit and 32-bit fixed point quantization, the accuracy drop
for the quantized model is very minimal with 0.7% and no
drop, respectively. In the same way, we trained AlexNet on
Cats and Dogs dataset from Kaggle [38]. The training dataset

47522 VOLUME 7, 2019

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

contains 25,000 images of dogs and cats with image size
of 227 × 227. The total computation workload and the num-
ber of weight parameters for AlexNet trained on this dataset
is analyzed in Table 4. We quantized the trained model using
8-bit, 16-bit and 32-bit fixed point, and 8-bit power-of-2.
As shown in Table 6, for 8-bit fixed point quantization the
AlexNet network does not perform well, with accuracy drop
of 38.6% compared to the 32-bit Caffe trained model. The
original Caffe trained model has an accuracy of 90.16%. Our
quantization has resulted in a negligible drop in accuracy for
32-bit fixed point quantization, 16-bit fixed point quantiza-
tion and power-of-2 quantization. Their respective accuracy
drops are 0.84%, 0.0% and 1.16%. Comparatively, MLeNet
is more resilient for lower bit quantization in both fixed point
and power-of-2 quantizationmodes compared to AlexNet and
CIFAR-10. On the other hand, AlexNet has smaller accuracy
drop compared to CIFAR-10 for power-of-2 quantization.
In summary, the accuracy drops from our proposed processor,
MulNet, is comparable or even better than other state-of-
the-art designs. At the same time MulNet gives the higher
resource utilization efficiency and offers flexibility across
different CNN architectures.

IX. CONCLUSION
A novel and highly flexible CNN processor architecture
that can compute most regular CNN variants with MF pro-
cessing cores aiming for attaining higher resource utiliza-
tion efficiency is presented. We formulated fixed-point and
power-of-2 quantization techniques to achieve a MF opera-
tion. We also devised a scheme that utilizes the processing
system (PS) formemory-centric layers and the programmable
logic (PL) for computation-centric layers. We implemented
Modified LeNet, CIFAR-10 Full, ConvNet Processor (CNP),
MPCNN, and AlexNet to evaluate our architecture. Our
results show promising performance of our proposed, Mul-
Net, with MF processing cores. It saves 36%-72% on-chip
memory and 10%-44% DSP48 IPs compared to MulNet with
cores implemented using multiplier. Comparison with the
state-of-the-art showed a very promising 25-40x DSP48 and
25-29x on-chip memory reduction with up to 136.9 GOP/sec
performance and 88.49 GOP/sec/watt power efficiency.
Hence, our results demonstrate that the proposed architecture
can be very expedient for resource constrained devices. One
limitation of our architecture is that for each CNN model
it requires customization of the design parameters to fit the
characteristics of MulNet. We plan to alleviate this limitation
by developing an automated framework (utilizing MulNet as
a template), that can generate a synthesized hardware IP using
an optimization algorithm over the network architecture and
the target FPGAwithout the need for designer customization,
and with an aim of achieving higher resource utilization
efficiency.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

pp. 436–444, May 2015.

[2] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[4] A. Ling and J. Anderson, ‘‘The role of FPGAs in deep learning,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017, p. 3.

[5] S. I. Venieris, A. Kouris, and C.-S. Bouganis, ‘‘Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future directions,’’
ACM Comput. Surv., vol. 51, no. 3, 2018, Art. no. 56.

[6] S. I. Venieris and C.-S. Bouganis, ‘‘fpgaConvNet: Mapping regular and
irregular convolutional neural networks on FPGAs,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 2, pp. 326–342, Feb. 2019.

[7] E. Wang et al. (2019). ‘‘Deep neural network approximation for custom
hardware: Where we’ve been, where we’re going.’’ [Online]. Available:
https://arxiv.org/abs/1901.06955

[8] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang. (2017). ‘‘A sur-
vey of FPGA-based neural network accelerator.’’ [Online]. Available:
https://arxiv.org/abs/1712.08934

[9] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry. (2018). ‘‘Accel-
erating CNN inference on FPGAs: A survey.’’ [Online]. Available:
https://arxiv.org/abs/1806.01683

[10] S. I. Venieris and C.-S. Bouganis, ‘‘Latency-driven design for FPGA-
based convolutional neural networks,’’ in Proc. IEEE 27th Int. Conf. Field
Program. Logic Appl. (FPL), Sep. 2017, pp. 1–8.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer (2016). ‘‘SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5 MB model size.’’ [Online]. Available:
https://arxiv.org/abs/1602.07360

[12] C. Shea, A. Page, and T. Mohsenin, ‘‘SCALENet: A scalable low power
accelerator for real-time embedded deep neural networks,’’ in Proc. ACM
Great Lakes Symp. VLSI. , 2018, pp. 129–134.

