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ABSTRACT Advanced driver assistance systems (ADAS) based on monocular vision are rapidly becoming
a popular research subject. In ADAS, inter-vehicle distance estimation from an in-car camera based on
monocular vision is critical. At present, related methods based on a monocular vision for measuring the
absolute distance of vehicles ahead experience accuracy problems in terms of the ranging result, which is
low, and the deviation of the ranging result between different types of vehicles, which is large and easily
affected by a change in the attitude angle. To improve the robustness of a distance estimation system,
an improved method for estimating the distance of a monocular vision vehicle based on the detection and
segmentation of the target vehicle is proposed in this paper to address the vehicle attitude angle problem.
The angle regression model (ARN) is used to obtain the attitude angle information of the target vehicle.
The dimension estimation network determines the actual dimensions of the target vehicle. Then, a 2D base
vector geometric model is designed in accordance with the image analytic geometric principle to accurately
recover the back area of the target vehicle. Lastly, area–distance modeling based on the principle of camera
projection is performed to estimate distance. The experimental results on the real-world computer vision
benchmark, KITTI, indicate that our approach achieves superior performance compared with other existing
published methods for different types of vehicles (including front and sideway vehicles).

INDEX TERMS Attitude angle information, distance estimation, instance segmentation, monocular vision.

I. INTRODUCTION
Research on advanced driver assistance systems (ADAS) is
developing rapidly. ADAS play an important role in reduc-
ing traffic accidents, preventing rear-end collisions between
vehicles [35], and improving traffic safety performance.
Inter-vehicle distance estimation is a crucial part of ADAS.
Distance estimation methods can be divided into two major
classes: sensor-based [9], [12] and vision-based [10], [21]
systems. Sensor-based systems use sensors, such as RADAR
and LIDAR [19], to accurately provide the distance infor-
mation of a target vehicle. However, high cost and target
vehicle data collection remain as critical issues. Meanwhile,
vision-based systems are typically divided into two classes:
stereo vision [13], [27] and monocular vision [11], [15].
Stereo vision can more intuitively and accurately calculate
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the long distance of vehicles ahead. However, due to the
calibration and matching between two cameras, stereo vision
systems require a long execution time and exhibit low effi-
ciency and considerable computational complexity. Monocu-
lar vision can tolerate a complicated algorithm and can obtain
an optimal result within a shorter time than stereo vision [37].
However, the current distance estimation method for monoc-
ular vision still experiences problems, such as low precision
and a narrow application range. A monocular-vision-assisted
driving system can efficiently control real-time performance
because it conforms to the human visual system. Moreover,
it adapts to the applicable scene of modern vehicles and
demonstrates considerable development prospects compared
with other systems. Consequently, inter-vehicle distance esti-
mation based onmonocular vision has been become a popular
research topic.

To satisfy the requirements of monocular-vision-assisted
driving system positioning, many distance estimation
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methods based on monocular vision have been proposed
recently. On the basis of their experimental results, monocular
visual distance estimation methods can be approximately
divided into relative depth and absolute distance estimations.
Relative depth estimation [22], [23] mostly predicts the depth
of each pixel in an image, expresses the foreground and
background through different gray values, and finally outputs
the depth map of the depth variation of the entire scene.
However, several articles, such as [24], have reported that
this type of method primarily restores the relative relationship
between the target vehicle and the subject vehicle but does not
obtain the absolute distance (in meters) of the target vehicle
in the scene. A depth map contains redundant information,
such as sky, distant buildings, and street trees, which exerts
minimal effect on distance measurement in traffic scenarios.
Nevertheless, such information will reduce the efficiency of
estimating the distance of the target vehicle.

An absolute distance estimation method can obtain the
absolute distance of the target vehicle ahead. For absolute
distance estimation method, some researches proposed for
distance detection using machine learning such as classifier
using Haar-like features [14] and cascade classifier [15], [38].
These methods require many positive and negative samples
during the training process to ensure good accuracy. However,
a satisfactory ranging result cannot be produced. Thereafter,
distance estimation based on the geometric model has been
proposed. In accordance with different projection principles,
distance estimation methods can be further divided into the
inverse perspective mapping (IPM) principle and the camera
projection principle. In target vehicle distance estimation
based on the IPM principle [1], [3], [4], the original image
is converted into a bird′s eye view via IPM transformation
to restore the information of the road plane. Then, the dis-
tance of the target vehicle is calculated using the IPM image
obtained after the conversion. However, this method has two
disadvantages: 1) The image brightness requirement is rel-
atively high. When the acquired image brightness is low,
detection system performance is low and distance estimation
accuracy is reduced, and 2) The size of the converted image
changes, which causes some of the target vehicles in the
original image to be lost in the IPM image, thereby limiting
the estimated range of the system.

To address the aforementioned problems, a distance esti-
mation method for the vehicle ahead based on the cam-
era projection principle was proposed in [2] using vehicle
width estimation and by comprehensively considering two
road environments, i.e., with and without lane markings.
By detecting the positions of the vehicle ahead [36] and the
vanishing point, a method based on the camera projection
geometry model was developed in [7] for measuring the
longitudinal distance of the vehicle ahead. However, this
method cannot obtain detailed information of the target vehi-
cle and acquires redundant information, thereby resulting
in low ranging accuracy. Accordingly, a concept based on
instance segmentation was proposed in [8] using the pro-
jection geometry model established by the projected area to

estimate the distance of the vehicle ahead. Compared with
the method presented in [2], [7], redundant information can
be reduced and ranging accuracy can be improved. However,
no modeling analysis is performed for the mechanism of
attitude angle change. The ranging result of the non-front
target vehicle exhibits a considerably large error. The applica-
tion range of the distance estimation method is insufficiently
wide. To acquire the actual dimensions of a vehicle, vehicle
type is obtained using a vehicle classification network. Then,
the actual dimensions of the target vehicle are obtained by
matching the dimension information of different types of
vehicles that have been previously calculated.

