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ABSTRACT In this paper, we dealt with some problems of operation and maintenance in wind farms.
We focused on the main critical aspects of any maintenance strategy, which must include the identification
of the plant elements to inspect as well as the planning of the possible actions aimed at minimizing production
losses. At the same time, any maintenance strategy must take into account the possible costs. In fact, those
decisions can be made based on risk-based methods. We designed a risk-based maintenance approach to
plan inspection tasks to be assigned to service robots in wind power plants. A supervisory control and data
acquisition (SCADA) system is employed to collect and manage suitable data (power, wind velocity, and
related machine events), and the risk is evaluated on a daily basis over the data collected. The evaluation
of the risk is strictly related to the healthiness of the power plant itself. Then, the tasks are created and
scheduled based on a certain priority, which is strictly correlated with the evaluated risk. For the analysis of
our approach, we used the real data collected on a wind power plant in Greece over 396 days. The power plant
is capable to produce an overall power of 7.2 MW, and it is composed of eight wind turbines of 900 KW
per each. We observed that, out of 396 days, 50 days presented machine events leading to a related risk
evaluation for which our approach will produce 258 inspection tasks. From this analysis, we conclude that
the application of the risk-based methodology paired with the exploitation of permanent robots on the field
could result in a 225-MWh reduction of the plant’s lost production, in other words, an increase of production

of 45.6%.

INDEX TERMS Renewable energy, wind plant, risk evaluation.

I. INTRODUCTION
Planning Operation and Maintenance (O&M) of wind tur-
bines is a relevant topic in the field of renewable energy
production due to the associated costs. It represents, in aver-
age, the 25% of the total cost. Indeed, about 2/3 of the
direct O&M costs are due to unplanned maintenance of faulty
components [1], since for wind turbines, component failures
are relatively common. Failure rates between 1.5 and 4 are
reported for onshore wind turbines in one year [1].

Most failures produce relatively short downtime but, on the
other hand, they occur with high frequency. Large failures
are rare, but they come with a long downtime and expensive
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repairs. Catastrophic events which cause the total collapse of
the turbine are even more rare but they are associated to large
economic losses.

Failures are due to deterioration processes of several com-
ponents, such as fatigue, wear and corrosion, for example
in welded connections, blades, bearings and gears. In those
cases, online monitoring or manual inspections allows oper-
ators to detect the deterioration in order to perform pre-
ventive maintenance instead of corrective actions after the
possible failure. Moreover, this approach must be supported
by a proper condition monitoring system, which must be
able to produce information on the health status of the com-
ponents [2]. In this context, the use of preventive mainte-
nance could potentially reduce the number of failures, then
the related costs. Indeed, in case of preventive maintenance,
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repairing operations costs are cheaper than ones related with
corrective maintenance, after actual failure is presented, due
to shorter down-times. At the same time, maintenance activ-
ities usually imply human resources as well as repair costs.
As a consequence, maintenance should be planned in order
to minimize associated costs.

There are various maintenance strategies aimed at mini-
mizing costs, for instance those which estimates the costs for
corrective maintenance by evaluating mean values [3] or per-
forming simulations [4]-[6]. However, for preventive main-
tenance, many of the methods proposed in the literature
do not properly consider real-time information available
from condition monitoring systems. Indeed, in most of the
approaches, preventive maintenance strategy is based on the
statistical analysis of available data where repairing activities
and related costs are also available. In fact, as we will show
in Section IV, real-time data collected into a CMS (Condition
Monitoring System) can be employed in order to obtain
prompt insights about the healthiness and the performance
of the power plant, as well as the related risk. Condition
Monitoring System means a system which enable monitoring
of specific equipment’s parameters or conditions. Indeed we
observed that cumulative daily under-performance, due to
technical inefficiencies, in a yea result in greater economic
losses compared to the ones related with the main failure
events. As a consequence a more profitable approach for
preventive maintenance should consider the costs associated
with real-time system under performance, rather than statisti-
cal ex-post analysis based on registered costs of the repairing
interventions.

Last but not least, in the last years robots such as drones and
rovers are taking an important role in performing inspections
of wind turbines [7]-[12]. The usage of robotic platforms
for maintenance is valuable due to the reduced costs w.r.t.
humans employment. For such a reason in the near future
robots will be permanently employed on each wind power
plant dealing with the necessary inspection and surveillance
tasks, minimizing the necessity of the human intervention
and the related maintenance costs as well as determining a
reduced number of expected failures.