[13] H. Li, X. Fan, L. Jiao,W. Cao, X. Zhou, and L.Wang, ‘‘A high performance
FPGA-based accelerator for large-scale convolutional neural networks,’’
in Proc. 26th Int. Conf. EPFL Field Program. Logic Appl. (FPL), 2016,
pp. 1–9.

[14] J. Cong and B. Xiao, ‘‘Minimizing computation in convolutional neural
networks,’’ in Proc. Int. Conf. Artif. Neural Netw. Cham, Switzerland:
Springer, 2014, pp. 281–290.

[15] J. Qiu et al., ‘‘Going deeper with embedded FPGA platform for convolu-
tional neural network,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, 2016, pp. 26–35.

[16] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015,
pp. 161–170.

[17] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, ‘‘DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,’’ in Proc. ACM 53rd Annu. Design Automat. Conf., 2016, p. 110.

[18] Y. Ma, N. Suda, Y. Cao, J.-S. Seo, and S. Vrudhula, ‘‘Scalable and
modularized RTL compilation of convolutional neural networks onto
FPGA,’’ in Proc. IEEE 26th Int. Conf. Field Program. Logic Appl. (FPL),
Aug./Sep. 2016, pp. 1–8.

[19] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu. (2017).
‘‘AnOpenCL(TM) deep learning accelerator on Arria 10.’’ [Online]. Avail-
able: https://arxiv.org/abs/1701.03534

[20] Y. Umuroglu et al., ‘‘FINN: A framework for fast, scalable binarized neural
network inference,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2017, pp. 65–74.

[21] H. Yonekawa and H. Nakahara, ‘‘On-chip memory based binarized convo-
lutional deep neural network applying batch normalization free technique
on an FPGA,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Work-
shops (IPDPSW), May/Jun. 2017, pp. 98–105.

[22] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, ‘‘Optimizing loop operation and
dataflow in FPGA acceleration of deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2017,
pp. 45–54.

[23] J. Zhang and J. Li, ‘‘Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,’’ in Proc. FPGA, 2017,
pp. 25–34.

[24] R. Zhao et al., ‘‘Accelerating binarized convolutional neural networks with
software-programmable FPGAs,’’ in Proc. FPGA, 2017, pp. 15–24.

VOLUME 7, 2019 47523

M. T. Hailesellasie, S. R. Hasan: MulNet: A Flexible CNN Processor With Higher Resource Utilization Efficiency

[25] M. Hailesellasie and S. R. Hasan, ‘‘A fast FPGA-based deep convolutional
neural network using pseudo parallel memories,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[26] M. Hailesellasie, S. R. Hasan, F. Khalid, M. Shafique, and F. A. Wad,
‘‘FPGA-based convolutional neural network architecture with reduced
parameter requirements,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1–5.

[27] T. Mitchell,Machine Learning. New York, NY, USA: McGraw-Hill, 1997,
p. 997.

[28] Berkeley Vision and Learning Center. Accessed: Mar. 17, 2017. [Online].
Available: http://caffe.berkeleyvision.org/

[29] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, ‘‘Piecewise linear approx-
imation applied to nonlinear function of a neural network,’’ IEE Proc.-
Circuits, Devices Syst., vol. 144, no. 6, pp. 313–317, 1997.

[30] C. Farabet, C. Poulet, and Y. LeCun, ‘‘An FPGA-based stream pro-
cessor for embedded real-time vision with convolutional networks,’’ in
Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops (ICCV Workshops),
Sep./Oct. 2009, pp. 878–885.

[31] CIFAR-10. [Online]. Available: https://github.com/BVLC/caffe/tree/
master/examples/cifar10

[32] J. Nagi et al., ‘‘Max-pooling convolutional neural networks for vision-
based hand gesture recognition,’’ in Proc. IEEE Int. Conf. Signal Image
Process. Appl. (ICSIPA), Nov. 2011, pp. 342–347.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[34] Xilinx 7 Series FPGAs Block RAM, UG473 7Series Memory Resources.
Accessed: Oct. 2018. [Online]. Available: https://www.xilinx.
com/support/documentation/

[35] Zynq-7000 SoC Product. Accessed: Oct. 2018. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[36] S. I. Venieris and C.-S. Bouganis, ‘‘fpgaConvNet: A framework for map-
ping convolutional neural networks on FPGAs,’’ in Proc. IEEE 24th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2016,
pp. 40–47.