FIGURE 1. (a), (c) Shows partial scene of the vehicle taken along the
direction of the camera′s optical ray and (b), (d) is the driving situation of
the vehicle in whole scene.

Figure 1 shows the change in the attitude angle of the
target vehicle when it is in the front and sideway positions
of the subject vehicle. As shown in Figs. 1(a) and 1(c), the
projection relationship of each part of the vehicle is different,
and the corresponding projection information in the image
also varies. When the method presented in [8] is used, pro-
cessing will result in a considerable difference in the accuracy
of the distance estimation results among various vehicles,
and the accuracy of the overall result will decrease. Therefore,
the current study proposes a method based on the monocu-
lar vision vehicle distance estimation method by integrating
vehicle attitude angle information. To improve the efficiency
of a distance estimation system, we enhanced the method for
obtaining vehicle dimension information in [8] by applying
the advantages of the deep network framework and using the
KITTI dataset to train the dimension estimation network and
obtain the actual dimensions of a vehicle, thereby improving
the detection efficiency of a system.

The rest of this paper is organized as follows. Section II
briefly discusses related studies and our contributions, pri-
marily reviewing the progress of previous work in the field of
distance estimation research. Section III explains the entire
distance estimation system and the method for each block.
Section IV introduces the research environment and exper-
imental results to verify the accuracy and robustness of the
system. The conclusions of the study and future work are
described in Section V.

46060 VOLUME 7, 2019



L. Huang et al.: Robust Inter-Vehicle Distance Estimation Method Based on Monocular Vision

II. RELATED WORK
In recent years, research on the methods for estimating the
distance of monocular vision vehicles based on geometric
models, which are largely divided into the inverse perspective
mapping transformation method [3], projection geometric
relationship method [5], and fitting modeling method [16],
has achieved considerable results. In [4], [17], [18], [20],
a distance estimation method based on IPM was proposed.
The difference among these studies is the object detection
method, such as the road removal algorithm [4], [17], thresh-
old adjustment [18], and hue, saturation, and value (HSV)
color mapping [20]. The overall idea is to convert the orig-
inal image into a bird′s eye view, which approximates the
image obtained from the top-down observation scene. The
IPM image obtained through conversion is used to cal-
culate the distance value of the target vehicle. The orig-
inal image is converted to an IPM image by obtaining
the camera′s internal and external parameter information.
The method is simple and feasible but does not consider the
vehicle′s attitude angle information when moving, thereby
resulting in a considerable distance error when the vehicle
moves.

Subsequently, to avoid the problem of conversion between
images, [5]–[7] proposed to establish a geometric model
based on the principle of camera perspective projection to
estimate the distance of the target vehicle. Nakamura et al. [5]
presented a monocular vision vehicle distance estimation
method based on the triangular geometric relationship
between the horizontal and vertical directions to estimate
vehicle width. However, this method reduces only the error
of vehicle width estimation during the tracking process and
does not consider the change in the attitude angle produced
by the vehicle during driving. Thus, a considerable error
in estimating the distance of the non-front target vehicle is
produced. Bao and Wang [6] developed a monocular vision
ranging method based on the linear relationship between the
average vehicle width and the actual distance of the vehicle,
however, this method does not consider the attitude change
of the vehicle during driving. Moreover, the average width
of the vehicle in the image can only guarantee the average
ranging accuracy and not the accuracy of the single vehicle
ranging result. Huang et al. [7] established a method for mea-
suring the longitudinal distance of the target vehicle ahead
based on the vanishing point of the lane line by detecting
the positions of the vehicle and the vanishing point. The
method accurately detects the vanishing point position to
ensure the accuracy of the ranging result of the vehicle ahead.
However, the deflection of the vehicle during driving is not
considered, and this method is applicable only to the front
vehicle.

Subsequently, [1] presented a geometric model based on
obtaining vehicle position and lane line information while
using vehicle height to measure the distance of the vehi-
cle ahead in the modeling of the original and IPM images,
thereby solving the information loss problem in image con-
version. A distance estimation method based on vehicle

detection information using vehicle width was developed
in [2], the method comprehensively considers two road
environments, namely, with andwithout lanemarkings. How-
ever, the methods proposed in [1] and [2] present the position
of the target vehicle in the image as rectangular, and thus,
many details of the target vehicle cannot be obtained, and a
considerable amount of redundant information is included.
Huang et al. [8] suggested measuring the target vehicle′s
distance based on vehicle segmentation information using the
projected area. Compared with the method that uses vehi-
cle height or width, redundant information can be reduced
to improve ranging accuracy. The method developed in [8]
disregards the attitude angle problem of a vehicle, and the
applicable range of the system has limitations. This method
is mostly applicable to front vehicles, whereas the estimation
result of sideway vehicles acquires a large error. Moreover,
distance estimation by recovering the original projection
information of the occluded vehicle from the overlapping
area of the rectangle reduces ranging accuracy due to the
inaccuracy of the labeling of the rectangle.

In summary, the major contributions of our work are as
follows.
• To improve the accuracy of the estimated results and
the robustness of the system for vehicles under differ-
ent driving conditions, This study proposes to integrate
vehicle attitude angle information based on vehicle seg-
mentation information to realize distance estimation of
the vehicle ahead.

• The 2D base vector geometric model is designed in
accordance with the principle of image analytic geome-
try, and the relationship between the back of the vehicle
and the overall projection information of the vehicle
is obtained. This relationship is used to determine the
projected area of the back of the vehicle.

• The method for obtaining vehicle size information is
improved to enhance system efficiency and acquire
the actual dimensions of a vehicle through our trained
dimension estimation network.

• The test results of the KITTI benchmark dataset show
that the error rate for sideway vehicle ranging is less
than 5%, and the accuracy deviation among vehicles
under different driving conditions is less than 2%. These
results considerably narrow the deviation of ranging
accuracy among different types of vehicles, overcome
the limitations, and exceed the accuracy of existing dis-
tance estimation methods.

