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ABSTRACT Relaxation helps to reduce physical, mental, and emotional pressure. Relaxation techniques
generally enable a person to obtain calmness and well-being by reducing stress, anxiety, or anger. When a
person becomes calm the body reacts physiologically, producing the so-called Relaxation Response (RResp)
which affects the organism in a positivemanner, nomatter if it is during a state of relaxation or in themiddle of
a stressful period. The goal of this paper is to design a system capable of identifying automatically the RResps
of a subject by analyzing a single physiological signal, the galvanic skin response (GSR). To do so, a team
composed of psychologists, neurologists, and engineers designed two experiments for inducing RResps in
the participants while their GSR signals were being collected. The team analyzed the data and identified three
different levels of RResp that can be quantified using only two easily calculated GSR features. Moreover,
the use of the surface produced by GSR and its linear approximation is totally novel. Finally, the data were
classified using decision tree strategies for each of the experiments and, after seeing that the obtained trees
were similar, the team synthesized them in a single classification system. The F1 values obtained by the
generalized classifier scored between 0.966 and 1.000 for the data collected in both experiments.

INDEX TERMS Affective computing, decision trees, electrodermal activity (EDA), galvanic skin
response (GSR), machine learning, relaxation response.

I. INTRODUCTION
According to the World Health Organization definition of
the term [1] ‘‘health is a state of complete physical, mental
and social well-being and not merely the absence of disease
or infirmity’’. In recent years there has been a shift in the
paradigm with regard to psychology and medicine focusing
health towards that state of well-being. This new perspective
is evidenced by the current tendency of tackling positive
variables and preventive attitudes instead of the negative and
pathological aspects that have been traditionally addressed in
the literature [2]–[5].

Backed by psychology, the new tendencies propose the
understanding and the strengthening of positive factors as a
method to enable individuals and communities to improve
their life quality, and, subsequently, as a tool to avoid the

The associate editor coordinating the review of this manuscript and
approving it for publication was Giovanni Angiulli.

pathologies that derive from adverse life conditions [6].
Relaxation techniques, among others, are one of the most
commonly used methods to achieve welfare [7]–[9]. In fact,
if mental or physical relaxation is achieved, particularly effec-
tive results can be obtained when seeking to improve some of
the most common problems of clinical psychology, such as
stress, anxiety disorders or depression [10]–[12]. Moreover,
it is thought that relaxation techniques present no undesired
side effects and that they produce a positive physiological
response in the human organism [13], [14]. Moreover, they
can be used just for the sake of improving life quality or
for self-knowledge without necessarily aiming to treat any
specific health problem [7].

The possibility to detect whether an individual is becom-
ing relaxed is evidently of interest when considering the
approach of using relaxation techniques as a tool to improve
personal welfare. Currently there exist biofeedback tech-
niques that allow experts to assess if a subject is becoming
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relaxed or not. Furthermore, if relaxation takes place, then
these techniques enable the experts to rate how strong that
relaxation is [15]–[17]. These techniques are based on col-
lecting, monitoring and interpreting the physiological signals
of the subject, a far from simple matter. Thus, they must be
used by an expert in this field.

When a person relaxes there are certain physiological
changes that take place in the organism producing what
Benson [18] called a Relaxation Response (RResp). RResps
are produced by an activation of the Autonomic Nervous
System (ANS). The ANS is composed of two main branches:
the Sympathetic Nervous System (SNS) and the Parasympa-
thetic Nervous System (PNS). As posed by Canon [19] the
SNS becomes active when the subject perceives a stimulus
representative of danger or alarm (known as the fight or flight
response). Therefore, the SNS becomes active during stress-
ful events and is inhibited either when these finish or during
relaxation. On the other hand, the PNS acts complementarily
to the SNS: it is activated during relaxation and inhibited
during stress [20]–[24]. Thus, RResps not only take place
during relaxation but also when a stressful event ends. Finally,
it is important to remark that people can react differently
to the same stimulus. This phenomenon may occur because
people have different perceptions of the environment which
can highly influence the cognitive perception produced by a
certain stimulus [25].

There exist several physiological signals that can be useful
to evaluate the state of the ANS and human emotions: respi-
ration, cardiac activity, sweating, eye pupil dilation, among
others [26]–[33]. At the same time, the organs that regulate
these signals can be innervated by different nervous branches;
for instance, the heart and the lungs are innervated by both
the SNS and the PNS. However, the sweat glands are exclu-
sively innervated by the cholinergic branch of the SNS and,
because of this, sweating is only affected by the activation
of the SNS. This particularity makes sweating a good signal
to show whether relaxation is taking place by detecting the
absence of SNS activations. The study presented in this work
was carried out using only the signal of the sweating. This
signal called Galvanic Skin Response (GSR) is also known
as Electrodermal Activity (EDA) or Skin Conductance (SC).
In addition to its capability to show relaxation, this signal has
the advantage that it can be collected noninvasively using skin
contact electrodes [34], [35]. Therefore, it is easy to collect
which is a great advantage both for the implementation of
a technological solution and towards the ease of use of that
solution from the point of view of the final users.

