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ABSTRACT With the development of wireless communication systems, it is particularly essential to
maximize the quality of experience (QoE) of machine-to-machine (M2M) communication. In this paper,
we propose a new QoE-oriented uplink rate control and resource allocation scheme for the Internet of
Things (IoT) network, by introducing an evaluation model based on mean opinion score (MOS) for
different machine-type communication (MTC) devices. The existing works are only dedicated to solving
the short-term resource allocation problems by considering the current transmission time slots, which
cannot handle long-standing problems. To this end, based on the recently developed Lyapunov optimization,
we convert the original long-term optimization problem into the admission rate control subproblem and the
resource allocation subproblem in each time slot. To solve the joint power optimization and sub-channel
selection subproblems, Gale–Shapley algorithm is utilized to formulate it as a two-dimensional matching
problem, and the preference lists are established by the transmission rate and signal to interference plus
noise ratio (SINR). In the proposed algorithms, a priority mechanism is employed to ensure fairness.
The simulation results demonstrate that without prior knowledge of the data arrivals and sub-channel
statistics, the proposed algorithms can significantly improve the overall perceived quality from the users’
perspective.

INDEX TERMS M2M communication, QoE, Lyapunov optimization, Gale-Shapley algorithm, rate control,
resource allocation.

I. INTRODUCTION
A. BACKGROUND
With the rapid advancement of communication technologies
and increase of massive access from user terminals, there is
a huge shift from traditional Person-to-Person (P2P) commu-
nication to novel Machine-to-Machine (M2M) communica-
tion. M2M communication enables networked services and
applications based on intelligent interaction of machine-type
communication (MTC) devices [1], [2]. M2M communica-
tion, as the key technology for the composition and operation
of the Internet of Things (IoT) network, is also crucial for
implementation of industrial automation and smart grid on
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account of its excellent self-configuration, self-organization
and self-healing capabilities [3], [4]. The proposal of M2M
provides a comprehensive solution integrating data collec-
tion, transmission, analysis and business management for
all walks of life, leading to more automated business and
industrial processes [5].

Cellular network is widely considered as the ideal carrier
for M2M communication because of its wide coverage, high
reliability and support for high-speed mobile devices. How-
ever, due to the heterogeneity caused by the variety of the
MTC devices and the interference problems inherent in tradi-
tional cellular networks, the classic resource allocation meth-
ods designed for Human-to-Human (H2H) will not appease
the new requirements of M2M communication [6]. Despite
experiencing the considerable development and wide-range
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of applications for M2M, there still exist several urgent prob-
lems and challenges to be resolved, which are summarized as
follows [7].

1) Stability of the data queue: In a realistic scenario,
due to the dynamic and unpredictable arrival of data
flow, coupled with the time-varying characteristic of
the transmission channel, the data queue is generally
not properly planned and organized. In order to achieve
predominant stability of data queue, it is necessary to
control the channel access and data arrival rate to avoid
channel congestion and packet loss [8]. To solve this
problem, both protocol design at high-level layer for
channel access control, and bits stream processing at
low-level layer for data arrival rate control are required.
Previous data control methods majorly only focus on
the physical or data link layer, therefore a cross-layer
control scheme is required.

2) QoE-oriented performance optimization: Excessive
proliferation of data and traffic will inevitably lead
to insufficient wireless spectrum resources, which
impacts the users’ quality of experience (QoE) and
network operators’ quality of service (QoS). Specifi-
cally, QoE is an evaluation metric for subjective per-
ception of the end users’ service performance pro-
vided by the mobile network. Unfortunately, existing
researchesmajorly focusedmore on optimizing the net-
work overall performance thanQoE of individual users.
Thus, how to enhance the QoE by optimally exploiting
finite communication resources is a key challenge, and
deserves more in-depth research.