III. SYSTEM MODEL
A. SYSTEM OVERVIEW
The primary reason for the problem in existing distance
estimation methods is that vehicle attitude angle information
is not considered. In complex traffic scenarios, the driving
conditions of the target vehicle vary relative to the sub-
ject vehicle, and the attitude angle information of different
types of vehicles and the projection relationship in the image
are different. As shown in Fig. 1, the target vehicle moves
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FIGURE 2. Distance estimation system framework.

respectively in the front and sideway positions of the subject
vehicle. In the sideway position, the projected parts of the
vehicle in the image are not simply formed by the actual back
projection of the vehicle, but the front vehicle is formed by the
corresponding projection. If the projection relationship is the
same, i.e., the projection areas of the two types of vehicles
are formed by the back of the vehicle, then the accuracy of
the ranging result between the two vehicles deviates consid-
erably, thereby resulting in a decrease in the accuracy of the
entire distance estimation system.

In summary, this study considers the vehicle attitude angle
information based on a vehicle detection and segmenta-
tion algorithm and establishes an ‘‘area–distance’’ geometric
model based on the camera projection principle to estimate
the distance of the vehicle ahead. The system framework is
shown in Fig. 2. First, the entire RGB image is sent to the
target detection part to extract the candidate area of the target
vehicle. Then, the candidate regions are sent to the segmen-
tation network, ARN, and dimension estimation network to
obtain the segmentation information, attitude angle informa-
tion, and actual dimension of the target vehicle, respectively.
Subsequently, a 2D base vector geometric model based on
the principle of image analytic geometry [39] is designed to
obtain the projection relationship between the back of the
vehicle and the entire vehicle, and the projected area of the
back of the vehicle is calculated. the angle (γ ) is the offset
Angle between two pairs of basis vectors in the geometry
model, and its physical meaning is the vehicle attitude angle.
Lastly, a geometric model based on the camera projection
principle is established to estimate the distance of vehicle
ahead. In our distance estimation system, a region proposal
network (RPN) that combines object classification and object
candidate regions is generated. The RPN can be used to

generate the candidate regions of target vehicles, thereby
achieving a complete end-to-end target detection module,
which not only accelerates detection speed but also improves
detection performance. The segmentation network is a pixel-
level segmentation of the target vehicle candidate region
using the mask region-based convolutional neural network
(Mask R-CNN) [25] instance segmentation network to obtain
the vehicle mask. Adopting the design ideas and deep net-
work framework of pose estimation in [26], the KITTI dataset
was used to train the ARN and dimension estimation network
to obtain vehicle attitude angle information and physical
dimensions. Subsequently, this section primarily introduces
the local module design of the distance estimation system,
including the attitude angle design, vehicle back projec-
tion information extraction, and distance estimation module
design.

B. ATTITUDE ANGLE DESIGN
Given that the driving lane of the subject vehicle changes,
the driving position of the target vehicle changes relative to
that of the subject vehicle. Thus, the direction of the light
between the camera′s optical center and the center of different
target vehicles varies, thereby resulting in different attitude
angle information of the target vehicles. As shown in Fig. 3,
the attitude angle information of a vehicle is transformed
into 2D space to establish an analysis plan. The orange rect-
angular box represents the front vehicle, whereas the blue
rectangular box represents the sideway vehicle. The camera′s
optical center establishes the camera coordinate system for
the origin. The black dotted line indicates the horizontal line
of the camera coordinate system, the red arrow indicates the
vehicle driving direction, and the blue arrow indicates the
light direction. θray1 and θray2 are the light ray angles of
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FIGURE 3. Plan of vehicle driving conditions.

FIGURE 4. Angle geometry relationship.

the front and sideway vehicles, respectively; θ1 and θ2 are
called the global angles of the front and sideway vehicles,
respectively; and θl is called the local angle. The local angle
of the front vehicle is 0◦, whereas the local angle of the
sideway vehicle is not 0

◦

. The relationship among angles is
shown in Fig. 4. The blue rectangle refers to the target vehi-
cle, the triangle is the camera′s optical center of the subject
vehicle, and the horizontal dotted line is the horizontal axis
of the camera coordinate system. θray is the angle between
the ray connected to the vehicle center and the optical center
and the horizontal axis, θ is the angle between the vehicle
driving direction and the horizontal axis, θl is the local angle
of the vehicle, and θl = θ − θray. Subsequently, θray is called
the ray angle, θ is called the global angle, and θl is called the
local angle. Given the change in attitude angle information,
the projection relationship and mask information of a vehicle
are changed.

To obtain the required attitude angle information, we adopt
the concept of rectangular box regression in a Faster
R-CNN [34] network and the design idea of the angle estima-
tion architecture in [26]. On the basis of the last layer of the
convolution feature map, the regression parameters after the
fully connected layers (FC) are modified, the required angle
regression network is trained through the KITTI detection
dataset, and the attitude angle information is finally obtained.
The network structure is shown in Fig. 5.

C. VEHICLE BACK PROJECTION
INFORMATION EXTRACTION
This section primarily describes how the projection relation-
ship between the back of the vehicle and the entire vehicle is
obtained through attitude angle and segmentation information

FIGURE 5. Angle regression network structure.

and how the projected area of a vehicle′s back is obtained by
using this relationship, wherein the pixel value of the mask is
obtained from the segmentation information to represent the
projected area.

1) RELATIONSHIP BETWEEN THE MASKS OF THE FRONT
VEHICLE AND THE BACK OF THE SIDEWAY VEHICLE
We can learn from the Section III-B that vehicle changes
under different driving conditions are related to the vehicle
attitude angle. Compared with the mask information of the
front vehicle, the sideway vehicle also contains other parts
of the mask information. However, the back of the vehicle
remains unchanged, and the corresponding mask information
does not change. Therefore, the projected area on the back of
the sideway vehicle is the same as the projected area of the
front vehicle, and Equation (1) is obtained.

Sfront vehicle mask = Ssideway vehicle back mask (1)

where Sfront vehicle mask is the projected area of the front vehi-
cle and Ssideway vehicle back mask denotes the projected area on
the back of the sideway vehicle.