Different evidence indicates that it is possible to detect
different emotional states from the psycho-physiological
perspective using biosignals. There are articles in the
current literature that study states of relaxation using
biosignals [36], [37]. Other research papers focus on the
study of stress and use relaxation in order to compare its
parameters against those of stress [38]–[43]. Nevertheless,
this research team has been unable to find any work that
develops an automatic method for detecting RResps.

For this reason, this work proposes a supervised learn-
ing algorithm based on Decision Trees (DT) that allows
physiological changes towards relaxation to be automatically
detected by analyzing the GSR in 20s time windows. In addi-
tion, the algorithm not only detects these changes but also
classifies them depending on their intensity. This strategy has
already been used for studying medical and emotional pat-
terns due to the ease of interpretation of their rules [44]–[47].
Therefore, besides making the use of biofeedback techniques
easier for non-experts, it also helps to detect which relaxation
techniques work best for each individual and enables the
results obtained from relaxation techniques to be optimized.

In order to create the algorithm, this work proposes that
two features of the GSR signal are extracted in 20s windows:
the slope of the GSR and the surface area comprising the
difference between the GSR signal itself and its linear regres-
sion. This second feature is one of the main contributions of
this research as its use is completely new and, apart from
having great physiological significance, it has also a low
computational load.

As the problem analyzed in this work covers different areas
of engineering, medicine and psychology, it was necessary
to build a multidisciplinary team that encompassed all these
areas. Thus, all the experiments, analysis and developments
carried out during this research have benefited from the col-
laboration and supervision of the Department of Neurology
of the Cruces University Hospital, where a relevant research
line is focused on Parkinson diseases [48] and of the Instituto
Burmuin [49], a center of psychology of the Basque Country.

II. MATERIALS AND METHODS
This section presents the different stages of the study: the
experimental process, the analysis of the data and the con-
struction of the detection and classification algorithm itself.
The sequence of these stages is depicted in Fig. 1.

First, the methodology followed in the experiments will
be detailed and the required materials will be listed. After
that, the population that took part in the experiments and the
various databases collected will be presented.

After collecting the data there will be a data analysis phase
in which two types of analysis will be done. First the data will
go through a qualitative analysis looking to find relationships
between the changes and the trends of the GSR signal and
the emotional changes of the subject. Later, the collected data
will be quantitatively analyzed and the main features of GSR
will be parametrized in order to detect and quantify the inten-
sity of the RResps that took place during the experiments.

Finally, the section will end with the presentation of the
classifiers based on DT algorithms that enable the automatic
detection and classification of the RResps that took place in
the data collected from the experimental stage.

A. EXPERIMENTAL SETUP
When facing any data analysis problem, the first objective
is to build a database which is wide and varied enough so
that the study is generalized and significant. Thus, in order
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FIGURE 1. Sequence of the stages until the development of the algorithm.

to create such a database, the research team had to design
an experimental stage in which RResps could be induced in
the volunteers participating in the experiment while, at the
same time, the physiological signals of those participants
were being collected.

The current literature collects several relaxation techniques
that are able to produce an activation of the PNS and subse-
quently produce an RResp: meditation [13], [16], [17], con-
trolled breathing [50], listening to relaxing music [27], [28],
visualizing images [51] and videos [52]. . .Once again, it is
important to bear in mind that these responses also take place
when a stressful event finishes.

Hence, this research presents two different experiments
having both the intention of eliciting parasympathetic activa-
tion in the participants, and, at the same time, taking records
of their emotional states and of their physiological variables.
Aiming to tackle the problem from two perspectives, each
of the experiments will involve different relaxation tech-
niques and situations. Following this approach, two different
databases have been collected for each of the experiments that
will be later taken to analysis: a physiological database and a
behavioral database.

1) EXPERIMENT 1
In a previous study this research group built an algorithm
for detecting situations of human stress by means of phys-
iological signal processing. To do so, the team designed an
experiment (Exp1 from now on) whose goal was to induce
stress on the participants who had previously been taken to a
state of relaxation. It is considered that the databases collected
in that experiment are not only useful for the study of stress

but also to study and to search for the RResp dealt in this
work. After all, in this experiment, in addition to the SNS
activations of stress, RResp also take place in two kinds of
scenarios: there is RResp produced by relaxation techniques
and RResp produced by the ending of a stressful event.