3) Long-standing system performance optimization:
Huge amount of real-time data generated by a variety
of MTC devices and mobile terminals with diverse
functions influxes into cellular networks, which may
overwhelm the base station (BS), and even pose the
collapse of control system. The widely studied queu-
ing theory based network performance optimization
algorithms can only realize short-term optimal per-
formance, where part of key factors are assumed to
be constant. Nevertheless, multiple and complicated
environment always attaches the uncertainty and ran-
domness of communications. Therefore, there still is a
challenge to design a long-term performance optimiza-
tion scheme to comply the data queue stability, resource
utilization and power minimization.

Based on the discussions above, in this paper, we pro-
pose a QoE-oriented rate control and resource alloca-
tion algorithm, where the Lyapunov optimization and
Gale-Shapley algorithm are applied for M2M communica-
tion in spectrum-sharing OFDM networks to maximize the
network performance and meet high user’s demands [9] [10].
The detail of the proposal are addressed as follows.

1) At first, we decompose the original long-term opti-
mization problem into a series of admission rate control
and the resource allocation subproblems in each time
slot.

2) Next, we establish a two-sided preference list according
to the transmission rate of M2M pairs and signal to
interference plus noise ratio (SINR) for cellular user
equipments (CUEs).

3) Finally, based on Lyapunov optimization and Gale-
Shapleymatching, we dynamically control the data rate
and select the sub-channels to attain queue stability and
power optimization.

B. RELATED WORK
In order to reduce the delay and enhance the energy
efficiency, the appropriate resource allocation method in
M2M communication has attracted intensive research inter-
ests. In [11], the authors presented a novel design of the
software-definedM2M for smart energy management to real-
ize cost reduction, fine granularity resource allocation, and
end-to-end quality of service guarantee. In [12], the authors
proposed a scheduling scheme to efficiently use the spectrum
based on the received signal strength of MTC devices. How-
ever, the proposed scheme was preferred for MTC devices
with better signal-to-noise ratio (SNR), and the heterogeneity
of MTC devices with various QoE and queue delay was not
considered. In [13], the authors investigated a resource allo-
cation algorithm of cellular M2M communication networks
to obtain initial access to the network for data transmission
by a random access mechanism. In [14], the authors proposed
an iterative energy-efficient game-theoretical random access
algorithm to solve the overload problem caused by massive
connections ofM2Mdevices in overlapped cellular networks.
However, they only considered the physical layer optimiza-
tion, and left the problem at upper layer and users’ QoE to
future work.

To improve the users’ QoE [15], promoting the service
queue stability are widely considered. In [16], the authors
developed a framework with dynamic data arrival in
cluster-based heterogeneous mobile vehicular network,
where the Markov queuing model was adopted to expand the
whole-network performance. In [17], the authors designed
a joint subcarrier selection and power allocation frame-
work in the downlink of OFDMA networks by means
of geometric-programming and monomial approximation
techniques to guarantee the stability of queue. However,
unlike traditional human-centered communication, MTC’
applications typically need long-term optimization at the
uplink, while most of the current works show solicitude
for a short-term optimal performance at downlink. To real-
ize a long-term queue stability without prior statistical
information, Lyapunov optimization based online algorithm
are utilized. In [18], the authors leveraged the Lyapunov
optimization framework to convert the original long-term
optimization problem into a series of online rate control
and power allocation problems in each time slot. In [19],
new design methodologies for green cellular networks with
the help of Lyapunov optimization techniques were pro-
posed, in which the network service cost, was adopted as
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the performance metric and optimized via BS assignment
and power control (BAPC). Further for cognitive M2M
communication in the OFDM mechanism, matching theory
is suitable for solving the sub-channel selection problem,
in which the two-sided preferences is taken into account when
M2M devices multiplex CUEs’ channels. In [20], the authors
developed an iterative power allocation algorithm to gen-
erate mutual preferences list based on nonlinear fractional
programing. In [21], a two-sided two-stage matching scheme
was presented to address a joint route planning and task
assignment problem from an energy efficiency perspective
by exploring the Gale-Shapley algorithm. Combining those
promising theories, a long-standing optimization in multiple
time slots can be realized.