2) RELATIONSHIP BETWEEN THE MASKS OF THE FRONT
AND SIDEWAY VEHICLES
Assume that the camera′s elevation and roll angles are zero.
Then, the image acquired by the camera is parallel to the
actual observation scene. In a traffic scene, the vehicle travels
on a straight road, regardless of the vehicle driving on the
curve.

To obtain the mask on the back of the vehicle, the rela-
tionship between the front vehicle mask and the entire mask
of the sideway vehicle must be first analyzed. We extract the
candidate area of the target vehicle along the direction of the
light. As shown in Fig. 6, the area surrounded by the green
line indicates the mask projected from the back of the front
and sideway vehicles, and the area surrounded by the yellow
line indicates the mask of the entire projection of the sideway
vehicle.

In accordance with the analytic geometric transforma-
tion properties of the 2D image, each planar graph can
be represented by a set of linearly independent basis vec-
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FIGURE 6. Outline map of target vehicle candidate area, (a) Mask outline
of the Front vehicle. (b) Mask outline of Sideway vehicle.

FIGURE 7. Target vehicle contour regularization, The green rectangular
frame area approximates the mask on the front vehicle and back of the
sideway vehicle, and the yellow rectangle approximates the whole mask
of the sideway vehicle. (a) Front vehicle. (b) Sideway vehicle.

tors. Then, the geometric transformation of the figure in the
2D space can also be expressed by the geometric transfor-
mation of the base vector. Given that the shape of the mask
projected by the vehicle in the image is an irregular pattern,
which is inconvenient for further analysis, the rigidity of
the vehicle is used to approximate the mask of the vehicle
projection using a rectangle.
• The mask of the front vehicle is represented by the
e1-e2 basis vector, as shown in Fig. 7(a). The target
vehicle is extracted along the direction of the camera
light. Thus, the physical meaning of the e1 base vector
is the light ray direction of the front vehicle. Given
that the direction of the front car is the same as that of
the light ray, the e1 base vector can also represent the
driving direction of the vehicle. e2 is the vertical vector
of e1.

• The mask of the sideway vehicle is represented by the
e3–e4 basis vector, as shown in Fig. 7(b). Similarly,
the physical meaning of the e3 base vector represents the
light ray direction of the sideway vehicle, and e4 is the
vertical vector of e3.

Figure 7 is transformed into the same coordinate sys-
tem, and a 2D base vector geometric model is constructed
as shown in Fig. 8. The base vector transformation of the

FIGURE 8. 2D base vector geometric model.

corresponding mask of the two types of vehicles is analyzed.
The e1–e2 base vector is used as the baseline to observe the
change of the e3–e4 base vector. The blue pair represents
the base vector of the front vehicle, whereas the red pair
represents the base vector of the sideway vehicle.

In accordance with its physical meaning, the angle (γ ) of
the offset between the base vectors is the local angle (θl).
Given that the change in mask is consistent with the change
in the base vector, Equation (2) can be obtained as follows:

cos γ =
|e1|
|e3|
=
|e1e2|
|e3e4|

=
Sfront vehicle mask
Ssideway vehicle mask

, (2)

where |e1e2| and |e3e4| respectively represent the mask
figures of the front and sideway vehicles. Sfront vehicle mask
is the projected area of the front vehicle, whereas
Ssideway vehicle mask is the projected area of the sideway
vehicle.

3) RELATIONSHIP BETWEEN THE ENTIRE MASK AND BACK
MASK OF THE SIDEWAY VEHICLE
Given γ = θl , Sfront vehicle mask = Ssideway vehicle back mask , can
obtain Equation (3).

cos θl =
Ssideway vehicle back mask
Ssideway vehicle mask

(3)

From Equation (3), the relation between the entire mask
of the sideway vehicle and the mask on the back of the
sideway vehicle can be obtained, wherein the pixel value of
the mask area is obtained from the segmentation information
to represent the projected area.

D. DISTANCE ESTIMATION MODULE DESIGN
The projected area of the back of the vehicle obtained in
the Section III-C.3 is combined with the actual vehicle
dimensions and camera focal length (in pixels) for model-
ing based on the principle of camera projection to estimate
the distance value of the vehicle ahead. Compared with the
methods proposed in [2], [7], we use the perspective pro-
jection relationship between the actual and projected areas
to establish the ‘‘area–distance’’ geometric model, which
provides a more comprehensive use of vehicle information,
to improve the accuracy of the distance estimation system.
Moreover, we focus on the projection transformation relation-
ship between surfaces, which can enhance the reliability of
the geometric models compared with that in [8].

1) PRINCIPLE OF CAMERA PROJECTION
The principle of camera projection primarily transforms the
points (Xw,Yw,Zw) in the world coordinate system into the
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FIGURE 9. Projection geometry model of distance estimation, where f is the camera focal length and L is the physical distance
between the object vehicle and the camera. (a) Principle of camera projection. (b) Image plane to pixel plane.

camera coordinate system (Xc,Yc,Zc), which then become
points (x, y) on the 2D plane through perspective projection.
Lastly, the points (x, y) is stored in the form of pixels (u, v),
as shown in Fig. 9.

If the world coordinate system is in the position shown
in Fig. 9(a), then R= I (unit matrix), T=

[
0 0 L

]T , Zw = 0,
and Equation (4) can be obtained.
Xc
Yc
Zc
1

=[ R T
0T 1

]
Xw
Yw
Zw
1

=

1 0 0 0
0 1 0 0
0 0 1 L
0 0 0 1



Xw
Yw
0
1

 (4)

As shown in Fig. 9(b), the image coordinate system
is converted to the pixel coordinate system, as shown in
Equation (5).

uv
1

 =


1
dx

0 u0

0
1
dy

v0

0 0 1


xy
1

 (5)

Applying the camera projection principle, as shown in
Equation (6), and the conversion relationship between the
actual and pixel points in the camera coordinate system can
be obtained, as shown in Equation (7).

