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ABSTRACT The complexity of a supply chain network (SCN) is rooted in its complex structures, multiple
decision-making (DM) entities, adaptive behaviors, and open environments. Due to its unique advantages,
computational experiment (CE) has been increasingly adopted as one of the most important methods for
SCN complexity research. Data that are generated by computational experiments must be analyzed using
effective tools. Depending on this analysis, DM acts as an important analysis and selection mechanism for
the optimization and design of SCNs. This optimization and design rely on the combination of CE and DM.
This combination inevitably involves multiple types of knowledge in the domains of SCNs, CE, and DM,
which have been less comprehensively considered in recent studies. It remains a challenge for researchers
and practitioners to clarify the knowledge system of SCNs and select the most suitable research perspectives,
paradigms, and methods for CEs and DM of SCNs. To confront this challenge, it is necessary to systemat-
ically model the semantics of the knowledge that is involved in CE and DM to realize the consistency and
interoperability of models, methods, and processes. Therefore, this paper uses a semantic network approach
to construct a semantic model to clarify the knowledge framework of CEs and DM of SCNs. This knowledge
framework is composed of the important knowledge elements that are extracted from the domains of SCNs,
CE, and DM. The application procedure of the semantic model is demonstrated on a four-echelon SCN case.
The semantic model’s understandability, consistency, reusability, procedure, systematization, and linkage
analysis capability are evaluated. The results demonstrate that the semantic model is effective in providing
a consistent, procedural, and systematic perspective for SCN complexity research and supporting linkage
analysis among SCN modeling, CE, and DM.

INDEX TERMS Supply chain network, computational experiment, decisionmaking, knowledge framework,
semantic modeling.

I. INTRODUCTION
A supply chain network (SCN) is a complex system that is
composed of multiple decision making entities with specific
structural relations and located in a specific environment.
It is driven by business processes, that are covered by mate-
rial flow, information flow, time flow [20] and knowledge
flow [4], [6] and aims to transform raw materials to products
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and deliver them to customers. The complexity of an SCN is
rooted in its complex structures, multiple decision making
entities, adaptive behaviors and open environments. The com-
plexity has increasingly motivated efforts by scholars and
practitioners, for example, the studies of Surana et al. [37],
Pathak et al. [27], Nair et al. [25] and Touboulic et al. [40].

The traditional analytical perspective for SCN studies
has evolved into a complex system perspective [8], [42].
These studies mainly focus on the complex struc-
ture [13], [30], abstract and modeling [2], [19], multi-agent
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simulation [22], [45], dynamic evolution [28], [42] and envi-
ronment adaptability [23], [27] of SCNs. Several method-
ologies for the SCN complexity research are used in these
studies. Currently, a new methodology that is derived from
the simulation, namely, computational experiment has been
widely adopted as an effective tool to study complex
SCNs [18]. Data that are generated by computational exper-
iments must be analyzed using effective tools. Decision
making is an important and popular topic in SCN complexity
research [33], [35]. SCN optimization and design rely on
the combination of computational experiments and decision
making [1], [25], [41].

Computational experiment is developed from simulation.
It no longer concerns the high consistency of the compu-
tational model and its results with the real system; instead,
it treats the computational model and its results each time as
a possible virtual reality that may not appear in reality [34].
The results that are observed in reality are a special case
of all possible realities [34]. In a computational experiment,
a virtual model of an SCN is built and implemented instead of
the real SCN to obtainmanagerial insights.Multiplemethods,
such as agent-basedmodeling, game theory, system dynamics
and evolution, are often utilized in computational experi-
ments. The value of computational experiment lies in break-
ing through the traditional research perspectives, weakening
the research hypothesis and reproducing the operation of a
real system at a low cost to realize the optimization and design
of the real system. Typically, a computational experiment is
implemented several times and a volume of data is generated.