This experiment is composed of three phases in which the
GSR and the heart rate variability (HRV) of the participants
would be constantly collected. Although only GSR will be
used for RResp detection, the team also considered to collect
the HRV as it would be useful as an extra support in the
labeling stage. The first phase consists in taking the subject
to a basal state of relaxation by watching a relaxing video
(2 minutes) that displays natural landscapes while relaxing
music is played. The second phase starts once the video has
ended. In this second phase the participants have to complete
a wooden 3D puzzle within 10 minutes. Finally, after those
10 minutes, the subjects watch again the relaxing video in
order to finish the experiment in a relaxed manner.

As said previously, in these experiments both physiological
and behavioral databases were collected. Hence, in order to
build the second, the researchers assessed the behavior and
emotions of the participants in different ways [30]. On the one
hand, based on direct observation, the registers were marked
with labels (M) at those moments at which a significant
event was detected (beginning of the puzzle solving phase,
a puzzle piece falling down, the subject finishing the puzzle,
taking a deep breath trying to relax. . . ). On the other hand,
once the participants had finished the experiment they were
asked to fulfil the SAM questionnaire [53]. Finally, in order
to confirm that the information collected by the other two
methods, the participants went through personal interviews
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where they were asked about how they had felt during the
three phases of the experiment. In those interviews they
were also asked about how they had felt in the moments
where the researchers had marked the registers. The aim
of these last questions was to confirm that the marks had
not been taken due to a misinterpretation of the researchers
and that the notes related to those marks were consistent
with the feelings of the participants. If there was a mismatch
between what noted and what the participants had felt, then
the mismatching mark would be removed from the register
to prevent false information from corrupting the behavioral
database.

The experiments were carried out in a laboratory equipped
so that four participants could take part at the same time.
In their seating place each participant found the consent sur-
vey they had to sign, a dismantled 3D puzzle, the instructions
of the puzzle and the data acquisition system. The signals
were collected using BIOPAC MP36 hardware (Biopac Sys-
tems Inc., USA) working at a 1000Hz sampling rate. The
data registers were created using Biopac’s Acqknowledge
3.7.1 software. Gel electrodes were used to collect the signal
and they were placed in the ring and little finger of the
non-dominant hand so that the electrodes caused as little
disturbance as possible when solving the puzzle.

The population undertaking the experiment consisted
of 166 participants (125 male and 41 female) aged
19-45 years old (mean = 22.8, SD = 3.1). All subjects were
engineering students at the University of the Basque Country
(UPV/EHU). Before doing the experiments thewhole process
had been approved by the corresponding ethical commit-
tee CEISH-UPV/EHU, BOPV 32 (M10_2016_189). Lastly,
prior to beginning the experiment, the researchers provided
the participants with an explanation on the experiment. The
participants were also told that all their privacy rights would
be preserved and that all laws related to these experimental
procedures were being respected [54].

2) EXPERIMENT 2
Aiming to do a more thorough analysis of all possible RResp,
the team designed a second experiment (Exp2) with the help
of the Instituto Burmuin. Instituto Burmuin is a psychological
medical center that workswithmostmodern neurophysiology
and biofeedback techniques in order to provide customized
assistance for different types of health problems.

In this second experiment the psychologists induced the
participants into relaxation using different techniques in
four stages giving an experimental time per participant of
12 minutes. First, subjects were taken to a basal state. Then
they were asked to breathe deeply at a certain pace displayed
on a computer screen. After that, they carried out attentional
breathing and lastly, with their eyes closed, they did guided
muscular relaxation. As in Exp1, both GSR and HRV signals
were collected throughout the whole experiment. In addition,
before and after the experiment the psychologist carried out
an emotional tracking of the participants in order to build the
behavioral database.

This second experiment took place in a room within the
installations of Instituto Burmuin. The room was equipped
with a single acquisition system, a computer and the consent
sheet for the sole participant of each experimental session.
The acquisition system used for this experiment was Pro-
Comp Infiniti System w/ BioGraph Software - T7500M set
up at a 256Hz sampling rate. As the participants did not need
to use their hands, this time the electrodes were placed in the
ring and middle fingers.

A total of 18 volunteers aged between 32 and 56 (mean =
40.22, SD = 9.14) participated in the second experiment:
4 male and 14 female. As with the first experiment, this sec-
ond experiment had already been approved by the corre-
sponding ethical committee and met all the criteria required
by the current regulations (CEISH-UPV/EHU, BOPV 32
(M10_2016_189)).