Zc

xy
1

 =
f 0 0 0
0 f 0 0
0 0 1 0



Xc
Yc
Zc
1

 (6)

Zc

uv
1

 = L

uv
1



=


1
dx

0 u0

0
1
dy

v0

0 0 1


f 0 0 0
0 f 0 0
0 0 1 0

[R T
0T 1

]
Xw
Yw
Zw
1



FIGURE 10. Actual area of the visible part of the target vehicle.

=

fx 0 u0 0
0 fy v0 0
0 0 1 0



1 0 0 0
0 1 0 0
0 0 1 L
0 0 0 1



Xw
Yw
0
1



=

fx 0 u0 u0L
0 fy v0 v0L
0 0 1 L



Xc
Yc
0
1

 , (7)

where f
dx
= fx ,

f
dy
= fy, (u0, v0) = (0, 0), and Zc = L,

Equation (7) is transformed into Equation (8).uv
1

 = 1
L

fxXc + u0LfyYc + v0L
L

 = 1
L

fxXcfyYc
L

 (8)

2) RELATIONSHIP OF AREA CONVERSION IS DERIVED FROM
THE RELATIONSHIP OF POINT CONVERSION
The actual area of the target vehicle is divided into N parts
along the Yc direction, and each part is approximately a
rectangle, as shown in Fig. 10. The four vertices of the
i-th rectangle are marked as Pi1, P

i+1
1 , Pi2, and P

i+1
2 , where

Pir =
(
Pirx ,P

i
ry

)
=
(
xr i, yr i

)
, (r = 1, 2; i = 1, 2, 3, · · · ,N ).

Pirx and Piry represent the Xc and Yc coordinates of the four
coordinate points, respectively.
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Then, the actual area of the visible part of the target vehi-
cle is

S =
N∑
i=1

(
Pi1y − P

i
2y

) (
Pi+12x − P

i
2x

)
=

N∑
i=1

(
yi1 − y

i
2

) (
x i+12 − x i2

)
. (9)

Using the relationship between the actual and pixel
points (8), we can obtain

S =

[
N∑
i=1

(
vi1 − v

i
2

) (
ui+12 − u

i
2

)] L2

fx fy

= Spixel
L2

fx fy
, (10)

where Spixel represents the projected area of the target vehicle
in the image, i.e., the pixel value of the mask formed by the
projection of the vehicle in the image, and S represents the
actual area of the vehicle.

3) ESTIMATE THE PHYSICAL DISTANCE OF THE
VEHICLE AHEAD
In accordance with Equations (3) and (10), the distance for-
mula (11) is obtained as

L =
(
fx fyS
Spixel

) 1
2

=

(
fx fySsideway vehicle back
Ssideway vehicle back mask

) 1
2

=

(
fx fySsideway vehicle back
Ssideway vehicle mask cos θl

) 1
2

, (11)

where L is the physical distance of the vehicle ahead fx =
fy = 7.2153 × 102, Ssideway vehicle back is the actual area of
the back of the sideway vehicle, and Ssideway vehicle mask is the
entire mask of the projected area of the sideway vehicle. θl is
the local angle of the vehicle.

IV. EXPERIMENT
In this study, the proposed distance estimation system is
mostly applied to the vehicle camera system in an auto-
matic driving scene. The research scene is an actual traffic
scene of a modern vehicle. The research device is a camera
mounted behind the windshield of a vehicle for acquiring
images.

We determine the vehicle′s position on the basis of the
definitions in the international vehicle collision warning sys-
tem [29]. Vehicles ahead are divided into two types: the front
and sideway vehicles. A front vehicle implies no deviation
between the longitudinal center lines of the subject and tar-
get vehicles. If deviation exists, then the vehicle ahead is a
sideway vehicle.
Segmentation Network: In this work, the state-of-the-art

instance segmentation network, namely, Mask R-CNN, was
used as the segmentation network, and the candidate regions
of the target detection network were segmented at the pixel

TABLE 1. Average error of distance estimation by different methods (m).

FIGURE 11. Absolute error curve graph.

level to obtain the mask that was used to calculate vehicle
distance. Mask R-CNN has three advantages over Faster
R-CNN. First, Mask R-CNN enhances the foundation of
the network by using ResNeXt-101 with a feature pyramid
network [28] as the feature extraction network. Second, Mask
R-CNN replaces RoIPool with RoIAlign to solve the mis-
alignment issues caused by the direct sampling of pooling.
Third,Mask R-CNN can independently predict a binarymask
for each class. The classification of each binarymask depends
on the classification prediction given by the network region
of interest (ROI) classification branch, and thus will not cause
competition among classes. Mask R-CNN has demonstrated
excellent performance in instance segmentation. Compared
with the method represented by a 2D bounding box, a mask is
used to obtain the details of the target vehicle, and the redun-
dancy in the rectangle is reduced to improve the accuracy of
the distance estimation system. Therefore, Mask R-CNNwas
selected as the segmentation network of our distance estima-
tion system, which can obtain the segmentation information
of the target vehicle in the image to ensure the accuracy of
the system.
Angle Regression Network And Dimension Estimation

Network: Given that the angle regression and dimension esti-
mation networks are based on the CNN network framework,
we use the same regression network structure to obtain the
required vehicle parameters, i.e., training a deep CNN to
regress the angle of the vehicle and its dimensions. In the
KITTI dataset, vehicles, vans, trucks, and buses are under
different categories, and the distribution of the object dimen-
sions for category instances is low-variance and unimodal.
For example, the dimension variance for vehicles and cyclists
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FIGURE 12. Distance experimental results on KITTI dataset.

