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ABSTRACT Research on emotion recognition has recently started to gain increased attention. Inner
emotions or thought activity can be determined by analyzing facial expression, behavioral responses,
audio, and physiological signals. Facial expression is now recognized as an important form of non-verbal
interaction. In this paper, emotion-specific activation maps were constructed to establish infrared thermal
facial image sequences as an alternative approach to the determination of the correlation between emotional
triggers and changes in facial temperature. During the testing process, data stored in the International
Affective Picture System were used to create emotional clips that triggered three different types of emotion in
the subjects, and their infrared thermal facial image sequences were simultaneously recorded. For processing,
an image calibration protocol was first employed to reduce the variance produced by irregular micro-shifts
in the faces of the subjects, followed by independent component analysis and statistical analysis protocols
to create the facial emotional activation maps. The test results showed that the problem of selecting local
regions when analyzing frame temperature had been resolved. The emotion-specific facial activation maps

provide visualized results that facilitate the observation and understanding of information.

INDEX TERMS Thermal image, independent component analysis, periorbital region, activation map.

I. INTRODUCTION

In recent years, numerous investigations of observable
expression recognition have been made [1]-[3]. However,
involuntary happiness, anger, sadness, or other emotion can
be concealed, easily causing misinterpretation of emotions.
In addition, expression recognition may also be influenced
by environmental lighting and facial posture [4], which can
also cause errors in system recognition. In response, studies
were started using infrared thermal images to reduce the
influence of lighting on emotion response recognition [5], [6].
Methods to observe temperature changes in facial regions
under different emotional stimuli have been proposed, and the
results of applying these have been reported. Pollina et al. [7]
reported a polygraph study based on temperature changes in
the orbital region, and the results showed that polygraphs
and temperature changes were related. The researchers also
asserted that temperature changes between the left and right
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sides of the face are different, highlighting that tempera-
ture changes of the periorbital region are correlated to psy-
chological status. Nhan and Chau [8], [9] used infrared
thermal facial image data to elucidate the feasibility of clas-
sifying affective states. The researchers contended that the
continuous temperature signals from the nasal and perior-
bital region exhibit significant temperature changes, ren-
dering these signals ineffective for determining a correla-
tion between the temperature results of facial regions and
emotions. Shastri et al. [10] analyzed wavelet energy and
found an increased significance in the correlation between
the temperature of the periorbital region and emotions upon
audio stimuli. Gane et al. [11] analyzed temperature changes
elicited in the periorbital region upon an auditory startle stim-
ulus. The results showed no significant correlation between
the auditory startle stimulus and the periorbital region. The
researchers suspected that these results were attributed to
the fact that the audio stimuli did not startle the subjects.
A summary of previous research results shows a relatively
high correlation between emotions and temperature in the
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periorbital [12]-[14] and nasal regions [14], [15]. The results
confirmed subtle changes in the facial temperature when
specific emotions were successfully triggered. Jian et al. [16]
analyzed the facial temperature in five locations of mod-
erately ill and significantly ill schizophrenia patients. The
successful response was significantly different between the
two groups. However, these studies used methods to deter-
mine sequential changes in the average temperature of spe-
cific facial regions to elucidate the correlation between facial
temperature and emotion. However, there was no completely
successful solution to the problem. When analyzing sequence
imaging, the problem of image segmentation and registration
will be faced. Many researchers adopt different theoretical
bases to solve this type of problem. After discussing the
literature analysis [17], image calibration can be divided
into two methods: feature and area. The feature-based image
calibration is not applicable for occasion with high non-
linearity differences [18]. Hence, this study adopted the
affine parameter regional calibration method [19]. In addi-
tion, Chen and Jian [19] have proven the sound effectiveness
of solving image calibration problems through the 2-stage
genetic algorithm method, while the problem of image seg-
mentation is resolved. Therefore, this study adopted the pro-
cess [19] to carry out image registration, thereby resolving
the alignment problem between images.