In the literature, computational experiment has been uti-
lized to study SCNs. Li et al. [14] utilized agent-based
computational experiments to analyze a single-stage incen-
tive model and a multi-stage incentive model in an SCN.
Meng et al. [24] used computational experiment methods and
multi-agent technology to build a controllable and reusable
computational experiment model to simulate the interactions
and the whole phenomenon of an SCN. Li and Womer [15]
conducted computational experiments to examine the per-
formance of the model and hybrid Benders decomposition
(HBD) algorithm for simultaneously optimizing sourcing and
planning decisions in a supply chain (SC) configuration. Sax-
ena and Jain [31] used three procedures—LINGO, artificial
immune system, and hybrid artificial immune system—to
perform a computational experiment to study an integrated
model of dynamic cellular manufacturing and SC design.
An et al. [3] built a three-stage SC model that is based on
a computational experiment for researching the influence
factors of network evolution and predicting the effectiveness
of service support system. Long [18] proposed an agent-
based distributed computational experiment framework with
conceptual approaches and implementation solutions for the
development of virtual SCNs. Long [20] further used the
agent-based computational experiment approach to imple-
ment the evolution model of an SCN in the three dimensions
of material, information, and time flows. Xue et al. [43] intro-
duced an agent-based computational experiment approach

for exploring the service charging policy problem in col-
laborative procurement in cluster SC. As discussed above,
computational experiment has been increasingly becoming a
popular methodology for complex SCNs.

These data that are generated by computational exper-
iments are used to conduct sensitivity analysis, statistical
analysis and even data mining to support decision making.
In decision making, suitable theories and tools are selected
for conducting data analysis with the objective of producing
the optimal solutions. There are numerous tools for deci-
sion making, for example, the Bayesian model, the analytic
network process, structural equations, the analytic hierarchy
process, computer simulation, multi-agent system and math-
ematical programming.

A volume of literature has been written on the decision
making for SCNs with these tools. Qazi et al. [29] used
a Bayesian belief network and an expected utility based
approach to manage supply chain risks. Govindan et al. [7]
proposed an analytic network process-based multi-criteria
decision making model for selecting a third-party reverse
logistic provider for a reverse SC. Hussain et al. [10] pro-
posed an integrated framework that is based on interpretive
structural modeling (ISM) and an analytic network process
for evaluating potential alternatives for sustainable supply
chain management. Jakhar and Barua [11] applied an inte-
grated methodology of structural equation modeling and a
fuzzy analytic hierarchy process to SC performance eval-
uation and decision-making. Byrne et al. [5] presented a
new partner selection methodology and underpinned the
methodology by the development of a computer based sim-
ulation supply partner selection decision support tool for
service provision. Narayanan and Moritz [26] used a pro-
duction and distribution decision making simulation that rep-
resents a four-stage serial SC to study the cognitive profile
of decision-makers who contribute to the bullwhip effect.
Hernandez et al. [9] used a multi-agent system to support
the collaborative decision making process in an automo-
tive SC. Sitek andWikarek [36] proposed a hybrid framework
that combines the advantages of mathematical programming
and constraint programming for the modeling and optimiza-
tion of decision problems in sustainable SC management.
Kaya and Urek [12] presented a mixed-integer nonlin-
ear programming model and heuristic solutions for loca-
tion, inventory and pricing decisions in a closed-loop SC.
Thomas et al. [39] proposed a decentralized decision mak-
ing approach for a multi-party coal SC. More generally,
Long [16] proposed a flow-based three-dimensional collab-
orative decision making model for SCNs. The model shows
the content vectors and process specifications in collabora-
tive decision making for SCNs, creatively puts forward the
concepts of the decision domain and the decision space, and
studies the mappings of the decision space among various
decision domains.

These studies that are discussed above focus more on
case analysis and the knowledge for computational exper-
iments and decision making for SCNs is less involved.
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These studies inevitably involve multiple types of knowledge
in the domains of SCNs, CE and DM. It is necessary to clarify
the knowledge framework in the computational experiments
and decision making for SCNs to support more effective
SCNmanagement. Thus, semantic analysis of the knowledge
framework is valuable for supporting the lifecycle research
process. In the literature, the semantic modeling of the knowl-
edge in SCN has been studied, for example, by Ye et al. [44].
These studies provide effective semantic support for
SCN analysis. However, semantic modeling of the knowledge
in the computational experiments and decision making of
SCNs has not been considered.