In the scenario described above the maintenance processes
should be revised in order to add several levels of automation:
for instance in any wind park equipped with a reliable CMS,
the service robots should be directly engaged on the basis of
the power plant CMS data. In particular, the data coming from
the distributed sensors are collected at run time from a plant
SCADA (Supervisory Control And Data Acquisition), which
is capable to provide information about the health status of
the wind turbines such as analogical measures and machine
events. Risk based algorithms can be employed to associate
arisk level to each event, to be used for prompt generation of
inspection tasks with a given priority.

Based on the premises above, in this paper we describe a
Risk-based maintenance strategy capable to plan inspection
tasks to be assigned to service robots in Wind power plants.
The Risk is evaluated on a daily basis, in relation with the data
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collected in the wind power plant, where a SCADA system
is employed to collect and manage 10’ samples of analogical
signals related with wind energy production (Produced Power
and Wind Velocity) as well as digital data which are strictly
related to the healthiness of the power plant (machine events).
These two kind of data provide complementary information
which are strictly related. The analogical signals (power and
wind velocity) are used to evaluate, on a 10 minutes basis,
the amount of lost production against the nominal expected
values; this value is obtained by comparing data with the
characteristic curve of each wind turbine. Machine events
provide additional information about the status of each wind
turbine within a defined time interval between a start date and
an end date, specifying the specific machine alarm which is
cause of the event. Finally, from the risk evaluation point of
view, the system will produce proper inspection tasks that will
be sent to another system which will be in charge of managing
the execution of the received tasks, by controlling the robots
(scheduling, allocation of resources and control).

In order to validate the approach described in this work,
we performed an analysis on a dataset collected during a
period of 396 days (between April 2017 and May 2018) on
a Wind Power Plant located in Greece, which has an overall
power of 7.2 MW, and which is composed by 8 wind turbines
of 900 KW per each. We observed that, out of 396 days,
50 days presented machine events which led to a Risk evalua-
tion and the creation of inspection tasks. The cumulative Lost
Production of the 50 days is about 495 MWh. Based on the
risk factors computed on the given dataset and associated with
each turbine, a total of 258 daily tasks are being created by
the designed risk-based maintenance strategy for the entire
period. This analysis led to the final consideration that the
application of the risk-based methodology, paired with the
exploitation of robots on field, could result in a 225 MWh
reduction of the plant’s lost production, which led to an
increase of production of 45.6%.

Summarizing, the contributions provided by this work are
the following:

« our analysis confirm that operation and maintenance
strategies are needed to planning actions aimed at
increasing power plant production and reduce the overall
costs, which mainly consist on costs related to plant
technical inefficiency and repairing activities;

« we verified that condition monitoring systems can play a
key role to detect anomalies in time and exploiting pre-
ventive maintenance activities determining a reduction
of the corrective maintenance costs;

« our analysis implies that the permanent employment of
autonomous robots, operating in the power plant, can
maximize the effect of the preventive maintenance based
on data and events sent by the power plant itself, lever-
aging on the speed of the intervention and the reduced
activity cost;

« last but not least, risk-based algorithms relying on real-
time data can be used in order to dynamically define
priority of intervention on a live data-stream, without
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the necessity to find correlations with repairing interven-
tions made in the past.

This paper is organized as follows. Section II reports a
summary of the main related works. Section III provides an
overview of the proposed approach. Section IV thoroughly
describes the available Dataset. Section V provides a detailed
description of the Risk-based model development, while a
numerical example with the experimental results is illustrated
in Section VI. Finally, Section VII concludes the paper.

Il. RELATED WORK

The problem of scheduling maintenance and inspection oper-
ations has been studied for several years in a number of
different fields, power plant, wind farms, batch plants, and
so on. In this Section we cite some of the researches found in
the literature relevant to the approach proposed in our work.

In [13] the authors considers the problem of Power Plant
Preventive Maintenance Scheduling (PPPMS) to evaluate
which generators should stop their production work in order
to allow the operators to perform the necessary periodically
checks. The authors designed a model which is the result of
the integration of wind power plants or wind farms into a
traditional electric generating system which includes thermal,
hydroelectric, and nuclear power units, resulting in an opti-
mization problem. They also describe a case study based on
a real power system to validate the efficiency of the proposed
analysis.

Authors of [14] focuses on the preventive maintenance
scheduling as the need to know which generating units
should be disconnected for regular inspection for safety pur-
posed. As in [13], the problem is considered from the opera-
tions research perspective as a question of optimization. The
authors used Benders’ decomposition technique [15] to solve
the resulting model; they also provided an example on which
they employed the proposed algorithm in a real power plant
setting. The study resulted in the deployment of an efficient
organization of preventive maintenance for the considered
time-frame.