To establish emotional activation maps for local and non-
local facial regions, independent component analysis (ICA)
was used in this study to resolve the relevant problems.
ICA is a method that distinguishes primitive signals from
mixed signals to determine linearity. It has become a prac-
tical tool for the identification of hidden information [20]
and has been successfully incorporated into a number of
imaging and image processing fields [21]-[23]. For exam-
ple, ICA was incorporated into functional magnetic reso-
nance imaging (fMRI) to effectively display the differences
in the responses of the lower region of the brain to different
stimuli [24]. In this study, fast fixed-point algorithms were
employed for the ICA calculations, which calculate non-
Gaussian maxima via fixed-point iterations. This method
enhances the speed and accuracy of ICA algorithmic cal-
culations [25] and improves the robustness and stability
of the mathematical methods employed for probing mutu-
ally independent components. Subsequently, fast fixed-point
algorithms have been successfully applied to fMRI to com-
prehensively analyze activation maps [26]-[28].

Emotional responses triggered by external stimuli are
affected by subjective factors. Thus, the subjective judge-
ments of individuals also reflect their existing physical
and psychological condition. Previous studies on emotion
triggering have often employed different methods to trig-
ger emotions. Gross and Livenson [29] used the stim-
uli of various video sequences to trigger the emotional
responses of subjects. Lang er al. [30] used images to
stimulate the emotional level of subjects and objectively
established an assessment standard for visual complexity
and emotional responses. Palomba et al. [31] used video
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segments with threatening content and surgical procedures
to trigger emotional responses in subjects. Kim et al. [32]
adopted numerous environmental factors, such as lighting
color and music, to create different environments, which
were used to trigger emotion. New methods have been
adopted more recently, but lack objective trigger-strength
standards and diversity. The International Affective Picture
System (http://csea.phhp.ufl.edu/Media.html) developed by
Lang et al was used in this study [30]. The IAPS system
comprises a database of over 1,000 full color images, and is
currently the most up-to-date. Subsequently, it has received
positive reviews for effectiveness in triggering emotion in
subjects in many studies [33]-[36].

Il. METHODS

A. THERMAL IMAGE DATA ACQUISITION

Because the testing environment and human factors can
cause statistical error, the control of any ambient temperature
changes was necessary. In this study, the digital infrared
thermal image system (DITIS) used was the Spectrum series
9000-MB (United Integrated Service Co Ltd). The infrared
thermal face image collection area used was 320 x 240 pixels
for the temperature data matrix, at a sampling frequency
of 2 fps. The machine specification of noise equivalent tem-
perature difference was 0.07°C and the temperature mea-
surement range was 10°C to 40°C. During data collection,
subjects who were on long-term medication or had fever or
influenza, were excluded. A total of five subjects partici-
pated in this study. Prior to data collection, the subjects were
instructed to watch a black screen for 5 minutes to ensure
that they had reached thermal equilibrium. Then, a 5 second
verbal reminder was issued to notify the subjects that the test
was about to begin. During data collection, no other persons
were allowed to enter the room to maintain the room tem-
perature between 26°C and 28°C and to avoid the generation
of strong heat convection. The test area was surrounded and
insulated by three layers of dark fabric to minimize reflected
heat radiation. To protect the rights and ensure the safety and
comfort of the subjects their heads were not restrained in any
way during the experiments.

B. STIMULI AND PARADIGM

To ensure that the 45 IAPS images resulted in differences
of arousal and valence, the participants included 100 sub-
jects 48 males (mean age of 35.94 4 12.38) and 52 females
(mean age of 37.45 £ 14.14) who were all raised in Taiwan.
The subjects all completed a questionnaire and the results
showed parallel-type reliability. Figure 1 shows the 45 images
classified into three different emotions, designated as HVLA
(High Valence Low Arousal), LVLA (Low Valence Low
Arousal) and LVHA (Low Valence High Arousal). Sub-
sequently, the selected IAPS images were edited into an
emotion-stimulating video. The video was 225 seconds long
and aimed at stimulating four emotions, which included
HVLA, LVLA, LVHA, and Rest. The display sequence and
times of the images are shown in Figure 2.
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FIGURE 1. 45 IAPS images where emotional assessments can be
accounted for by the two dimensions of valence and arousal as three
different emotions HVLA, LVLA and LVHA.
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FIGURE 2. The serial reaction time series of the IAPS images. The
emotion-stimulating time for each block was 15 sec (five images were
displayed, each for 3 sec) and the rest time was 10 sec for each.

C. INFRARED THERMAL IMAGE SEQUENCES PROCESSING
Infrared thermal facial image sequence data were collected
to develop a method for analyzing the relationship between
facial temperature and emotion. Each sequence image pro-
cessed by image registration determined the correlation
between the average temperature-sequence changes in the
facial regions and the emotional stimulus response via both
activation maps and the temperature of each facial region. The
overall research framework is shown in Figure 3.