In summary, a large gap remains in the literature. First,
a large volume of literature on computational experiments
and decision making for SCNs focuses on case studies. The
related systematic knowledge framework analysis is not per-
formed. The knowledge framework provides a basic overview
of the computational experiments and decision making
for SCNs. Second, semantic modeling of the knowledge
framework is not conducted. This semanticmodeling can pro-
vide an effective reference for clarifying the research system
of an SCN and selecting the most suitable research perspec-
tives, paradigms and methods. Third, the semantic incon-
sistency problems among the artifacts at various research
steps remain. These problems must be solved for consistent
semantic sharing and to strengthen the understandability,
consistency and reusability of the models. Fourth, the cur-
rent procedure for SCN modeling, computational experiment
and decision making is not efficient for supporting the opti-
mization and design of SCNs. It necessitates a procedural,
consistent and complete research process. Finally, the current
studies have not considered the linkage analysis among an
SCN, computational experiments and decision making. In
this analysis, the problem regarding the interface connection
and integration among SCN, computational experiments and
decision making must be solved.

To fill the gap, this paper studies semantic modeling for
knowledge artifacts of computational experiments and deci-
sion making for SCNs to generate a consistent perspec-
tive for SCN complexity research. In the study, the domain
knowledge of SCNs, computational experiment and decision
making is analyzed and their important knowledge elements
are extracted. An ontology model for semantic linkage is
constructed and a knowledge framework of computational
experiments and decision making of an SCN is proposed.
Next, a semantic model for the knowledge framework is
constructed using the semantic network approach. The appli-
cation procedure of the semantic model is presented with a
four-echelon SCN case. The application results demonstrate
that the semantic model is effective in providing a consis-
tent, procedural and systematic perspective for SCN com-
plexity research and supporting the linkage analysis between
SCN modeling, computational experiments and decision
making.

Therefore, one of the main contributions of this paper
is systematic study of the knowledge framework and its

semantic system for the integration of computational experi-
ment and decision making for SCN complexity research from
a methodological perspective instead of case studies, which
are considered in the most current studies. The other is the
construction of a semantic model for clarifying the knowl-
edge framework in the procedure of computational experi-
ment and decision making of an SCN via case verification.
This semantic model facilitates the consistent understand-
ing of the procedure by researchers and practitioners, where
various artifacts at various research steps are involved, and
the effective selection of the optimal research perspectives,
paradigms and methods according to this understanding.

The remainder of this paper is organized as follows:
Section II builds a knowledge framework of computational
experiments and decision making for SCNs. Section III
proposes a semantic model for the knowledge framework.
Section IV analyzes the application of the semantic model
with a case. Section V discusses the advantages and disad-
vantages of the model. Section VI presents the paper’s con-
clusions and discusses possible directions for further study.

II. KNOWLEDGE FRAMEWORK
The important knowledge elements that are extracted from
the domain of computational experiments and decision mak-
ing of an SCN compose a knowledge framework, as illus-
trated in Figure 1. This framework contains three domains:
SCN, computational experiment and decision making. Each
domain can be divided into three components: domain knowl-
edge, ontology and knowledge elements. Domain knowledge,
which is typically stored in the domain knowledge database,
refers to all knowledge and its relations in a specific domain.
This knowledge, which is related to a specific subject and
application, is typically inconsistent and changes over time.
Ontology is an explicit and formal specification of shared
conceptual models. It provides a clear and recognized set
of concepts and their relations that is readable by comput-
ers. Knowledge elements that are abstracted from domain
knowledge constitute the important knowledge for effective
computational experiments and decision making of an SCN.
The ontology provides a mapping for semantically consistent
understanding among knowledge elements and solves the
problems of interoperability and reusability of models in
computational experiments and decision making of SCN.
SCN knowledge: To study the complexity of an SCN,

the knowledge elements for representing the complex char-
acteristics of the SCN must be extracted. These knowledge
elements are from the SCN domain knowledge. The proposed
framework defines seven types of knowledge elements: net-
work structure, business process, flow, resource, item, envi-
ronment and strategy. The network structure refers to decision
making entities and their structural relations at multiple lev-
els. The entities are located at various levels. The struc-
tural relations represent the coupling effects of the entities.
These relations are typically connected by multiple flows, for
example, material flow, information flow, process flow, time
flow [16], [20] and knowledge flow. Thus, a fine-grained
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FIGURE 1. Knowledge framework of computational experiment and decision making of an SCN.