3) DATA PREPARATION
The last step of the experimental setup is to prepare the data
for the analysis, a particularly important stage if a machine
learning classifier is to be used. Preparing the data correctly
and dividing it into different subsets plays an important role
as there has to be total independence between the training and
test datasets: the decisions of the classifier could be biased if
this condition is not preserved.

First of all, the researchers took into account the nature and
structure of the experiment so that both the training and test
datasets contained instances from all the phases of the two
experiments. In addition, as the physiological signals were
going to be analyzed with a sliding window methodology
(explained in subsection II.C), the team took care of win-
dow overlaps and divided each participant’s data into smaller
partial data segments. Each segment was disjointed from the
others by discarding the time windows that overlapped with
the contiguous segments.

Finally, having the smaller disjointed segments 2/3 of them
were randomly selected for building the training database.
The remaining 1/3 of the segments were used for testing the
classifier. As the registers of Exp 1 and Exp 2 have different
duration, the segment length in each experiment was chosen
to be also different: Exp 1 segments had a duration of 115s
and the ones of Exp 2 lasted for 95s.

B. QUALITATIVE ANALYSIS
Once all the data had been collected the next step of the
research was to analyze the databases in a qualitative manner
in order to identify RResps in the GSR and associate them to
the different emotional states.

The sweating signal is composed of two main components:
the Skin Conductance Level (SCL) and the Skin Conductance
Response (SCR) [55]. The SCL corresponds to the slow
variations of the level of the signal and it is representative
of the cumulative humidity of the skin. On the contrary,
the SCR corresponds to the fast variations and it is the phasic
component which is representative of the SNS activations.
These activations of the SNS stimulate the sudomotor nerves
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FIGURE 2. SNS activations and inhibitions are reflected in the GSR
evolution.

that produce sudden bursts of the GSR signals. According
Benedek and Kaernbach [56] and Sugenoya, Iwase, Mano
and Ogawa [57], the amplitude of the SCR increases when
the SNS activations are greater. Therefore, as shown in Fig. 2,
it can be considered that SCRs are good indicators of the
presence and the intensity of SNS activations.

For this analysis it is also important to consider, as was
pointed out by Benson et al. [18], that when an RResp takes
place it is not the sympathetic part that becomes active, but the
parasympathetic. This makes the glands stop ejecting sweat
and the GSR decrease. A deeper physiological analysis of the
GSR signal reveals that an RResp will take place if the GSR
level is not increasing and depending on the dynamic of the
signal two conclusions can be reached. First, if the decrease
is maintained and linear it stands for a very relaxed RResp:
a clear SCL decrease can be observed in GSR signals. On the
other hand, the situations in which SCRs appear but the SCL
presents slight decreases stand for RResps that take place in
response to the ending of an stressful event.

Furthermore, it is important to bear in mind that, unlike
other physiological signals such as the heart rate, the base-
line value of the GSR it is not significant on its own. The
baseline value of the GSR depends on several factors such as
the ambient temperature, the gain of the acquisition system,
the device used to collect the signal, etc. With this in mind,
attention must be focused on the trends of the signal within
specific time windows: if there is sympathetic activation GSR
will increase and, if not, decrease.

Having laid out the premises for the physiological analysis,
the researchers studied the registers establishing relationships
betweenwhat happened in the physiological and in the behav-
ioral databases. To do so, Fig. 3 depicts the evolution of the
GSR of four different subjects, two of them belonging to
Exp1 (A and B) and the other two to two of the four stages
of Exp2 (C and D). In order to have unified visualization
criteria, all the signals have been resampled at a sample rate
of 1Hz and have been processed and plotted using Matlab R©

software. On the one hand, the signals of Exp1 clearly show
the different stages of the experiment: a first stage where the
relaxation video is shown, a second puzzle solving phase and
the final stage where the video is shown again. On the other
hand, it can be seen that the signals of Exp2 are shorter as the
experiment only consisted of a single relaxation stage.

FIGURE 3. Collected GSR signal registers. Subjects A and B belong to
Exp1 and subjects C and D to two of the four stages of Exp2.

A first analysis of the signals of Exp1 shows that the
responses of the 166 participants were different despite them
all having done the same test. This is due to the fact that it
is the perception of the subject (and not the stimulus itself)
that produces the emotional and the subsequent physiological
responses. For example, in Fig. 3, Subject A stated that he was
able to relax during both relaxation videos (intervals marked
with the dash-dotted line). This can be clearly seen in theGSR
as it decreases regularly without SCR reactions. However,
Subject B said that he had not been able to relax during the
first video because he was nervous and that he had only been
able to relax a bit during the second video but not as much as
he would have liked.