D. IMAGE REGISTRATION

To ensure the subjects remained comfortable while the
infrared thermal image data sequences of the faces were
collected their heads were not restrained in any way. Unin-
tentional head movement caused some issues and made sub-
sequent analysis more difficult. Therefore, affine registration
was used to reduce deviations resulting from head move-
ment and to enhance the validity of the facial correlation
analysis. During the registration process, a fixed image for
registration was produced by locating the centroid in the
eye region. Image translations and rotations were also used.
Subsequently, the two-stage genetic algorithm proposed by
Chen and Jian [19] was used to automatically complete the
affine registration of the thermal sequential imaging. This
method effectively reduced overlay error before and after
image registration.
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FIGURE 3. Research infrastructure for activation maps and regional
activation. After the registration procedure, the infrared thermal facial
images for two experiments: One was to construct activation maps and
the other for regional activation.

E. CONSTRUCTION OF THE ACTIVATION MAPS

To observe significant changes in the facial temperatures of
the subjects during emotion stimulation, emotional activation
maps were constructed to create infrared thermal facial image
sequences as follows:

1. Infrared thermal facial image sequence data. FIs <«
{FIy, FI,, ..., FIg}, FI is a facial image of 320x
240 matrix, s is a 450 frame sequence.

2. Eliminate temperature noise of non-ROIs using imag-
ing masking. MIs <« {MIj, MI,, .. ML}, MI =
FIl&ImageMask, ImageMask is a binary image with
0 and 1 (0 is outside the mask; 1 is inside the mask of
interest), and is the AND operation.

3. Reshape the MIs matrices into X matrices (matrix size
of 450 x 76800).

4. The pseudocode was:

s = 450; MI_RowLength = 240;
MI _ColumnLength = 320;
for Frame =1 : s
Counter = 1;
fori =1: MI_RowLength
forj = 1: MI_ColumnLength
x(Frame, Counter) = MI.SubMatrix.s(i, j);
Counter = Counter + 1;
end
end
end
5. Use FastICA to determine the independent statistics
shown in Table 1. The matrix decomposition and

arrangement is shown in Figure 4, where x represents
the matrix arranged by the infrared thermal images at
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TABLE 1. FastICA algorithm for estimating several ICs with deflationary
orthogonalization.

Inputs: matrix x.

Outputs: mixing matrix W' and independent components

ICs.

1. Centerline the data to make its
X< x—F {x}

2. To obtain z . we whiten the data, z=Vx=D"?E"x,
where D is the diagonal matrix of the eigenvalues, E
is the matrix whose columns are the unit norm
eigenvectors of covariance of the X matrix.

3. Pick m to estimate the number of ICs . Set counter
p<l.

4. Let w, be an initial value of the unit norm.
(randomly)

5. Derivation of the fixed-point iteration in FastICA:
w, <—E{zxg(w: xz)}—E g’(w: ><z)}><wp . We
choose a nonlinearity, g(h)= g><f:xp(—h2 / 2) ,
g'(h) :<1—hz)><exp(—h2 /2).

6. Perform the following orthogonalization algorithms

using the , Gram—Schmidt processing method:

W, W, = W:wj)wj .

Let w, <—w/ wp”.

Set p« p+1.1f p<m, goback to step 4.

Ww=w'xV, w:[w1 W, e W,

0. ICs=Wwxx=x=W'xICs. W' is mixing matrix,

ICs is independent components.

Expectations were estimated as sample averages.

mean ZzE€ro.

= 0 ® N

Pixel (Face temperature)— Mixing matrix Spatially independent
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«— (ourer) awip,
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FIGURE 4. Schematic of the data representation and spatial
decomposition performed by the spatial ICA on the thermal imaging data.

different times. By decomposing the matrix, the prod-
uct of the mixing matrix and the spatially independent
components (ICs) can be obtained, and the size of the
mixing matrix was 450 x 450. Each row represents
independent time course estimates. The time courses
correspond to the spatial ICs in each row. Subsequently,
each IC contains spatial information. Thus, the spatial
information regions can be identified only by observing
the time course information that corresponds to the ICs.

6. Use one-way analysis of variance to determine the
p-value of the time courses and the serial reaction time
task and find the minimum p-value’s time-course that
corresponds to the independent component (IC).