network structure is extremely complex. A business process
can be defined as a function that transforms the inputs of an
SCN to the outputs of the SCN. The complexity, dynamics
and evolution of the SCN depend on these transformations.
Flow has a perspective that differs from the network structure
that characterizes an SCN in terms of material flow, infor-
mation flow, time flow and knowledge flow. Resources are
used to support SCN operations. The items are the materials
(including rawmaterials, semi-finished products and finished
products), information and knowledge that are processed
during SCN operations. An environment is defined as a set
of the factors that are beyond the SCN boundary but have
nonnegligible impacts on the SCN, for example, the adjacent
SCNs, markets and policies. Strategies are the operation poli-
cies that are implemented by an entire SCN and its entities at
multiple levels. A strategy can be correspond to the macro,

meso, and micro levels. An SCN model can be identified by
these seven types of knowledge.
Computational experiment knowledge: The proposed

framework defines five types of knowledge elements for
representing a computational experiment: theory, paradigm,
method, system and data. The theory defines an overall
methodology for studying SCN complexity, for example,
complex adaptive system (CAS) theory, evolution theory,
metasynthesis theory or agent-based modeling (ABM)
theory [34]. The paradigm, which acts as an important operat-
ing methodology, describes a general procedure and common
specifications for implementing computational experiments.
The method is a specific means to support computational
experiment implementation. Multiple methods are typically
integrated to realize higher performance. The system is a
kind of forms of the computational experiment, for example,

46366 VOLUME 7, 2019



Q. Long et al.: Semantic Modeling for the Knowledge Framework of CEs and DM for SCNs

centralized or decentralized and discrete or continuous. The
data, which are used for or created via computational exper-
iment implementation, can be divided into four types: basic
data, environment data, model data and experimental result
data. These five types of knowledge specify how to conduct
the SCN computational experiment.
Decision making knowledge: Similar to the computational

experiment, decision making must also follow a common
set of knowledge. In the proposed framework, the knowl-
edge for decision making is divided into six types of ele-
ments: decision domain, decision space, decision element,
decision analysis, decision result, and decision effect. Deci-
sion domain [16] determines the objects and boundaries of
decision making for an SCN. Unlike previous decision mak-
ing models, the decision domain subdivides and defines the
objects of decision making and clarifies the attribution of
decision issues and the choice of decision entities. Decision
space [16] is defined as a vector space comprised of the deci-
sion domain, problems, objectives, actions, indexes, and eval-
uations. Decision element [16] is a basic decision unit that has
an indecomposable structure in a specific decision domain.
Decision analysis is typically conducted via sensitivity anal-
ysis, statistical analysis and even data mining for decision
elements in a specific decision domain following a specific
decision space based on the computational experiment data.
Decision result is a satisfactory solution that is selected from
the multiple candidates that are generated during decision
analysis. Decision effect is a feedback from the decision
solution after it has been implemented. This feedback guides
further optimization and design of the SCN. The decision
effect is also an important criterion for evaluating decision
making, computational experiments and even SCNmodeling.
Decision making can be defined as a specification of these six
types of knowledge.
Semantic relations: The proposed framework vividly elab-

orates the semantic relations among the three domains. The
details are presented in Sub-section D of Section III.

An SCN is a decentralized and heterogeneous system.
The knowledge in an SCN has the same characteristics. The
problem of knowledge semantic inconsistencymust be solved
in SCN modeling. The same problem also arises when the
knowledge is created and used at different steps by different
entities during a computational experiment and decisionmak-
ing. In addition, the problems regarding the interoperability
and reusability of the three types of domain knowledge must
be solved. The following section will elaborate the semantic
modeling of the proposed framework to provide a general,
consistent, procedural, systematic and consistent semantic
experience for computational experiments and decision mak-
ing of SCN.

III. SEMANTIC MODELLING FOR KNOWLEDGE
FRAMEWORK
To support the semantic consistency, interoperability and
reusability of computational experiment and decision making
of an SCN, a semantic model of the proposed knowledge

framework is built and the corresponding ontology is con-
structed.

A. SEMANTIC MODEL OF AN SCN
A semantic model of an SCN can be described as follows:
the SCN is located inside an environment, is characterized by
a specific structure and covered by multiple flows, develops
and uses certain strategies, undergoes microscopic processes,
uses multiple types of resources, and produces and uses sev-
eral items, as illustrated in Figure 2.