As well as collecting the impressions of the participants,
the researchers marked the registers with labels related to
RResp during the puzzle-solving phase. After checking that
what marked by observation was coincident to what the par-
ticipants expressed in the personal interviews it was time to
analyze the physiological signals in relation to the collected
label marks. These labels indicate that an RResp is taking
place due to the ending of a stressful event. For example, at the
time corresponding to label M1b the subject stopped trying
to solve the puzzle and took a break to breathe deeply and in
M1a the researchers could see that the subject felt like giving
up the puzzle-solving. M2a and M2b show other examples
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of this type of situation. Therefore, it seems obvious that a
great part of the information collected from the experiments
is related to psychological aspects and hence the importance
of collecting the behavioral databases is confirmed.

Regarding Exp2, the records of the experiment also show
interpersonal differences. A clear and constant relaxation can
be observed by looking at the signal of subject C. How-
ever, the signal of subject D shows eventual sympathetic
activations that produce SCR which proves the RResp is not
maintained despite the subject experiencing a general a trend
towards relaxation.

After the analysis of both databases (which took into
account the physiological signal dynamics, the linguistic
expressions used by the participants in the reviews, etc.)
the researchers and the experts agreed to catalogue three
labels for relaxation states: ‘‘Low Relaxation Response’’
(LRResp), ‘‘Medium Relaxation Response’’ (MRResp) and
‘‘High Relaxation Response’’ (HRResp). In addition, they
also decided to include a label representing the states
in which no relaxation is happening: ‘‘No Relaxation
Response’’ (NRResp).

C. QUANTITATIVE ANALYSIS
This section will present the different approaches used for the
analysis of GSR and that have enabled the extraction of the
features that characterize GSR in relation to the RResps.

When analyzing a signal it is crucial to bear in mind
its nature. Like most physiological signals, GSR is a non-
stationary signal and its characteristics vary over time. Hence,
the analysis of the signal has to be independent from the
specific time interval in which the signal is going to be
analyzed.

A common approach when analyzing these types of biosig-
nals is an analysis based on sliding time windows [29], [37]
The windowing of a signal consists in segmenting it in fixed
time intervals and to extract the features of the signal for each
of those fixed intervals. Thus, choosing the proper window
length plays a key role when interpreting the meaning of
the obtained results. Depending on the nature of the signal,
the required window length may differ: it is crucial to find
a suitable compromise so that the window is long enough
to give the sufficient amount of information. But, at the
same time, the window has to be short enough so that the
signal processing does not have a substantial computational
cost and so that the desired statistical results do not get
distorted. In previous researches of the literature the size
of the windows used to analyze GSR varies between 10s
and 300s [29], [37], [58], [59]. In order to give continuity
research line stated in [30], in this study the researchers have
decided to use a 20s window sliding every 5s as it provides
a sufficiently large setting to obtain information about the
nervous system activation while not being very temporal and
computationally costly. In addition, as mentioned in a review
of the state of the art of GSR processing in [60], choosing such
a window size has its own physiological reason: ‘‘features
extracted from the tonic component express the sympathetic

tone and are often computed within time windows of 20s,
since the upper cut-off frequency of the tonic component is
about 0.05 Hz’’. Therefore, the chosen window size permits
to study not only the phasic component (SCR) of the GSR but
also the tonic component (SCL) and even to combine both to
create more powerful features as the new one presented in this
work.

The qualitative analysis carried out with the help of the
experts on neurology and psychology was crucial for defining
the features that represent the RResp as simply and clearly as
possible. The selected features are, on one side, the slope of
the GSR (sGSR) within the window and, on the other side,
the surface area (aGSR) produced by the linear regression
of the GSR and the GSR itself (being both signals normalized
within the analyzed window). The graphical representation of
the two features (sGSR and aGSR) is depicted in Fig. 4.

FIGURE 4. The features extracted in each time window: GSR slope and
surface area.

Although several research have already used the
sGSR [61] and other GSR features related to emotions
and stress ([60], [62], [63]) the design of the second fea-
ture (aGSR) is one of the main contributions of this research
as it is innovative, has a low computational cost and because
it is independent from the subject, the acquisition system
and the environmental conditions. Other researchers have
worked with different features such as statistical parameters,
increments, nonnegative convolution, frequential features,
areas under the curve, etc. ([37]–[40], [56]). Most of the
studies that imply the use of areas in GSR decompose the sig-
nal to obtain the phasic and tonic components. After the
decomposition they analyze the areas of those components
separately [64], [65]. Some others analyze the area under the
raising half part of SCRs [66], [67]. Nevertheless, to the
extent of the authors’ knowledge, what done for proposed
aGSR feature has not been previously used in the literature
as it takes the signal as a whole for calculating the linear
regression and does not need any component decoupling.