7. Use the Z-score filter (threshold = 2) to highlight the
facial response regions, thereby eliminating the influ-
ence of noise on the spatial ICs.

8. The Z-score was
Zscoreopepim=(MaxSignlC — Avg(MaxSignIC)/SD).
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MaxSignIC is the maximum significant ICs,
Avg(MaxSignlIC) is the average of, and SD is
MaxSignIC standard deviation of MaxSignIC.

9. Finally, employ a matrix reshape to return the
one-dimensional Zscoregpepim to0 a two-dimensional
Zscoregpepim matrix. The matrix is superimposed onto
the original facial image to produce an activation map
that highlights significant facial response changes in
emotion.

10. The pseudocode for matrix reshape to two-dimensions
is:

MI_RowLength = 240; MI_ColumnLength = 320;
Counter = 1;
fori =1: MI_RowLength
forj=1: MI_ColumnLength
Zscore. Two(i, j) = Zscore.One(Counter);
Counter = Counter + 1;
end

end

F. FACIAL REGIONS

Faces were divided into nine regions, including the central
regions (forehead, tip of the nose and mouth) and left and
right side regions (eye upper, eye lower and cheek). The facial
image of subject 1 was used as the region for calculating the
temperature, as shown in Figure 5(a). The choice of facial
area was based on previous relevant research articles and
experience [8], [9]. We calculated each of the nine regions
according to serial reaction time tasks and then performed a
correlation analysis of the average temperature and emotional
stimulation.

Ill. EXPERIMENTAL RESULTS AND DISCUSSION

In this study emotional activation maps were used to estab-
lish infrared thermal facial image sequences and analyze
the facial temperature regions to calculate significance in
different facial regions. The average temperature of the
regions in each infrared thermal image could be determined
based on the definitions established for each facial region.
In this context, we selected the facial regions of subject 1,
as shown in Figure 5 (a). The average temperatures of the
regions in each image were recorded to obtain signals for the
changes in their average temperature over time, as illustrated
in Figure 5 (b). Finally, a correlation analysis was performed
on the serial reaction time data. The results showed the level
of correlation between the serial reaction time task for the
temperatures of the different facial regions and the different
emotions. Using this method to investigate the correlation
between emotions and facial region temperatures increased
our understanding, but also posed two challenges. The first
was non-stationary facial temperature signals. In the case
of subject 1 in Figure 5 (b), the various signals gradually
trended upwards as the frame number increased. The results
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FIGURE 5. Regional statistical analysis: (a) Schematic of a face divided
into nine regions with divisions based on central, left and right sides.
(b) signal diagram of the changes in temperature of the facial regions of
subject 1 as a function of time.

failed to present a fixed pattern and indicated considerable
fluctuation and changes in temperature signals over a short
period. This phenomenon increased the difficulty of analysis.
Generally, these signals cannot guarantee that the physio-
logical temperature signals induced by the IAPS are syn-
chronous with the serial reaction time task. Therefore, this
study adopted a p-value for the one-way analysis of variance,
commonly used in statistical calculations, to determine the
correlation between the temperatures in the facial regions
and the serial reaction time task and reduce the influence
of non-stationary temperature signals and unsynchronized
psychologically induced factors. The second challenge was
the requirement to predetermine the facial regions prior to
calculating correlation. During the analysis process, the facial
region correlations could not be immediately determined.
To resolve this issue, we reviewed solutions used in various
fields and decided to use activation maps to analyze the two-
dimensional time sequence data. Activation maps were estab-
lished based on the fMRI calculation method proposed by
Calhoun and Adali [37]. This algorithm effectively removed
the influence that facial region selection standards and non-
stationary facial temperature signals have on the statistical
results when calculating facial temperature sequences [8], [9].
The signals in the infrared thermal facial image sequences
contained a large amount of unimportant background noise.
Subsequently, the function of the FastICA was primarily
to identify the original statistically independent primitive
signals from the mixed data. In this study four emotional
activation maps were highlighted using a serial reaction
time task to visualize and quantify the results. However,
450 spatial ICs remained and it was not possible to ana-
lyze them. Previous studies only examined the results from
corresponding serial reaction time tasks. Other emotions
may exist in these remaining spatial ICs. In addition to the
three types of emotions (i.e., HVLA, LVLA and LVHA)
that may be triggered by the IAPS images, the subjects may
also simultaneously generate other emotions. These unknown
emotions may be concealed in the 450 spatial ICs. These
unknown emotions certainly include interactive influences
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TABLE 2. The result of activation maps in different types of emotional
stimuli.