The ontology of a network structure is a concept set that
is composed of multiple decision making entities and their
structural relations. In the horizontal direction, the structure
is represented by multiple echelons and their relations. These
relations can be cooperative or competitive. Each echelon is
composed of several enterprises, for example, the supplier,
manufacturer and distributor. An enterprise has multiple lev-
els. As a level of an enterprise, a department also has an
internal level—a processing unit.

An SCN’s strategy is realized by the strategies of all
enterprises. An enterprise’s strategy is realized by its tactics
which are, in turn, realized by techniques. Inversely, a set of
techniques support a strategy.

Process semantic is represented using SCOR (supply chain
operations reference) model. The SCORmodel is released by
the Supply Chain Council (SCC) and is a cross-functional
framework that is widely accepted as an industry standard.
The process ontology includes six types of processes: Plan,
Source, Make, Deliver, Return and Enable [32]. Plan process
has five cases: Plan Supply chain, Plan Source, Plan Make,
Plan Deliver, and Plan Return. Source, Make and Deliver
processes have three categories: make-to-stock (MTS),make-
to-order (MTO) and engineer-to-order (ETO). Return process
has two cases: Source Return and Deliver Return. Enable
process has five cases: Enable Plan, Enable Source, Enable
Make, Enable Deliver and Enable Return.

A flow describes a track of an SCN operation from a par-
ticular perspective. This paper abstracts four types of flows:
material, information, time and knowledge flows [20], [38].
Source, Make, Deliver and Return processes are defined as
the parts of material flow. Plan and Enable processes are the
parts of information flow. Request time advancement process
and Balance and authorize time advancement process are the
parts of time flow. Knowledge flow is composed of six parts
of processes: Knowledge acquisition, Knowledge learning,
Knowledge diffusion, Knowledge sharing, Knowledge uti-
lization and Knowledge innovation.

Resource ontology is a set that consists of production,
deliver, storage and human resources.

Item ontology is a set that consists of order, product and
knowledge. An order can be decomposed into a sequence
of tasks. A task can generate several policies. Multiple poli-
cies support the realization of an order. A product is made
of multiple components. A component is in turn made of
materials. In general, an entity’s knowledge is measured as
its knowledge endowment [21]. The knowledge endowment
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FIGURE 2. Semantic model of an SCN.
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FIGURE 3. Semantic model of a computational experiment.

is quantitatively represented as a location in knowledge space
with n dimensions [21]. Knowledge space is determined
by n dimensional knowledge elements. Correspondingly, an
entity’s knowledge endowment is composed of the knowl-
edge elements.

Environment ontology is a set of the adjacent SCNs, mar-
kets and policies.

Figure 2 illustrates the concept set and concept relations of
SCN ontology.

B. SEMANTIC MODEL OF COMPUTATIONAL EXPERIMENT
A semantic model of a computational experiment can be
represented as that it characterized as a specific system form
based on suitable theories, follows a specific paradigm, inte-
grates multiple methods, and uses and creates multiple types
of data, as shown in Figure 3.

The theory ontology can be summarized as a set
of theories for complex adaptive systems, for example,
CAS theory, evolution theory, metasynthesis theory and
ABM theory [34].

The paradigm ontology has five parts: problem definition,
hypothesis design, computational experiment model develop-
ment, computational experiment implementation and experi-
mental result evaluation and comparison [34]. The semantic
relations among the five parts are time sequence, support and
verification, and adjustment and solving.

The method ontology is composed of multiple types of
concepts, for example, ABM, cellular automata, machine
learning, evolution, game theory, operation optimization,
statistics, reasoning, complex network and system dynamics.
A computational experiment, typically, integrates multiple
methods to realized higher experimental performance.
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The system ontology refers to the forms of the
computational experiment implementation, for example, cen-
tralized or decentralized, and discrete or continuous. The
characteristics of an SCN and its research objectives deter-
mine the choice of the systems.

The data ontology is related to the data set before, during
and after the computational experiment. This paper defines
four types of data: basic data, model data, environment data
and experimental result data.

Figure 3 illustrates the concept set and concept relations of
the computational experiment ontology.

C. SEMANTIC MODEL OF DECISION MAKING
A semantic model of decision making is located inside a
specific decision domain, follows a specific decision space,
conducts decision analysis on decision elements, makes an
optimized decision result and creates decision effects.