is approximately several centimeters. Therefore, we use the
L2 loss directly. To regress vehicle parameters, we use a pre-
trained VGG network [33] without its FC layers and add our
angle and dimension estimation modules. During training,
each ground truth crop is resized to 224 × 224. To make the
network more robust to viewpoint changes and occlusions,
the ground truth boxes are jittered, and the ground truth angle
is changed to account for the movement of the center ray of
the crop.
Datasets: The networks involved in the distance estimation

system proposed in this study are Mask R-CNN, ARN, and
a dimension estimation network. We used the COCO and
KITTI datasets [30] for training, thereby finally verifying our
method on the KITTI detection benchmark. KITTI contains
a training set of 7481 images and a test set 7518 images,
and because our distance estimation system is for the auto-
matic driving scene, it focuses only on the ‘‘car’’ category.
The KITTI test dataset has no ground truth label. Follow-
ing the ‘‘rules,’’ we separate a part of the data from the
KITTI training set as a test set. The ‘‘rules’’ are as follows.
First, the data of the training and test sets must be from

different video sequences. Second, the selected data should
contain two scenarios: front and non-front. Third, ranging
must be performed for vehicles with different distances. Thus,
the selected verification image should include vehicle sam-
ples in different near and far situations. In accordance with
this ‘‘rule,’’ we use the 3481 images in the training set as
the test set to verify and analyze our distance estimation
method.
Evaluation Metrics:

a.Absolute Error : 1(m) =
∣∣Lground truth − Lexperimental ∣∣ .

b.Relative Error : δ (%) =

∣∣∣∣ 1

Lground truth

∣∣∣∣ .
c.Average Error : 1(m) =

1
n

n∑
i=1

|1i|.

d .Average Error Rate : δ (%) =
1
n

n∑
i=1

∣∣∣∣ 1i

Lground truth i

∣∣∣∣.
To verify the accuracy and robustness of the proposed

distance estimation system, we compared it with different dis-
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TABLE 2. Comparison between experimental distance and ground truth of two groups of experiments.

tance estimation methods from three aspects, namely, accu-
racy verification of the entire system model, attitude angle
module verification, and system robustness verification.

A. ACCURACY VERIFICATION OF THE ENTIRE
SYSTEM MODEL
We compare the average error of the distance estimation
results with the different methods proposed in [1] and [31],
and the results are presented in Table 1. In the system
framework of the methods presented in [1], [31], a ‘‘non-
area–distance’’ geometric model was established by using
the perspective principle to estimate distance, whereas we
propose to use the area projection principle to establish
the ‘‘area–distance’’ geometric model to realize distance
estimation.

The experiment shows that the results of our method
are optimal for distance estimation within different distance
ranges. The average error of the estimation results using
our distance estimation method is reduced by 0.43 m at the
maximum compared with the other methods within the range
of 10 m. Even within the range of distances greater than
20 m, the average error of our distance estimation results
is guaranteed to be approximately 2 m. Compared with the
methods proposed in [1], [31], the average error is consider-
ably reduced, the optimal result is achieved, and the distance
estimation accuracy of the system is improved. Moreover,
the maximum deviation among the average errors over dif-
ferent distance ranges is approximately 1.8 m. Compared
with the method presented in [31], the deviation between the
system estimation results of different distances is reduced,
and the overall distance estimation system is more stable and
robust.

B. ATTITUDE ANGLE MODULE VERIFICATION
For the absolute error of different distance ranges, our method
is compared with the method that disregards vehicle attitude
angle information [8]. Themethod proposed in [8] is included
in our test set, and the result is represented in the form of a
curve graph, as shown in Fig. 11. In Fig. 11, the variation
trend of errors within different distance ranges can be seen
clearly. Our results at different distance positions present a
slight deviation from the ground truth, and overall system
accuracy and stability are improved.

To show the advantages of our system more intuitively,
the result is illustrated in Fig. 12, thereby verifying the accu-
racy of the predicted values with the ground truth.

Figure 12 presents the visualization of our method for
estimating the distance between the sideway and occluded
vehicles. The results show that after adding the attitude angle
information of the target vehicle in our distance estimation
system framework, the absolute error of the target vehicle
ranging result within 25 m is guaranteed to be less than 1 m.
Even for target vehicles larger than 50 m, the absolute error
can be guaranteed to be approximately 2 m.

C. SYSTEM ROBUSTNESS VERIFICATION
To evaluate the performance of the proposed method more
comprehensively and verify the robustness of the system,
front and sideway vehicles with different attitude angle infor-
mation are used in testing. Meanwhile, the average error rate
of the distance estimation results of different types of vehicles
is compared with the methods proposed in [8] and [32]. The
results are presented in Table 2.

On the basis of the experimental results, the average error
rate of our method for estimating the distance of a sideway
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vehicle is reduced to approximately 2.8%, thereby indicat-
ing a considerable decrease compared with other methods.
Moreover, the deviation in the average error rate of the
distance estimation results between the front and sideway
vehicles is approximately 2%. The average error rate for the
estimated distance results among different types of vehicles is
substantially reduced compared with other methods, thereby
overcoming the limitations and inapplicability of existing
distance estimation methods.

V. CONCLUSION
This study combines the attitude angle information of a vehi-
cle with its segmentation information and proposes a robust
inter-vehicle distance estimation method from an in-car cam-
era based onmonocular vision. Considering the attitude angle
changes of different types of vehicles in complex traffic
scenarios, distance estimation based on angle information can
improve the problem of considerable variation in the ranging
accuracy of different types of vehicles, thereby solving the
system problem of limited detection range, improving the
robustness and accuracy of the system, helping drivers focus
on the situation ahead, and reducing the occurrence of traffic
accidents. From the experimental results, this method can
adapt to most traffic scenarios and exhibits good robustness
against different driving states of vehicles ahead.

In the future, we will analyze vehicles driving in different
scenarios (such as highway, corner, and rural street scenes) to
further expand our distance estimation system. In addition,
for the front occlusion vehicle, there is no simple method
with high accuracy and efficiency in the existing distance
estimation methods. In order to improve the applicability of
our method, we will focus on this aspect and continuously
improve our distance estimation system.

REFERENCES
[1] L.-C. Liu, C.-Y. Fang, and S.-W. Chen, ‘‘A novel distance estimation

method leading a forward collision avoidance assist system for vehicles on
highways,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 4, pp. 937–949,
Apr. 2017.