RResps correspond to parasympathetic activations and to
sympathetic inhibitions, and, as previously explained, there
can be relaxation responses even if SCRs take place. Taking
this into account, it is possible to conclude that the GSR
will oscillate vigorously around its linear regression if several
SCRs take place. On the contrary, the shape of the GSR will
be very close to its linear regression if no SCRs take place
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(glands will not eject any sweat). Therefore, it is possible
to conclude that the closest to a straight line the GSR is,
the deeper the RResp. This statement justifies the use of the
proposed feature (aGSR) as a good indicator of the proximity
of the GSR signal to its linear regression and, subsequently,
as an indicator of the intensity of RResps: the aGSR value
will be smaller if fewer SCRs take place.

III. RESULTS
First, this section presents the comparison between different
classifying algorithms bymeans of which the authors decided
to use Decision Trees (DT) for the detection system presented
in this work. The authors used 2/3 of the data from Exp1 and
Exp2 to train the algorithms and saved the remaining 1/3 for
testing them and to calculate their performance indicators.

In addition, after justifying the use of DTs for being the
best option for this case, this section presents the synthesized
classification rule system that was built as a consequence
of the rules and performances of the DT classifiers built for
Exp1 and Exp2 being similar.

A. CLASSIFIER ALGORITHM SELECTION
Before building the automatic RResp detection system it
was necessary to label the signals to indicate the different
relaxation states that appear. Thus, the experts analyzed in a
random order the physiological (includes both GSR and HRV
signals) and behavioral databases and labeled the GSR sig-
nal with the aforementioned four labels: LRResp, MRResp,
HRResp and NRResp. This way, every analyzed window of
the signals was related to a relaxation state label and to certain
physiological feature levels, all of which were used as inputs
to the classification system.

First of all, the main labeling process was done by a
research team member with knowledge on both human psy-
chology and physiology. After that, experts (psychologists
from Instituto Burmuin and neurophysiologists from Cruces
University Hospital) did a thorough analysis labeling the data
and marked the points where they disagreed to what labeled
by the previous expert. The expert team had already worked
with the research team in previous work [30] and has wide
experience dealing with this kind of signals. Finally, all the
experts gathered together to discuss about the database and
to reach general consensus on the labeling.

Having labeled the data, the team used the data from
Exp1 and Exp2 to train and test different types of clas-
sifiers with the intention of choosing the best for detect-
ing RResps. Using Weka platform [68], the team compared
the performance indicators of the following 12 classifica-
tion algorithms: 1R rule, Decision Tree (DT), k-NN (1-NN
and 5-NN), Naive Bayes (NB), Radial-Basis Network (RBF),
Support Vector Machine (SVM), Logistic Regression (LR),
Ada Boost (AdaB, combining 10 decision trees), Bagging
(Bag, combining 10 decision trees), Random Forest (RF)
and Multi-Layer Perceptron (MLP). The authors chose these
algorithms for being the state of the art in machine learning
and because they belong to different paradigms: rule based,

tree based, distance based, probabilistic, function based and
ensemble of classifiers. All these algorithms were tested
using Weka’s default parameters and settings.

The performance of a classification system can be given by
three statistical indicators: the Precision (P), the Recall (R)
and the F1 score [69]. These indicators are defined by (1), (2)
and (3), which are calculated using the values of: True Pos-
itives (TP), False Positives (FP) and False Negatives (FN).
All the three performance indicators are bounded in the [0, 1]
domain, being 0 the worst result possible and 1 the best.

R = TP/(TP+ FN ) (1)

P = TP/(TP+ FP) (2)

F1 = 2 · P · R/(P+ R) (3)

The statistical results of the 12 algorithms for both
Exp1 and Exp2 can be seen in Table 1. Looking at the
results, it can be seen that the algorithms based on trees
are the ones that perform the best with very similar results.
Therefore, the authors chose to use DTs [70] for their sim-
plicity and because they have explanatory properties (unlike
the other tree based algorithms). This is a big advantage
as it makes it possible for clinicians who are not experts
in classifying algorithms to understand the boundaries of
the selected features and their meaning related to relaxation
responses. Moreover, using DTs also permitted the authors
to merge the rules obtained from the two experiments and
create the new synthesized set of rules that will be presented
in the next subsection. The DTs used in this work, which
were obtained usingWeka’s default setting, correspond to the
C4.5 (J48 pruned tree) algorithm.

TABLE 1. Comparison between different classifiers.