The decision domain ontology is composed of three deci-
sion dimensions: level, flow and time dimensions [16]. The
level dimension has three cases: strategic, tactical and oper-
ational levels. The flow dimension has four cases: material,
information, time and time flows. The time dimension can be
divided into two cases: time series and time points.

The decision space ontology has six parts: decision
domain, problem, objective, action, index, and evalua-
tion [16]. The semantic relations among the six parts are
guidance, realization, adjustment and solving.

The decision element ontology is composed of a set of sub
decision elements and their relation contents.

The decision analysis ontology is defined as three cases:
sensitivity analysis, statistical analysis and even data mining.

The decision result ontology has two parts: optimization
and design. Each part has two cases: structure and function.

The decision effect ontology can be defined as three cases:
good, balanced and bad.

Figure 4 shows the concept set and concept relations of
decision making ontology.

D. SEMANTIC RELATIONS AMONG SCN, COMPUTATIONAL
EXPERIMENTS AND DECISION MAKING
The semantic information of SCN, computational experiment
and decision making is elaborated respectively above. Obvi-
ously, their semantic relations are critical for conducting the
computational experiment and decision making of an SCN,
as illustrated in Figure 5. An SCN is modeled and imple-
mented in the computational experiment process; the exper-
imental results are analyzed in the decision making process;
and the decision results guide the optimization and design
of the SCN. The decision effects on the SCN guides the
adjustment of the decision making process, in turn, impacts
the parameter optimization of the computational experiment
process to satisfy the research requirements of the SCN.

IV. APPLICATION OF THE SEMANTIC MODEL
The semantic model is applied to an SCN and verified in this
section.

A. APPLICATION OF THE SEMANTIC MODEL
The semantic model of the knowledge framework provides a
semantic guide of the methodologies for studying a complex
SCN. This paper presents the application procedure of the
semantic model and its linkage analysis for studying complex
SCN, as presented in Table 1.

The application procedure of the SCN semantic model
is composed of six steps: defining an SCN boundary and
environment, abstracting the SCN structure, extracting the
SCN business processes, integrating the multiple SCN flows,
identifying the SCN resources and items, and developing the
SCN strategies. The application procedure for the CE seman-
tic model is divided into five steps: selecting the CE theories,
specifying the CE paradigm, determining the CE methods,
selecting the CE system forms and deploying the CE data.
The application procedure for the DM semantic model
consists of six steps: determining the decision domains, speci-
fying the decision space, defining the decision elements, con-
ducting the decision analysis, obtaining the decision results
and evaluating the decision effects.

The linkage analysis of these three types of semantic mod-
els focuses on the following: (i) the inter-organizational and
inter-step semantic interoperability for resolving the seman-
tic inconsistencies among decentralized and heterogeneous
enterprises and among multiple steps; (ii) semantic sup-
port and feedback of models for the semantic connections
among the SCN, CE and DM; and (iii) spiral-cycle semantic
interoperability for cycle improvement of SCN modeling,
CE andDM. To evaluate the proposed semanticmodel, a four-
echelon and three-level SCN [17] is selected as a case study,
as shown in Table 1.
SCN semantic modeling: Inside its boundary, the SCN has

4 echelons: an echelon of 3 suppliers, an echelon of 3 first-
layer manufacturers, an echelon of 2 second-layer manu-
facturers and an echelon of 2 distributors. There are three
types of customers in the environment of the SCN. The
SCN produces 3 types of products for the customers. The
SCN is decomposed into three levels: the enterprise level,
department level and processing unit level. Both competitive
relations in the vertical direction and cooperative relations
in the horizontal direction coexist among these enterprises.
The enterprises in the SCN have departments of production,
storage and delivery. These departments also have processing
units. Five types of business processes—Plan, Make, Store,
Deliver and Enable, along with their corresponding process
elements, are extracted. Four types of flows are integrated into
the SCN model. Material flow is composed of Source, Make,
Deliver and Return processes. Plan and Enable processes are
described in information flow. Time flow is composed of
request time advancement processes and balance and autho-
rize time advancement processes. Knowledge flow is sim-
plified and composed of knowledge sharing and knowledge
utilization. The types and quantities of production, storage,
deliver and human resources are determined according to
the SCN. The items of orders, tasks, policies, knowledge,
products and materials are represented in the SCN model.