[2] J. Han, O. Heo, M. Park, S. Kee, and M. Sunwoo, ‘‘Vehicle distance
estimation using a mono-camera for FCW/AEB systems,’’ Int. J. Automot.
Technol., vol. 17, no. 3, pp. 483–491, Jun. 2016.

[3] M. Rezaei, M. Terauchi, and R. Klette, ‘‘Robust vehicle detection and dis-
tance estimation under challenging lighting,’’ IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 5, pp. 2723–2743, Oct. 2015.

[4] P. Wongsaree, S. Sinchai, P. Wardkein, and J. Koseeyaporn, ‘‘Dis-
tance detection technique using enhancing inverse perspective mapping,’’
in Proc. 3rd Int. Conf. Comput. Commun. Syst. (ICCCS), Apr. 2018,
pp. 217–221.

[5] K. Nakamura, K. Ishigaki, T. Ogata, and S. Muramatsu, ‘‘Real-time
monocular ranging by Bayesian triangulation,’’ in Proc. IEEE Intell. Vehi-
cles Symp. (IV), Jun. 2018, pp. 1368–1373.

[6] D. Bao and P. Wang, ‘‘Vehicle distance detection based on monocu-
lar vision,’’ in Proc. IEEE Int. Conf. Prog. Informat. Comput. (PIC),
Dec. 2016, pp. 187–191.

[7] D.-Y. Huang, C.-H. Chen, T.-Y. Chen,W.-C. Hu, and K.-W. Feng, ‘‘Vehicle
detection and inter-vehicle distance estimation using single-lens video
camera on urban/suburb roads,’’ J. Vis. Commun. Image Represent., vol. 46,
pp. 250–259, Jul. 2017.

[8] L. Huang, Y. Chen, Z. Fan, and Z. Chen, ‘‘Measuring the absolute distance
of a front vehicle from an in-car camera based on monocular vision
and instance segmentation,’’ J. Electron. Imag., vol. 27, no. 4, Jul. 2018,
Art. no. 043019.

[9] M. Hammer, M. Hebel, B. Borgmann, M. Laurenzis, and M. Arens,
‘‘Potential of lidar sensors for the detection of UAVs,’’ Proc. SPIE,
vol. 10636, pp. 10636-1–10636-7, May 2018.

[10] J. Cui, F. Liu, Z. Li, and Z. Jia, ‘‘Vehicle localisation using a single
camera,’’ in Proc. IEEE Intell. Vehicles Symp., Jun. 2010, pp. 871–876.

[11] E. Raphael, R. Kiefer, P. Reisman, and G. Hayon, ‘‘Development of a
camera-based forward collision alert system,’’ SAE Int. J. Passenger Cars-
Mech. Syst., vol. 4, pp. 467–478, Apr. 2011.

[12] D. O. Cualain, M. Glavin, E. Jones, and P. Denny, ‘‘Distance detection
systems for the automotive environment: A review,’’ in Proc. Irish Signals
Syst. Conf., 2007, pp. 13–14.

[13] V. D. Nguyen, T. T. Nguyen, D. D. Nguyen, and J. W. Jeon, ‘‘Toward real-
time vehicle detection using stereo vision and an evolutionary algorithm,’’
in Proc. IEEE 75th Veh. Technol. Conf. (VTC Spring), May 2012, pp. 1–5.

[14] G. Kim and J.-S. Cho, ‘‘Vision-based vehicle detection and inter-vehicle
distance estimation,’’ in Proc. IEEE Int. Conf. Control, Autom. Syst.,
Jeju Island, South Korea, Oct. 2012, pp. 17–21.

[15] A. A. Ali and H. A. Hussein, ‘‘Distance estimation and vehicle position
detection based on monocular camera,’’ Proc. Al-Sadeq Int. Conf. Multi-
disciplinary IT Commun. Sci. Appl. (AIC-MITCSA), 2016, pp. 1–4.

[16] B. Li, X. Zhang, and M. Sato, ‘‘Pitch angle estimation using a vehicle-
mounted monocular camera for range measurement,’’ in Proc. 12th Int.
Conf. Signal Process. (ICSP), 2014, pp. 1161–1168.

[17] S. Tuohy, D. O’Cualain, E. Jones, and M. Glavin, ‘‘Distance determina-
tion for an automobile environment using inverse perspective mapping in
OpenCV,’’ in Proc. Signals Syst. Conf. (ISSC), Jul. 2010, pp. 100–105.

[18] A. Bharade, S. Gaopande, and A. G. Keskar, ‘‘Statistical approach for
distance estimation using inverse perspective mapping on embedded plat-
form,’’ in Proc. Annu. IEEE India Conf. (INDICON), Dec. 2014, pp. 1–5.

[19] W. Yao and U. Stilla, ‘‘Comparison of two methods for vehicle extraction
from airborne LiDAR data toward motion analysis,’’ IEEE Geosci. Remote
Sens. Lett., vol. 8, no. 4, pp. 607–611, Jul. 2011.

[20] R. Adamshuk et al., ‘‘On the applicability of inverse perspective mapping
for the forward distance estimation based on the HSV colormap,’’ in Proc.
IEEE Int. Conf. Ind. Technol. (ICIT), Mar. 2017, pp. 1036–1041.

[21] A. Joglekar, D. Joshi, R. Khemani, S. Nair, and S. Sahare, ‘‘Depth estima-
tion using monocular camera,’’ Int. J. Comput. Sci. Inf. Technol., vol. 2,
no. 4, pp. 1758–1763, 2011.

[22] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a single
image using amulti-scale deep network,’’ inProc. Adv. Neural Inf. Process.
Syst. (NIPS), 2014, pp. 2366–2374.

[23] D. Eigen and R. Fergus, ‘‘Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2650–2658.

[24] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, ‘‘Deep ordinal
regression network for monocular depth estimation,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), pp. 2002–2011, Jun. 2018.