Another interesting work concerns the production schedul-
ing of multipurpose batch plants in the presence of equipment
failure uncertainty [16]. First of all, they integrate uncer-
tainty analysis within the production scheduling stage, such
that the probability of performing the resulting schedule is
improved and the complete rescheduling of the production
plan is reduced. In this manner, the authors could improve the
effectiveness of the reactive scheduling strategy each time a
deviation from the expected plant status occurred. Then, they
minimized the effects of equipment failure on the production
schedule by computing the reliability indexes for each plant
unit and for each scheduled task. They also considered the
relation between the employment of the equipment with low
reliability indexes and the production requirements, in order
to balance the two factors. Finally, they introduced predictive
maintenance strategy to compensate for possible delays pro-
duced by the use of the low reliable equipment, providing a
complete case study.
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A further approach related to wind energy production is
presented in [17], which focuses on the optimal operation of
wind farms through planning and scheduling of maintenance
operations. The authors analyze its impact on the turbine
availability as key components of the operational costs. They
introduced a formal model of wind farm maintenance, and a
technique to solve the optimization problem of maintenance
schedules along with an initial set of results and a number of
considerations for future research.

Authors of [18] have shown the advantages of a multi-
objective optimization approach over the conventional single-
objective approach for thermal generating units maintenance
scheduling. In particular, they proposed an optimization
model on the original multi-objective branch and bound algo-
rithm; they considered power system reliability maximiza-
tion, fuel costs minimization, and minimization of constraints
violations, along with a realistic example of annual mainte-
nance scheduling of 21 thermal generating units.

In [19] the authors discuss the importance of maintenance
in the industrial scenario as well as the development of
modern maintenance strategies such as the condition-based
maintenance (CBM) and the predictive maintenance (PrM).
They focused on the importance to assess the impact of
these strategies on the maintenance process. In particular,
they addressed an example concerning the stochastic crack
growth of a generic mechanical component subject to fatigue
degradation. They demonstrated that modeling and analysis
can provide information useful for setting a maintenance
policy.

Authors of [20] focused on the inspection planning in
electric power industry. In this case inspection is important to
assess the safety and reliability of system components and to
be able to identify potential failures in advance. The authors
demonstrate the use of a fuzzy relational database model for
obtaining an affordable “‘ranking” of components in thermal
power systems inspection planning. In particular, they incor-
porated different aspects concerning safety and reliability,
economy, variable operational conditions and environmental
impacts. They used fuzzy linguistic terms for criteria def-
initions, and exploited fuzzy inference mechanisms for the
operators’ expertise. They also illustrated the behavior of the
model, a case study is given using real inspection data.

In [21] a new method for calculating an optimal annual
maintenance schedule for the generating facilities of a power
system is presented. The authors focused on the minimization
of the expected annual production costs. They also selected
different objectives, like the optimization of the system reli-
ability. In order to reach their goal, they applied Integer
Linear Programming (ILP). They presented the mathematical
formulation as well as the results of calculations with the
new program; in particular they discussed the accuracy of the
results and the computational time needed to get the results.

IIl. COMPUTATIONAL AND ARCHITECTURAL MODEL
This Section describes the overall risk-based approach in
terms of computation steps needed to automate the process.
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FIGURE 1. Logical approach schema.

Figure 1 illustrates the several steps, from the data acqui-
sition for the power plant up to the daily inspection tasks
planning:

1y

The Plant SCADA collects and stores all the opera-
tional data produced by the sensors of the wind tur-
bines. In particular, for each turbine, measures, such
as wind velocity and power production, as well as
the related machine events such as grid curtailments,
turbines stops events and so on are collected on a
10 minute basis. Events and related classification will
be deeply described in Section IV-A. Measure data
provide complementary information about the events
in the field. Indeed, these measures are used to evaluate
(on a 10 minutes basis) the amount of lost production
against the nominal expected values, in relation with
the characteristic curve of each wind turbine. Machine
events provide run-time additional information about
the status mode of each wind turbine within a defined
time interval between a start date and an end date,
specifying the machine alarm which is cause of the
event.

which is articulated into the two green-colored com-
putational steps illustrated in figure 1:

o In the first phase, the Daily Pivot is used to
compute, on a daily basis, the number of occur-
rences and the probability of each classified event
against the others, as well as the lost production
associated to each event. This phase is described
in Section V-A.

o The second phase is represented by the task cre-
ation, it is described in details in Section V-B.
In order to focus on predictive maintenance
actions, in this phase, events related to occurred
faults and maintenance events are filtered out.
Then, on the remaining events which could hide
unexpected behaviors, a task is created and Risk
function is computed in order to define a priority
of intervention.

4) Each task, which is specific for wind turbine, is fed with

the related coordinates, latitude and longitude, so that
the task is ready to be assigned to a Service Robot on
field for the execution, as illustrated in Fig. 2.