46370 VOLUME 7, 2019



Q. Long et al.: Semantic Modeling for the Knowledge Framework of CEs and DM for SCNs

FIGURE 4. Semantic model of decision making.

In detail, three types of customers order 3 types of products:
Customer 1 orders 80 units of Product 1, Customer 2 orders
100 units of Product 2, and Customer 3 orders 60 units
of Product 3. Two distributors provide a non-homogeneous
product (Product 1 and 3) respectively and a homogeneous
product (Product 2). In addition, the SCN strategies, tac-
tics and techniques are developed. Strategic relationships
are maintained between Customer 1 and Distributor 1 and
between Customer 3 and Distributor 2. Customer 2 has gen-
eral relationships with Distributors 1 and 2.
CE semantic modeling: In this case, ABM, CAS and evolu-

tion theories are used to guide the computational experiment.
In response to the low satisfaction of customers, the hypoth-
esis that the satisfaction can be improved is posed. Then,
a computational experimental model is developed based on

the SCN model using agent-based modeling method. The
model consists of 35 agents. The developed model is imple-
mented on an agent platform [18] via the ABMmethod. This
model is deployed as a decentralized and discrete system
according to the characteristics of the SCN. The basic data
correspond to the use of the platform. The model data cor-
respond to the model of the SCN and its initial information.
The environment data are used to determine how to deploy
the model into a decentralized and discrete environment in
the platform to simulate the reality of the SCN. This envi-
ronment consists of three decentralized sub-environments.
The experimental result data are collected after the model
implementation for analysis and comparison.
DM semantic modeling: Based on the data, two deci-

sion domains, namely, (Information flow, Tactical level,

VOLUME 7, 2019 46371



Q. Long et al.: Semantic Modeling for the Knowledge Framework of CEs and DM for SCNs

TABLE 1. Application of the semantic model of the knowledge framework.

FIGURE 5. Semantic relations of SCN, computational experiment and
decision making.

Time points) and (Information flow, Tactical level, Time
series) are selected. Then, a corresponding decision space is
specified. In the decision space, the decision problem is the
low satisfaction of customers. The decision objective is to
improve the satisfaction beyond a predetermined threshold.
The decision action is to create new solutions for the problem.
The new solutions are constructed based on an analysis of the
experimental results. The decision index is the satisfaction
level of the customers. The decision valuation is the judg-
ment of whether the decision objective has been realized.

The decision elements of starting time, end time, rate and
cycle of order fulfillment, along with the overall satisfaction
are defined and their sensitivity analysis and statistical anal-
ysis are conducted. An optimization solution, which includes
both structure and function, is obtained and its decision
effects are evaluated.

After the SCN structure and function have been optimized,
the changes of order fulfillment and customer satisfaction
are listed in Table 2. Via SCN optimization, the starting
time, end time and cycle of order fulfillment of Product 1
for Customer 1 are significantly optimized. Although the
rate of order fulfillment is slightly decreased, the overall
satisfaction is significantly improved. The starting time of
order fulfillment of Product 2 for Customer 2 is significantly
advanced. The end time of order fulfillment of Product 2 for
Customer 2 is slightly delayed and its cycle is also slightly
lengthened. Although the rate of order fulfillment is signif-
icantly decreased, the overall satisfaction is still improved.
The starting time, end time and cycle of order fulfillment of
Product 3 for Customer 3 are slightly optimized. Although
the rate of order fulfillment is slightly decreased, the overall
satisfaction is still slightly improved. Based on the optimiza-
tion solution, further cycle SCN modeling, computational
experiments and decision making can be conducted. This
case demonstrates that the semantic model of the proposed
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TABLE 2. Changes in order fulfillment [17] and customer satisfaction after SCN optimization.

TABLE 3. Verification analysis of the semantic model.

knowledge framework is effective in providing a consistent,
procedural and systematic perspective for SCN complexity
research and supporting the linkage analysis among SCN, CE
and DM.