B. SYNTHESIZED RULE SYSTEM
First, as DTs had been chosen as the best option for clas-
sifying the different states related to RResps, the authors
considered interesting to make a deeper analysis of the trees
obtained for each experiment. The rules that were obtained
from the training phase are those presented in Fig. 5, where
aGSR and sGSR respectively stand for the area and the slope
within the analyzed windows of the GSR signal.
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FIGURE 5. The sets of rules extracted from the decision trees for each
experiment.

As shown in Fig. 5, certain decision rules have been
marked within differently shaped color boxes. The reason for
these distinctions is that these rules are the ones considered
to be the most important when classifying and choosing the
label best suited for the input features. Given their impor-
tance, these rules have been chosen to build the synthesized
classification system that will be useful for detecting and
classifying the RResps of both Exp1 and Exp2.

Then, the authors decided to check how the DT classifiers
performed for each RResp level. The class dependent perfor-
mances of the classifiers can be seen in Table 2. The first two
columns of Table 2 present the labels for the different states
and the number of times the experts have labeled them in
each of the experiments. The second block, composed of six
columns, shows the values obtained after using a DT specif-
ically built for each of the experiments. In addition, in order
to measure the stability and sensibility of the algorithms,
the third block (also consisting of six columns) gives the
results obtained after crossing the DT classifiers. This means
that the DT built for Exp1 was used with the data of Exp2 and
vice versa. Finally, the rows named as Exp1 and Exp2 provide
the averaged results obtained by the two classifiers. These
averaged values have been calculated byweighting the results
according to the number of cases of each label.

After observing that the results obtained by crossing the
classifiers were very good and that the decision rules of both
DTs were similar, the researchers decided to group and unify
them in a single synthesized system. To do so, the team
studied both sets of rules with the help of the experts and
decided that the rules that had greater importance were those
highlighted in Fig. 5. Then the team studied the intersections
of the rules belonging to the same labels and finally built the
unified rule system presented in Table 3.

The values that define the rules of Table 3 have been
obtained by calculating the average feature values of the
highlighted rules that are similar in both experiments and that
lead the classification to a same label. Then, for the sake of
simplicity, those averages have been rounded to get a number
with two decimal digits. For example, in the case of LRResp,
taking the feature values highlighted in red in Figure 5,
the rounded average values of aGSR and sGSR are calculated
as shown in (4) and (5) respectively.

aGSR = (aGSRExp1 + aGSRExp2)/2

= (0.1997+ 0.2032)/2 = 0.2014 ≈ 0.2 (4)

sGSR = (sGSRExp1 + sGSRExp2)/2

= −(0.3000+ 0.3014)/2 = −0.3007 ≈ −0.3 (5)

In addition, it is important to note that regarding HRResp,
there are situations that are only considered by the tree

TABLE 2. Statistical indicators of the results of the DTs for each experiment and crossing the classifiers.
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TABLE 3. The set of decision rules of the unified classification system.

TABLE 4. Performance indicators of the unified classification system.

designed for Exp1: when sGSR> −0.04861 ≈ −0.05 and
aGSR≤0.03999≈0.04. In order not to leave these situations
out of the consideration of the new system they have been
added to the other rules by means of a logic OR (see Table 3).
The results of the new unified system, shown in Table 4, were
better than the ones obtained by the experiment specific DTs
of Table 2.

After checking the performance measures of the unified
system, the researchers decided to evaluate the system’s
behavior over time. This performance can be seen in Fig. 6,
where the signals of subjects A and B correspond to two
participants of Exp1, and C and D to Exp2. For each subject
two signals are being shown. The first signal, in green, is the
GSR of the subject and the second, in blue, corresponds to the
output of the unified classification system. This output of the
system is updated every 5s (the sliding window step size) and
it gives a discrete output that goes from 0 to -3 in unitary steps.
Each of the four output levels corresponds to one of the RResp
labels that were presented in Subsection 2.2: NRResp = 0;
LRResp = −1, MRResp = −2 y HRResp = −3.

The graphs of Fig. 6 show that during relaxation events the
output of the classifier corresponded to medium (−2) or high
relaxation (−3) RResp values. The classifier gave−2 and−3
outputs for participant A during the relaxation videos and
during the relaxation events marked by the researchers. In the
case of subject B the classifier gave the same outputs during
the second relaxation video and in the marked relaxation
event labels. Regarding Exp2, subject C relaxed through-
out the whole experiment. Nevertheless, subject D found
it hard to relax at the beginning of the experiment (as he
pointed in his personal interview) and he was not able to
achieve a state of relaxation until approximately 60s had
passed.