IV. DATASET
Historical Data were collected from a Wind Power Plant
located in Greece, with an overall nominal capacity

2) Data is then analyzed and classified by the Utility
Classifier, as discussed in Section IV-B.
3) The next phase represents the core of the approach,
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FIGURE 2. Robot Inspector executing an inspection task on field.

of 7.2 MW, and composed of 8 wind turbines of 900 KW
of nominal capacity each. Measurements were recorded cov-
ering the period of April 01, 2017 - April 31, 2018, with
396 days of observations. Dataset includes a number of time
series related to each wind turbine, where each row repre-
sents an event, already classified with a specific cause, and a
related value of Measured Production and Lost Production.
We remark that a new event appears in the Dataset only
once it is concluded, presenting a final date and time, with
related cumulative values of measured production and lost
production during the event itself. This aspect will be taken
into account in section V-A.

We report in Table 1 a sample of the collected dataset:
each event includes the reference to the specific wind turbine
(1st column), Start and End date (2nd and 3rd columns),
Event duration (4th column), Event description and cause
(5th and 6th columns), Cause classification (7th column),
Measured Production and Lost Production (8th and
9th columns).

A. DATASET ANALYSIS

A preliminary analysis of the 1-year Dataset highlighted the
events classification, which was useful to extract the event
causes for the hole power plant, as follows:

o Cause class 100, “Automatic action’’ refers to quick tur-
bine restart because of local automation rules deployed
into the Plant SCADA.

o Cause class: 200, “Corrective unplanned maintenance”
refers to manual intervention from field operators,
in case of unexpected occurred failures.

o Cause class: 300, “Fault” refers to failures of wind
turbines which result in Turbine stops.

o Cause class: 400, “Grid Fault” refers to failure of the
Grid to which the Wind Plant is connected. This imply
that it’s not possible for the power plant to deliver energy
in the grid.

o Cause class: 500, “Preventive maintenance’ refers to
manual intervention from field operators, in case of
planned and recurrent activities.

o Cause class: 600, “Technical inefficiency” refers to
under-performance of the wind turbines for the given
period.
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o Cause class: 700, “To be reclassified’ refers to events
for which the default event classification could be
wrong.

o Cause class: 800, “Unknown” refers to events for which
a better investigation is needed.

The 1-year Dataset analysis allows us to make the follow-

ing considerations (see Table 2):

o The event causes for which an inspection activity can
help to identify anomalies aiming at prevent incoming
failures are Cause class from 600 to 800.

o The most of the under performances, in terms of lost
production, are related to technical inefficiencies.

B. UTILITY CLASSIFIER AND LOST PRODUCTION

As shown in Fig.1, the Dataset is produced by the Util-
ity Event Classifier, where an algorithm works on both 10’
samples measurements of Wind velocity and Power pro-
duction signals and Machine events produced by the Plant
SCADA. Those signals are both referred to each wind turbine.
The Classifier, leveraging on the measurements, computes the
power curve of the specific wind turbine model, that is
the characteristic curve of the wind turbine, taking as input
the Wind speed and as output the power.

Since each wind turbine power curve is characterized by
a certain statistical distribution (mean v and variance o),
we are able to define a confidence interval where a parameter
k defines the acceptance interval. Then, in order to classify
every registered values (V;, P;), where V represents the wind
level and P the registered power in the turbine registered
every 10 minutes, an efficiency analysis is carried out using
the following procedure. For each pair (V}, P;), and consid-
ered the wind bin values (i.e. wind power and velocity) that
approximates V;, two alternatives are possible, as follows:

e if (v — ko) — P; < 0, then the record is classified as
normal behavior of the operating WTG, since the bin
falls inside the acceptance interval.

o if (v — ko) — P; > 0 the record is classified as
abnormal behavior of operating WTG (stop or under-
performance), since it falls outside the acceptance
interval.

For each abnormal record, a value of “Power Loss” (PL)
is calculated w.r.t. the possible references, as Pj: PL = v; —
Pj, i.e. as the difference between the historical mean v; and
the power produced. The system then associates all the power
losses computed in a certain period of time to the resulting
event coming from the “machine events” data flow, which
is classified according to the desired utility classification in
relation with the nature of the event (i.e. the cause classes
defined in section IV-A).

V. MODEL

As discussed in Section III, the aim of this approach is
to automate the creation of daily inspection tasks (based
on the information given by the SCADA system) to be
assigned to service robots permanently hosted in a power
plant.
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TABLE 1. Dataset sample. M.P. = measured production. L.P. = lost production.