B. VERIFICATION OF THE SEMANTIC MODEL
Table 3 presents the verification analysis of the proposed
semantic model from six aspects.
Semantic understandability: The ontology that is used for

SCN modeling, CE and DM provides consistent semantic
understanding for developers. Based on the ontology, con-
cepts and their relations for SCN modeling, CE and DM are
unified. In the case study that is discussed above, the artifact
of the SCN, CE and DM models is constructed using the
unified concepts and their relations. The result of the case
study demonstrates that the proposed semantic model has
unified concepts and relations, accurate models and a clear
procedure.
Semantic consistency: The inter-organizational informa-

tion and knowledge flows drive inter-organizational collab-
oration among the enterprises in the SCN. This collaboration
is realized with the support of the ontology defined in the
semantic model. The case study demonstrates that the ontol-
ogy maintains inter-organizational semantic consistency and
supports high-level collaboration.
Reusability: The generality of the theories, models,

methods and tools in the case study lead to general

adaptation of their structure and parameters for SCN mod-
eling, CE and DM, for example, the SCOR model can
be used for SCN modeling. These structure and param-
eters can be flexibly modified and reused. The ontol-
ogy that is defined in the semantic model improves this
reusability.
Procedure: The procedure is easily conducted according

to the predefined steps in the semantic models. The appli-
cation procedure of the SCN, CE, and DM semantic mod-
els in the case study shows that the procedure has a clear
thinking and a rigorous logic and can be conducted step
by step.
Systematization: According to the SCN, CE and DM

semantic models and their applications in the case study,
the ontology is systematic and comprehensive and the appli-
cation procedure is rigorous. Therefore, the proposed seman-
tic model has the characteristic of systematization.
Semantic linkage analysis: As discussed above, the seman-

tic interoperability and the application procedure of the
semantic model are verified in the case study. The veri-
fied interoperability and procedure solve the interface con-
nection problems among SCN modeling, CE and DM with
high semantic support when decentralized and heterogeneous
enterprises and multiple steps for inter-organizational col-
laboration are involved. Moreover, the semantic model can
be spiral-cycle interoperated to improve SCN modeling, CE,
and DM.
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V. DISSCUSSIONS
This paper provides an integrated methodology, along with
its semantic overview, for guiding the selection of suitable
theories, perspectives, paradigms, methods and tools for the
optimization and design of SCNs. The solutions that are
obtained via this methodology solve the semantic inconsis-
tency problems and interface connection problems among
SCNmodeling, computational experiment and decision mak-
ing to strengthen the semantic understandability, consistency,
reusability, and interoperability of the artifacts among the
research steps. The solutions not only enrich the theoretical
system referring to the methodologies from SCN modeling
and computational experiment to its decision making, but
also provide an important reference about how to conduct
the procedure with high efficiency in practice, especially
for solving the optimization and design of complex inter-
organizational SCNs in reality. Thus, the solutions are of high
theoretical and practical significance.

However, the solutions are still in its infancy and must
be further refined with emerging new theories, methods and
tools in SCN complexity research.

VI. CONCLUSIONS AND FURTHER STUDY
As a complex adaptive system, an SCN is typically stud-
ied using computational experiment and decision making
tools. Compared with previous related case studies, the inte-
gration of computational experiments and decision making
provides an effective methodology for the optimization and
design of SCNs in the research lifecycle. This paper analyzes
the knowledge framework for computational experiment and
decision making of SCNs and constructs a semantic model
of the framework using semantic network approach. This
semantic model provides a basic knowledge blueprint for
studying the complexity of SCNs. A four-echelon SCN is
studied to demonstrate the application of the semantic model
and its verification in six aspects. The results demonstrate
that this semantic model can help researchers clarify the
knowledge elements in SCN complexity research, follow an
suitable paradigm and adopt effective methods and tools in
practice. This semantic model can also support the semanti-
cally consistent understanding and knowledge sharing among
inter-organizations, inter-steps and inter-models to realize
semantic interoperability and linkage analysis in the pro-
cedure of computational experiments and decision making
of SCN. In this manner, the semantic model enriches the
theoretical system, which refers to the methodologies from
SCN modeling and computational experiments, and facili-
tates its decision making with high efficiency.

The knowledge framework and its semantic model are
relatively abstract. The semantic model should be further
refined in terms of its methodological and implemental levels.
In this manner, emerging new theories, methods and tools
in SCN complexity research are conveniently and easily
incorporated into the implemental level without interfering
with the methodological level. Although the verification of
the semantic model is evaluated in a case study, additional

case studies are necessary for the further verification and
improvement of the semantic model when necessary. There-
fore, further research will focus on the model improvement
and additional in-depth case studies of SCNs based on this
model.
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