C. CONTRIBUTIONS
To solve the aforementioned problems, in this paper, we pro-
pose a QoE-oriented rate control and resource allocation
method for M2M communication with cross layer design in
OFDM network. The main contributions are enumerated as
follows.

1) We propose a long-standing online optimization algo-
rithm with information asymmetry for data queue rate
control and resource allocation. In particular, with the
assistance of recently-developed Lyapunov optimiza-
tion approach, we convert the long-standing perfor-
mance optimization problem to a series of short-term
optimization problems. Furthermore, Gale-Shapley
matching theory is applied for further completing
sub-channel selection and power allocation where
interference for cellular user equipments CUEs) is min-
imized.

2) To deal with the problem of cross-layer resource allo-
cation with random queue generation and time-varying
channel condition, our algorithm considers both bits
stream at physical layer and data control transmis-
sion at network layer. The problem is converted into a
mixed integer nonlinear optimization problem, and the
complexity of the algorithm has been greatly reduced
by utilizing the existing convex function optimization
tool.

The remaining parts of this paper are organized as follows.
The system model is introduced in Section II. Section III
describes the problem formulation and transformation. Simu-
lation results are provided in Section V. Section VI concludes
this paper.

II. SYSTEM MODEL
As shown in FIGURE 1, we consider a cognitive M2M
network, which consists of a centralized BS, K CUEs, and
N M2M pairs.
Each CUE occupies one orthogonal spectrum sub-channel

of equal bandwidth to perform uplink communication
with the BS. The sets of CUEs and sub-channels
are denoted as C = {C1,C2, . . . ,Ck , . . . ,CK } and

TABLE 1. Summary of key notations.

S = {S1, S2, . . . , Sk , . . . , SK }, respectively. The sets of
indices are denoted as K = {1, 2, . . . , k, . . . ,K }.

Each M2M pair is composed of a M2M transmitter (MT)
and a M2M receiver (MR). To implement the cognitive
M2M communication, each M2M pair has to reuse the
sub-channel allocated to a CUE. Denote the sets of M2M
pairs as M = {M1,M2, . . . ,Mn, . . . ,MN } and the set of
corresponding indices as N = {1, 2, . . . , n, . . . ,N }. And
the sets of MTs and MRs of M2M pairs are denoted as
MT = {MT1,MT2, . . . ,MTn, . . . ,MTN } and MR =

{MR1,MR2, . . . ,MRn, . . . ,MRN }, respectively.
A M2M pair is allowed to reuse the CUE’s sub-channel

for data dissemination if and only if certain constraints are
satisfied, e.g., the rate and the delay constraints. Intuitively,
a CUE is more willing to share its sub-channel with a M2M
pair which causes less interference to it.

In this paper, we assume that the peer discovery pro-
cess of M2M pairs between MTs and MRs is already fin-
ished. We focus on how to maximize the QoE of all M2M
pairs, which involves the joint optimization of rate control,
power allocation, and sub-channel selection. In the following,
the data backlog of the dynamic queueing model is discussed
in Section II-A. The admission rate and the QoE model are
described in Section II-B. Section II-C presents the data trans-
mission model. The long-term constraints of transmission
rate and delay are considered in Section II-D.
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FIGURE 1. System model of M2M-based uplink IoT network.

A. QUEUE MODEL AND SYSTEM DYNAMICS
The M2M network operates in a time-slotted manner with
a time-slot index t ∈ {0, 1, 2, · · · ,T }. At each time-slot,
the data are firstly collected by MTn and then sent to MRn
for processing. Denote the admission rate forMTn at the t-th
slot as An(t) and the transmission rate of MTn as Rn(t).
Due to the unbalance between An(t) and Rn(t), data are

firstly stored in a finite memory buffer before transmission.
Denote the data backlog of Mn as Qn(t), which represents
the queue length at time slot t . Then the admission rate An(t)
and the data transmission rate Rn(t) can be considered as the
input and the output ofQn(t), respectively. To avoid blocking,
the adjustment of An(t) and Rn(t) is referred as rate control.
It is noticed that An(t) is a network-layer parameter, while
Rn(t) is a physical-layer parameter.
Qn(t) evolves over time as follows:

Qn(t + 1) = [Qn(t)− Rn(t)]+ + An(t), (1)

where [x]+ = max(x, 0).
Theorem 1: Qn(t) is strongly stable if

lim sup
T→∞

1
T

T−1∑
t=0

E{Qn(t)} <∞. (2)

Proof: Please see Appendix A.
In order to guarantee that Qn(t) is strongly stable, we need

to jointly optimize An(t) and Rn(t), the model of which are
introduced as follows.