WTG | StartDate EndDate Dur. | Desc. Class CC | MP. L.P
1 2017/04/01 | 2017/04/01 03:00:00 | Not down- | Unknown 800 | 0.12 0.00
11:20:00 14:20:00 time
1 2017/04/01 | 2017/04/01 01:40:00 | Inefficiency | Technical In- | 600 | 0.10 0.13
14:20:00 16:00:00 efficiency
1 2017/04/01 | 2017/04/04 | 2.09:20:00 | Not down- | Unknown 800 | 2.76 0.00
16:00:00 01:20:00 time
1 2017/04/04 | 2017/04/04 07:10:00 | Inefficiency | Technical In- | 600 | 0.48 1.21
01:20:00 08:30:00 efficiency
1 2017/04/04 | 2017/04/06 | 2.00:57:24 | Not down- | Unknown 800 | 5.89 0.00
08:30:00 09:27:24 time
1 2017/04/06 | 2017/04/06 00:18:28 | Cable Automatic 100 | 0.00 0.00
09:27:24 09:45:52 twist- action
edRight 23
turns
1 2017/04/06 | 2017/04/07 | 1.13:24:08 | Not down- | Unknown 800 | 5.42 0.00
09:45:52 23:10:00 time
1 2017/04/07 | 2017/04/08 02:50:00 | Missing To be reclas- | 700 0.00
23:10:00 02:00:00 info sified
1 2017/04/08 | 2017/04/08 02:50:00 | Not down- | Unknown 800 | 0.64 0.00
02:00:00 04:50:00 time
1 2017/04/08 | 2017/04/08 00:10:00 | Inefficiency | Technical In- | 600 | 0.02 0.02
04:50:00 05:00:00 efficiency
1 2017/04/08 | 2017/04/08 00:10:00 | Not down- | Unknown 800 | 0.03 0.00
05:00:00 05:10:00 time
1 2017/04/08 | 2017/04/08 00:30:00 | Inefficiency | Technical In- | 600 | 0.04 0.07
05:10:00 05:40:00 efficiency
1 2017/04/08 | 2017/04/08 01:20:00 | Not down- | Unknown 800 | 0.17 0.00
05:40:00 07:00:00 time
1 2017/04/08 | 2017/04/08 01:40:00 | Inefficiency | Technical In- | 600 | 0.12 0.78
07:00:00 08:40:00 efficiency
1 2017/04/08 | 2017/04/08 00:10:00 | Not down- | Unknown 800 | 0.03 0.00
08:40:00 08:50:00 time
1 2017/04/08 | 2017/04/08 00:10:00 | Inefficiency | Technical In- | 600 | 0.01 0.02
08:50:00 09:00:00 efficiency
1 2017/04/08 | 2017/04/08 07:20:00 | Not down- | Unknown 800 | 0.24 0.00
09:00:00 16:20:00 time
1 2017/04/08 | 2017/04/08 02:50:00 | Missing To be reclas- | 700 0.00
16:20:00 19:10:00 info sified
1 2017/04/08 | 2017/04/08 04:20:00 | Not down- | Unknown 800 | 2.35 0.00
19:10:00 23:30:00 time
1 2017/04/08 | 2017/04/09 00:40:00 | Inefficiency | Technical In- | 600 | 0.17 0.25
23:30:00 00:10:00 efficiency

TABLE 2. Analysis of events and lost production. Ev. = events (number),
Ev.% = events (percentage), and L.p. = lost production.

Event cause Ev. | L.p. Ev. (%) | L.p.
(MWh) (%)
Automatic action 23 0.0000 2% 0%
Corrective unplanned 7 0.7835 1% 0%
maintenance
Fault 46 26.4028 4% 5%
Grid fault 2 0.0000 0% 0%
Preventive maintenance 8 0.0131 1% 0%
Technical Inefficiency 507 | 498.5400 49% | 95%
To be reclassified 91 0 9% 0%
Unknown 359 0 34% 0%
Total 1043 | 525,7393

Risks evaluation is mainly implemented into the Daily
Pivot component (see section V-A), which is used for calcu-
lating, on a daily basis, the number of occurrences and the
probability of each classified event as well as the lost pro-
duction associated to each event (as detailed in Section V-B).
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In particular, we consider those events for which an inspec-
tion would be useful to prevent incoming failures, in other
words already occurred faults and corrective maintenance
events are filtered out.

The Risk function is defined as in formula 1

R=P.-C=P.LP (1

Here P is the Probability of event occurrence and C the con-
sequence of that event. The consequence of considered events
are both technical and economical. In particular technical
consequences are related with bad performance in terms of
lower energy production against the expected one. That imply
also an economical loss, equal to the lost energy production
(MWh) multiplied by the unitary cost of energy (euro/MWh).