FIGURE 6. GSR biosignals (top) and outputs of the unified classification
system (bottom). Subjects A and B correspond to Exp1 and
subjects C and D to two of the four stages of Exp2.

IV. DISCUSSION
Relaxation is a state of the body that produces both physical
and psychological benefits. Historically, relaxation has been
mainly studied from the perspective of psychology. To date,
a few studies have worked on the automatic detection of emo-
tions and have also studied relaxation. Nevertheless, most of
these have focused on comparing relaxation against stress and
then statistically comparing them. Thus, the studies specif-
ically focused on automatically detecting when a subjects
starts to relax are practically non-existent.

However, the benefits of positive psychology and relax-
ation are well known among professionals of medicine and
psychology. Therefore, the number of researches and publi-
cations on this subject has vastly increased in recent years.
Following this trend and offering a solution to a problem
which, to the extent of the authors’ knowledge, has not yet
been dealt with by the literature, this work proposes an inno-
vative method for automatically detecting RResps and for
technologically supporting the new types of preventive mea-
sures of medicine and psychology that also have therapeutic
properties.

This work has followed a methodology in which GSR
signals have been collected during two types of experiments
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specifically designed to elicit RResp in the participants, not
only in deep relaxation situations but also as a response to
the ending of a stressful event. The methodology has been
supported by professionals from the fields of medicine, psy-
chology and engineering throughout the experimental, data
analysis and algorithm building processes.

The study of the nature of the GSR signal and the psycho-
physiological responses of the participants taking part in
the experiments resulted in the classification of relaxation
with four different labels: NRResp, LRResp, MRResp and
HRResp. The detection of these four different relaxation
states has been achieved by analyzing exclusively the GSR
of the hand using 20s windows with 5s sliding steps. The
approach of using the surface produced by the GSR and
its linear regression is one of the main contributions of this
research. The benefits of using this feature are that it is not
computationally costly and that it has high physiological
significance. In addition, its robustness has been proven by
the strong results obtained in two experiments whose goals
were completely different: the first was aiming to produce
stress while the second targeted relaxation.

Finally, DT techniques have been used to classify the relax-
ation patterns that take place in the human organism. Initially
the researchers built a DT specifically for each of the exper-
iments but after analyzing the results decided to unify them
in a single synthesized system. The comparison between the
results of Table 2 and Table 4 shows that the new unified clas-
sifier obtained better results than the specific DT algorithm
for Exp1 (F1_GENERALISED= 0.994 vs F1_DT = 0.990)
and the same results for Exp2. This improvement is due to
a modification in the rule that stated that any GSR slope
beneath 0.000021 corresponded to theHRResp state. The rule
was modified by adjusting this value to 0 and this enabled
the number of false positives to be reduced from 20 to 0 in
Exp1 and from 1 to 0 Exp2. In addition, the new unified
system also improved the classification of LRResp states in
Exp1 reducing false positives from 15 to 12 cases.

V. CONCLUSION
This study presents a Decision Tree (DT) technique based
classification method for detecting the entrance in personal
relaxation states, also called Relaxation Responses (RResp).
This classifier uses only two inputs to the system being both
features extracted from 20s windows of the Galvanic Skin
Response (GSR) signal: the slope of the GSR and the surface
area produced by the GSR itself and its first order regression.
The study presents the experimental methodology followed
and the data analysis stages so it is possible to reproduce
the same scenario faced by the researchers. The proposed
set of features and classification algorithm has the following
properties:
• The features have low computational cost and have great
significance from a physiological perspective. There-
fore, they are suitable for different types of situations as
were the two experiments presented in this work.

• The proposed system is robust to changes in the acqui-
sition system, such as the signal collection sensors or
signal conditioning gain.

• The algorithm is capable of classifying three dif-
ferent levels for the detected RResps depending on
their intensity and a null level for the absence of
RResps.

• As it is based on DT techniques, it is easy to interpret
how the classifier takes decisions regarding classifica-
tion. In addition, it is also easy to modify the decision
rules in order to fine-tune the algorithm or to adapt it for
other situations.

A future approach for this work would be to modify
the classification algorithm to differentiate between different
types of RResps, i.e., if the detected RResp corresponds to
the ending of a stressful event or if it is produced by the
application of relaxation techniques. In addition, the authors
see expanding the study to populations of different ages as
an interesting future approach. Most of the registers of this
work corresponded to young people. Therefore, it would be
interesting to test the performance of the proposed features
and classifiers with data collected from people of other ages
as their physiological reactions could be different. Another
future line is to implement the proposed algorithm in a
portable hardware solution so that it could be easily used by
a hypothetical final user.
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