[37] H. Sharma et al., ‘‘From high-level deep neural models to FPGAs,’’
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2016,
Art. no. 17.

[38] Dogs vs. Cats Dataset. Accessed: Jan. 2018. [Online]. Available:
https://www.kaggle.com/c/dogs-vs-cats/data

MULUKEN TADESSE HAILESELLASIE received
the B.S. degree in electrical and computer engi-
neering from Addis Ababa University, Addis
Ababa, Ethiopia, in 2009, and the M.S. degree
in communications engineering from Ulm Uni-
versity, Ulm, Germany, in 2015. He is currently
pursuing the Ph.D. degree in electrical engineering
with Tennessee Tech University, TN, USA. From
2012 to 2015, he was a Research Assistant with the
Institute of Electron Devices and Circuits, Ulm

University. He joined Intel as an SoC Design Engineer, in 2018, as an Elec-
trical Validation Engineer, in 2017, and as a Product Development Engineer,
in 2016. Since 2015, he has been a Research Assistant with the Electrical
and Computer Engineering Department, Tennessee Tech. He has reviewed
peer-reviewed conference papers and journals for DAC, the IEEE ACCESS,
and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. His research interests
include applied AI, deep learning, architecture design for computationally
intensive workloads, low-power hardware design, field programmable gate
array (FPGA) design, and digital signal processing.

SYED RAFAY HASAN received the B.Eng. degree
in electrical engineering from the NED Univer-
sity of Engineering and Technology, Pakistan, and
the M.Eng. and Ph.D. degrees in electrical engi-
neering fromConcordia University, Montreal, QC,
Canada. From 2006 to 2009, he was an Adjunct
Faculty Member with Concordia University. From
2009 to 2011, he was a Research Associate with
the Ecole Polytechnique de Montreal. Since 2011,
he has been with the Electrical and Computer

Engineering Department, Tennessee Tech University, Cookeville, TN, USA,
where he is currently an Associate Professor. He has published more than
67 peer-reviewed journal and conference papers. His current research inter-
ests include hardware design security in the Internet of Things (IoT), hard-
ware implementation of deep learning, deployment of convolution neural
networks in the IoT edge devices, and hardware security issues due to
adversarial learning. He is a Full Member of Sigma Xi and a Life Member of
the Pakistan Engineering Council. He received the Postdoctoral Fellowship
Award from the Scholarship Regroupment Stratgique en Microsystmes du
Québec, in 2011, the Faculty Research Award from Tennessee Tech Univer-
sity, from 2013 to 2014 and from 2015 to 2016, the Kinslow Outstanding
Research Paper Award from the College of Engineering, Tennessee Tech
University, in 2015, and the Summer Faculty Fellowship Award from the Air
force Research Lab (AFRL). He was a recipient of the Sigma Xi Outstanding
Research Award, in 2012. He has received research and teaching funding
from NSF, ICT-funds UAE, AFRL, and Intel Inc. He has been part of
the funded research projects, as a PI or a Co-PI, that worth more than
$1.1 million. He is the Session Chair and a Technical Program Committee
Member of several IEEE conferences including ISCAS, ICCD, MWSCAS,
and NEWCAS, and a Regular Reviewer for several IEEE TRANSACTIONS

and other journals including TCAS-II, IEEE ACCESS, Integration, the VLSI
Journal, IET Circuit Devices and Systems, and IEEE EMBEDDED SYSTEMS

LETTERS.

47524 VOLUME 7, 2019

	INTRODUCTION
	PRIMER ON CONVOLUTIONAL NEURAL NETWORK (CNN)
	CONVOLUTIONAL LAYER
	POOLING LAYER
	FULLY CONNECTED(FC) LAYER

	FRAMEWORK OF MULNET
	MULNET
	ON-CHIP MEMORY UNITS
	PROCESSING CORES - MAP CORES
	INTERFACING WITH SUBSYSTEMS
	SCHEDULING TECHNIQUE

	QUANTIZATION
	EVALUATION AND STATE-OF-THE-ART COMPARISON
	RESOURCE UTILIZATION
	PERFORMANCE
	ON-CHIP POWER ESTIMATE

	ALEXNET ON MULNET
	ACCURACY EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	MULUKEN TADESSE HAILESELLASIE
	University. He
	SYED RAFAY HASAN