Probability P lies between 0 and 1, while the Lost Produc-
tion LP is a greater than zero, and the value is proportional to
the duration of the related event.

Then, since economic loss is computed from the per-
formance loss, we take into account only the independent
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TABLE 3. Average duration of events.

Event Cause Ev. | Avg. no. days
Automatic action 23 0.0122
Corrective unplanned maintenance 7 0,0320
Fault 46 0.0695
Grid fault 2 0.0003
Preventive maintenance 8 0.0046
Technical Inefficiency 507 0.0972
To be reclassified 91 0.0946
Unknown 359 0.5305
Total 1043 0.2417

variable performance loss, obtaining the last expression
of formula 1, where LP represents the value of Lost
Production (LP).

In a subsequent phase tasks are created. Tasks are specific
for wind turbine and are fed with the related coordinates,
latitude and longitude, so that each task is ready to be assigned
to a Service Robot on field. As detailed into section V-B,
task priorities will be based on the cumulative Risk
value.

A. DAILY PIvOoT
As already shown in Table 1, the Dataset consists of a
sequence of events with a Start Date and an End Date, with
a period which may vary from hours to few days. The goal
of creating daily tasks with a given priority — based on the
risk value associated to each event —is accomplished into two
steps performed per each wind turbine, as shown in Fig. 3.
Since each event appears in the Dataset only when it is con-
cluded, values of measured production and lost production
cannot be produced before its end. Then the event is simply
labeled with the day of the end date, as if it occurred entirely
in the day of the final date, as illustrated in in Figure 4. This
particular approach leads to an approximation which does
not impact on the event distribution along the days. Indeed,
it can be verified that the average duration of events is much
less than a day (see Table 3), as a consequence the daily
event allocation does not introduce relevant offsets w.r.t. the
original events distribution.
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Algorithm 1 Dataset Processing

Data: D: dataset of events, T: vector of type of events
Result: R: The risk vector for all kind of events
forall the ¢ in D do
et <— event_type(e);
Nlet] <— Nlet] + 1;
LP[et] <— LPlet] + 1;
end
tot_events <— 0;
forall the e in T do
| tot_events «— tot_events + N [et];
end
forall the et in T do
Plet] «— N{et]/tot_events;
R[et] «<— Plet] * LP[et];
end

More than one event of different classes can appear in the
same day on each wind turbine. In order to take this aspect
into account, we computed, for each single day, the proba-
bility of occurrence of every specific class of events against
the others, the correspondent cumulative values of Lost pro-
duction and, finally, the resulting risk values by formula 1.
At this regard, Algorithm 1 illustrates the simple com-
putations needed to calculate the risk for each class of
event.

The output of this computation is represented by a “Risk
Matrix” for each wind turbine as a Time Series, where a
Risk values has been computed for each event cause class.
A sample of the output, which refers to a single turbine
(WTG1), is shown in Table 4.

B. TASK CREATION

In the second step, we consider only those events which
could lead to incoming failures. Then, in order to enable
preventive maintenance activities, events related to already
occurred faults and maintenance events on field are filtered
out, and a cumulative value of Risk is computed per each wind
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FIGURE 5. Daily event allocation.
TABLE 4. Sample of Risk values computed for WTG1.
Time Cause Class
Day | Month | Year | 100 | 200 300 | 400 | 500 600 | 700 | 800
1 4 | 2017 0 0 0 0 0 | 0.0631 0 0
4 4 | 2017 0 0 0 0 0 | 0.6061 0 0
6 4 | 2017 0 0 0 0 0 0 0 0
10 1| 2018 0 0 | 1.8664 0 0 0 0 0

turbine by selecting the event cause class from 600 to 800:

> Rel))

cce{600,700,800}

CR() =

where CR(j) is the cumulative risk value for the wind
turbine j, and R..(j) is the risk related to the cause class cc
for the turbine j.

A sample of the computed cumulative risk —based on the
previous sample reported in Table 4 — is reported in Table 5.

At this point each turbine is associated to a set of values
of cumulative Risks for different days. A further step is rep-
resented by the construction of a matrix where each column
represents the cumulative risk of a given turbine, and each row
represents a single day. This step is represented in Figure 6
and labeled “merge”, and Table 6 represents a sample of
the computed cumulative risks for all the turbines: we can
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TABLE 5. Sample of cumulative risk values computed for WTG1.

Time
Day | Month | Year | Cum. Risk
1 4 | 2017 0.0631
4 4 | 2017 0.6061
6 4 | 2017 0
10 1 | 2018 1.8664

observe that there are days with no risk, as well as days with
risks for several different wind turbines.