Subjects

(Sex/Age) Sub.1  Sub.2  Sub.3  Sub.4  Sub.5

(Male/27) (Female/30)(Female/27)(Female/46) (Male/58)

Different Types of
Emotions

All types

Typel
HVLA

Type2
LVLA

Type3
LVHA

1
b
.
.

Imposed on face from z-score

between emotions. The results were similar to the results of
the activation maps generated from all emotions tabulated
in Table 2, which showed that the decomposition of signals
using FastICA produced linear and independent primitive
signals. However, different emotions were uncovered once
a linear and independent primitive signal was decomposed.
All subjects exhibited significant temperature changes in the
periorbital region, and the different emotions were integrated
and expressed through physiological signals. Thus, in terms
of a single linear and independent primitive signal or time
course, the response time contains the integration of all emo-
tions. In terms of a physiological mechanism, the response
is an integrated one. However, the response becomes an
independent signal once decomposed through the ICA. Thus,
different emotion serial reaction time tasks and tests can be
designed using this method to investigate the physiological
signals of the face and determine interesting stimuli signals
and physiological results. The procedures established in this
study can assist future studies regarding temperature changes
present in infrared thermal facial image sequences caused by
emotional or other stimuli. This is similar to the generaliza-
tion of ICA techniques in the field of fMRI [38], [39] and
shows the proposed method to be extremely reliable. The
activation map results in Table 2 show an increased overall
temperature change in the periorbital region, regardless of
the emotions of the subjects. We believe that this temperature
change is associated with soft connective and adipose tissue,
and the abundance of micro-vessels surrounding the perior-
bital region. Thus, temperature can be transferred through
the micro-vessels to express physiological signals. This tem-
perature change may also be associated with muscle move-
ment in the periorbital region. When an LVHA emotion was
stimulated in a subject, involuntary breathing and temperature
changes took place and the mouth opened and closed slightly.
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correlate with emotions.

These movements increased the temperature change in the
periorbital and nose regions. Because we did not retrain the
head during the testing process, we were unable to calibrate
excessive head movement or the movement of hair, even
when using genetic algorithms in two stages [19], conse-
quently this caused errors. For these reasons, we observed
slight temperature changes on the edges of the head and hair
images.

The results of the proposed analysis procedures were com-
pared with those of the facial regions analysis and Figure 6
shows the number of significant correlations (p < 0.01) in the
different regions. In terms of the distribution of the number of
significant correlations in the different regions, the periorbital
region achieved the highest proportion (25%), followed by
the cheek, mouth, nose, and forehead regions (20%, 0%,
0%, and 0%, respectively). Both analysis methods indicated
that the periorbital region achieved the highest significance,
which is consistent with the results of extant studies [7], [12],
[13] and the emotional activation maps constructed in this
study. However, the correlation results of the region tem-
perature sequences only showed response changes in local
regions of the face. In this study, calibration was completed
during the establishment of the procedure. Then, FastICA
was employed to process the infrared thermal facial image
sequences and obtain the activation maps that corresponded
to facial emotions. This method enabled us to directly observe
significant micro facial responses upon emotional stimuli and
was not limited to application to specific facial regions. This
is an analytical method for emotion response research that has
an intuitive approach.

IV. CONCLUSION

This study established a set of procedures to analyze the cor-
relation between infrared thermal facial image sequences and
emotional stimuli. Significance analysis methods commonly
used in the field of fMRI were examined, and the concepts
were incorporated in the emotional correlation of the infrared
thermal facial image sequence data to visualize relevant
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images. First, image registration was employed to align each
sequence image, and reduce the variance created by the
irregular micro-movements of the subjects. Sequence images
were then cross-verified to construct emotional activation
maps and two calculations of the average temperatures in
the facial regions were recorded. The test results highlighted
the increased significance of the periorbital region, which is
consistent with the results of other studies. This confirmed
the feasibility of the proposed method and confirmed that
activation maps can be constructed without predetermining
local facial regions, thereby resolving the difficulties that
non-stationary temperature changes have on data analysis.
Moreover, the proposed method improved data visualization,
facilitating subsequent analysis of the correlation between
emotions and facial temperature.
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