[25] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969.

[26] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, ‘‘3D bounding
box estimation using deep learning and geometry,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 7074–7082.

[27] V. T. B. Tram and M. Yoo, ‘‘Vehicle-to-vehicle distance estimation using
a low-resolution camera based on visible light communications,’’ IEEE
Access, vol. 6, pp. 4521–4527, 2018.

[28] T-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[29] Intelligent Transport Systems—Forward Vehicle Collision Warning
Systems—Performance Requirements and Test Procedures, Standard ISO
15623:2013, Intelligent Transport Systems, 2013.

[30] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2012, pp. 3354–3361.

[31] S. Sivaraman and M. M. Trivedi, ‘‘Integrated lane and vehicle detection,
localization, and tracking: A synergistic approach,’’ IEEE Trans. Intell.
Transp. Syst., vol. 14, no. 2, pp. 906–917, Jun. 2013.

[32] R. Garg, V.K. B.G., G. Carneiro, and I. Reid, ‘‘Unsupervised CNN for
single view depth estimation: Geometry to the rescue,’’ in Computer
Vision—ECCV. Cham, Switzerland: Springer, 2016, pp. 740–756.

[33] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556

VOLUME 7, 2019 46069



L. Huang et al.: Robust Inter-Vehicle Distance Estimation Method Based on Monocular Vision

[34] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2015, pp. 91–99.

[35] C. Wang et al., ‘‘Data provenance with retention of reference relations,’’
IEEE Access, vol. 6, pp. 77033–77042, 2018.

[36] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, ‘‘A distributed
anomaly detection system for in-vehicle network using HTM,’’ IEEE
Access, vol. 6, pp. 9091–9098, 2018.

[37] S. Liu, Z. Li, Y. Zhang, and X. Cheng, ‘‘Introduction of key problems in
long-distance learning and training,’’ Mobile Netw. Appl., vol. 24, no. 1,
pp. 1–4, 2019.

[38] W.-D. Xie and X. Cheng, ‘‘Imbalanced big data classification based
on virtual reality in cloud computing,’’ 2019. doi: 10.1007/s11042-019-
7317-x.

[39] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine
Learning. Cambridge, U.K.: Cambridge Univ. Press, 2018, pp. 1541–1911.
[Online]. Available: https://mml-book.com

LIQIN HUANG received the Ph.D. degree from
Fuzhou University, Fuzhou, China, where he
is currently a Full Professor with the College
of Physics and Information Engineering. His
research interest include image processing, com-
puter vision, artificial Intelligence, traffic scene
understanding, and medical image processing.

TING ZHE received the B.S. degree in elec-
tronic information science and technology from
Shenyang Ligong University, Shenyang, China,
in 2017. She is currently pursuing the M.S. degree
in electronics and communications engineering
with Fuzhou University, Fuzhou, China. Her cur-
rent research interests include image processing,
computer vision, and deep learning.

JUNYI WU received the B.S. degree in electronic
information engineering from the Xiamen Univer-
sity of Technology, Fujian, China, in 2017. He is
currently pursuing the M.S. degree with Fuzhou
University. His research interests include com-
puter vision and deep learning.

QIANG WU (SM’18) received the B.Eng. and
M.Eng. degrees from the Harbin Institute of Tech-
nology, Harbin, China, in 1996 and 1998, respec-
tively, and the Ph.D. degree from the University
of Technology Sydney, Ultimo, NSW, Australia,
in 2004. He is currently an Associate Professor and
a Core Member of the Global Big Data Technolo-
gies Center, University of Technology Sydney.
His research has been published in many pre-
mier international conferences, including ECCV,

CVPR, ICIP, and ICPR, and major international journals, such as TIP,
TSMCB, TCSVT, and TSP. His research interests include computer vision,
image processing, pattern recognition, machine learning, and multimedia
processing. He serves as a Reviewer for several journals, including TPAMI,
TIP, TCSVT, and TSMCB.

CHENHAO PEI received the B.S. degree in inter-
net of things engineering from Fuzhou Univer-
sity, Fujian, China, in 2016, where he is currently
pursuing the Ph.D. degree in communication and
information system. His research interests include
lane detection, deep learning, autonompos driving,
and computer vision.

DAN CHEN received the M.S. degree in sig-
nal and information processing from Fuzhou Uni-
versity, China, in 2011, where he is currently a
Lecturer with the College of Physics and Infor-
mation Engineering. His current research interest
includes computer vision, machine learning, and
edge computing.

46070 VOLUME 7, 2019

http://dx.doi.org/10.1007/s11042-019-7317-x
http://dx.doi.org/10.1007/s11042-019-7317-x

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	SYSTEM OVERVIEW
	ATTITUDE ANGLE DESIGN
	VEHICLE BACK PROJECTION INFORMATION EXTRACTION
	RELATIONSHIP BETWEEN THE MASKS OF THE FRONT VEHICLE AND THE BACK OF THE SIDEWAY VEHICLE
	RELATIONSHIP BETWEEN THE MASKS OF THE FRONT AND SIDEWAY VEHICLES
	RELATIONSHIP BETWEEN THE ENTIRE MASK AND BACK MASK OF THE SIDEWAY VEHICLE

	DISTANCE ESTIMATION MODULE DESIGN
	PRINCIPLE OF CAMERA PROJECTION
	RELATIONSHIP OF AREA CONVERSION IS DERIVED FROM THE RELATIONSHIP OF POINT CONVERSION
	ESTIMATE THE PHYSICAL DISTANCE OF THE VEHICLE AHEAD


	EXPERIMENT
	ACCURACY VERIFICATION OF THE ENTIRE SYSTEM MODEL
	ATTITUDE ANGLE MODULE VERIFICATION
	SYSTEM ROBUSTNESS VERIFICATION

	CONCLUSION
	REFERENCES
	Biographies
	LIQIN HUANG
	TING ZHE
	JUNYI WU
	QIANG WU 
	CHENHAO PEI
	DAN CHEN