At this point a number of tasks is created, where each task is
related to a cell of the risk matrix having a value different than
zero. In a next step, a priority is defined for each created task;
in order to assign priorities to the tasks, the daily cumulative
risks are properly sorted and a task object is created per each
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FIGURE 6. Task management.
TABLE 6. Matrix of cumulative risks for WTG1-WTGS.
YEAR | MONTH | DAY | WTGI | WTG2 | WTG3 | WTG4 | WTG5 | WTG6 | WTG7 | WTGS8
2017 8 1| 22759 | 24150 | 0.8877 | 1.1816 | 0.4599 | 1.9196 | 0.9395 | 1.4899
2017 8 2 | 1.5370 | 1.7438 | 1.3188 | 1.7493 | 1.6697 | 1.5257 | 1.6140 | 0.8180
2017 8 3
2017 8 4 0.0086 0.0152 0.0062 0.1312
2017 8 5| 1.6061 | 1.9729 | 1.9078 | 2.4265 | 2.5180 | 2.3938 | 2.5163 | 2.6090
2017 8 6 0.0086 0.0304 | 0.0799
2017 8 7 0.0086 0.0180
2017 8 8
2017 8 9 0.0060 0.0782
2017 8 10 0.0931
2017 8 11 0.0217 0.0169
2017 8 12 0.0966 | 0.0243 | 0.0785 | 0.1368 | 0.1329 | 0.1503 | 0.0365
2017 8 13 | 0.0067 | 0.0104
2017 8 14 0.1100 | 0.0106 | 0.0288 | 0.0068 0.0725
2017 8 15 | 1.6734 | 2.2022 | 1.9185 | 2.2958 | 2.4121 | 2.2801 | 1.9936 | 2.0091
2017 8 16 | 0.7552 | 1.1868 | 0.8109 | 0.8579 | 0.8620 | 0.7983 | 0.9021 | 0.7926
2017 8 17 | 0.1591 | 0.3496 | 0.1560 | 0.1735 | 0.1834 | 0.1333 | 0.2280 | 0.1366
2017 8 18 0.0230 0.0316 | 0.0053 0.0096 | 0.1048
2017 8 19 0.0096
2017 8 20
2017 8 21
2017 8 22
2017 8 23
2017 8 24 | 1.1853 | 1.3209 | 1.1595 | 1.4342 | 1.3260 | 1.4271 | 1.2437 | 1.0929
2017 8 25 | 2.9392 | 3.0015 | 2.9288 | 3.0360 | 2.8504 | 3.0144 | 2.8145 | 2.8901
2017 8 26 | 1.1177 | 1.2526 | 0.5952 | 1.0418 | 0.8708 | 0.2121 | 0.3189 | 0.1440
2017 8 27 | 0.1013 | 0.1365 0.0804 | 0.1714 0.0602 | 0.0135
2017 8 28
2017 8 29 0.0128 0.0115
2017 8 30
2017 8 31 0.0400
2017 9 1

wind turbine that presents a Risk, feeding it with the related
coordinates, latitude and longitude, as well as Priority and
Risk Value, so that the task is ready to be assigned to a Service
agent (e.g. a Robot) for the inspection on field. Table 7 shows
an example of the computed priority, where columns 4th-11th
represents the turbine numbers. Figure 7 represents a schema
of the information included in a task.

VI. DISCUSSION AND RESULTS

Here we briefly discuss the results obtained by applying the
approach detailed in Section V on the dataset described in
Section IV. Out of 396 days — which is the period of the
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available dataset — our approach selected 50 days having
events for which prompt inspections could bring results in
terms of evidences to be gathered from the service robot on
field, and a total of 258 tasks to be assigned for the hole Wind
Power plant (see table 8).

Those numbers does not take into account the effects of
the inspections and the related maintenance activity. Indeed,
if a robot detects an anomaly and a preventive mainte-
nance activity takes successfully place, the anomaly which
generated the event and the related task should not re-
appear for a certain time, reducing so the number of next
tasks.
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TABLE 7. Computed priority.

YEAR | MONTH | DAY | Lowest Highest
Priority Priority
2017 8 1 5 3 7 4 8 6 1 2
2017 8 2 8 3 6 1 7 5 2 4
2017 8 3 0 0 0 0 0 0 0 0
2017 8 4 0 0 0 0 6 2 4 8
2017 8 5 1 3 2 6 4 7 5 8
2017 8 6 0 0 0 0 0 4 7 8
2017 8 31 0 0 0 0 0 0 0 5
2017 9 1 0 0 0 0 0 0 0 0
TASK TASK
DAY 01/08/2017 DAY 01/08/2017
TASK PRIORITY TASK PRIORITY 2]
WIND TURBINE GENERATOR WIND TURBINE GENERATOR
RISK VALUE RISK VALUE
LATITUDE LATITUDE
LONGITUDE LONGITUDE
FIGURE 7. Sample of two first task objects on WTG 1 & 2, on 01/08/2017.
TABLE 8. Tasks generated.
Turbine WTG1 WTG2 | WTG3 | WTG4 | WTGS5 | WTG6 | WTG7 | WTG8 | Total
No. of generated tasks 29 35 28 38 31 26 34 37 258
TABLE 9. Avoided low performance.
WTGI1 WTG2 WTG3 WTG4 WTGS WTG6 WTG7 WTGS
Avoided LP 27,1 35 26 32 26,2 23,5 28 27,8
Total LP 58,5 71 54 67 63,3 58 59,8 62,7
Avoided LP% | 46,30% | 49,30% | 48,10% | 47,80% | 41,40% | 40,50% | 46,80% | 44,30%

In order to highlight this important aspects, let us assume
that, for each wind turbine, after 10 own related tasks of
inspection being performed by the robot inspector due to
detected anomalies, the anomaly which was cause of the
under-performance has been detected and resolved.

Indeed, there’s not assurance about the success of a single
inspection, in terms of visual detection of a mechanical prob-
lem which could be the cause of the future failure, leveraging
on robot’s equipment such as thermal imaging camera. In case
the problem is going to be persistent, it will generates frequent
alerts and related inspection tasks. The higher number of
inspections, in such cases, determine an higher probability
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to successfully detect the cause of the problem and determine
its resolution through a related maintenance activity.

It is reasonable also to assume that, once the problem has
been detected and resolved, it will not appear for the rest of
the year.

Then, it is possible to determine the percentage of avoided
Lost Production thanks to the assigned inspection tasks,
as shown in Table 9.

VII. CONCLUSIONS
Exploitation of permanent service robots hosted within wind

power plants, whose daily engagement for inspections is
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driven by a specific data driven strategy based on risk analysis
over Plant SCADA Data, could lead to an important reduction
of the plants lost production.

Risk-based algorithms relying on real-time data can be
used in order to dynamically define priority of intervention on
a live data-stream, without the necessity to find correlations
with repairing interventions made in the past.

Dataset analysis clearly reports that cumulative daily plant
under-performance due to technical inefficiencies in a year
result in greater economic losses compared to the ones related
with the main failure events. So an efficient Risk-based
strategy aimed at creating inspection tasks for preventing
incoming failures should be based mostly on prioritization
of intervention in relation with Technical inefficiency events,
managing priorities of intervention on the basis of the risk
values daily computed over all the WTGs belonging to the
plant. The proposed approach, validated over a 396 days
dataset collected by the SCADA of a Wind Power Plant
located in Greece, which has an overall nominal power
of 7.2 MW and which is composed by 8 Wind Turbines
of 900 KW per each, could lead to an increase of production
of 45.6%.

Future works could include the extension of this approach
also to a solar power plants. The main differences to be taken
into account is the fact that the solar power plant components
are distributed over a wide area, so inspection tasks should be
not related to a specific coordinates as for the wind turbines.
In that case a different logic shall be defined in order to define
portions of area to be inspected, mostly composed by solar
panels.

Future works could be also focused on the execution of
the inspection tasks once assigned to the execution manage-
ment system (EMS) in charge of manage the robots hosted
in the power plants. Indeed, tasks execution shall deal with
other daily optimization problems, such as providing robots
with the best dynamic paths to be followed for reaching the
assigned targets. This objective could include, but is not lim-
ited to obstacles avoidance, collision detection, robots battery
consumption, robots cooperation (in case of many robots) and
SO on.

Let’s assume to provide plants with more than one service
robot, and a certain number of base-station to be located
around the plant in order to both, gather data collected by
the robots and allow robots to recharge their batteries. Base
stations could act also as edge computing node, and receive
the tasks previously generated and prioritized from the cloud.

Each task is going to produce a list of operative jobs
for the robot, in order to perform the expected work, for
instance: - Send Confirmation Message: robot to confirm the
mission has been received; - Go-To-Point: robot to execute
the required actions to reach the target point and perform the
inspection of the related area; - Evaluate State of Charge:
robot to evaluate its remaining energy to eventually perform
other tasks/missions and share the info to the execution man-
agement system (EMS); - Return to Home: to allow the robot
to return to the base station, according to its state of charge;
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- Update Status: robot to communicate to the EMS that it is
available again for a new task execution.

A robot selection algorithm should be also implemented to
define the robot to which assign the task, once it is received
through a base station. The algorithm should verify the status
of each robot and the related availability, and proceed with
the evaluation of the task execution by minimizing a cost
function based on the distance between the robot and the task
inspection target point.
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