B. QOE MODEL
An(t) is a network-layer parameter that reflects the admis-
sion rate, which has a direct effect on the QoE perfor-
mance. In order to characterize QoE, we employee the MOS
model proposed in [22]– [26], which allows us to associate

user-perceived application quality metrics directly with QoS
parameters such as rates.

TheMOS is defined as a concave function of the admission
rate An(t):

MOS[An(t)] = ηn(t) log2[An(t)], (3)

where ηn(t) ∈ [0, 1] is a priority parameter, which charac-
terize the importance of data associated with Mn at time slot
t [27].
Remark 1: ηn(t) is a predefined parameter that can be con-

trolled by the BS. Its role is to guarantee that some important
M2M pairs will have higher priority than those M2M pairs
with less importance.

The logarithmic expressions have been utilized in a number
of previousworks, which can be found in subjective tests [28]
or previously proposed related economic theories [29], [30].
The first derivative of MOS decreases with An(t), which
represents the increment of MOS per unit An(t) decreases
with An(t). Particularly, when the value of An(t) is small,
the change in MOS is more significant. If An(t) exceeds a
certain value, the MOS changes less significantly as An(t)
increases.

C. TRANSMISSION RATE MODEL
Given K CUEs, the total bandwidth is divided equally into K
sub-channels and each sub-channel’s bandwidth is denoted
as Bw.

The SINR of Ck which shares its sub-channel with MTn
can be expressed as

γCk (t) =
pk (t)gk (t)d

−αC
Ck ,BS

N0 + pn(t)gn,k (t)d
−αM
MTn,BS

. (4)
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In the numerator, pk (t) represents the transmission power
for Ck at time slot t . gk (t) denotes the multipath channel gain
from Ck to BS at time slot t . d−αCCk ,BS denotes the pathloss
channel gain for Ck at time slot t , where dCk ,BS stands for
the distance between Ck and the BS and αC is the pathloss
exponents corresponding to the CUEs. In the denominator,
N0 denotes the power of the additive white Gaussian noise
(AWGN). pn(t) represents the transmission power of MTn.
gn,k (t) denotes the multipath channel gain between MTn and
the BS. d−αMMTn,BS denotes the pathloss channel gain from MTn
to the BS, where dMTn,BS stands for the distance betweenMTn
and the BS and αM is the pathloss exponent corresponding to
theM2Mpairs. In conclusion, the interference caused byMTn
is denoted as pn(t)gn,k (t)d

−αM
MTn,BS .

Similarly, the SINRof the associatedMRn can be expressed
as

γMn (t) =
pn(t)gn(t)d

−αM
MTn,MRn

N0 + pk (t)gn,k (t)d
−αC
Ck ,MRn

. (5)

In the numerator, gn(t) denotes the multipath channel gain
between MTn and MRn. d

−αM
MTn,MRn denotes the pathloss chan-

nel gain, where dMTn,MRn stands for the distance between
betweenMTn andMRn. d

−αC
Ck ,MRn denotes the pathloss channel

gain from Ck to MRn, where dCk ,MRn stands for the distance
between Ck and MRn.

The transmission rate of Mn is given by:

Rn(t) = ωkn(t)Bw log2
(
1+ γMn (t)

)
, (6)

where ωkn ∈ {0, 1} is a binary decision of sub-channel
selection. ωkn = 1 means that Mn reuses the sub-channel Sk
allocated to Ck and otherwise ωkn = 0.

D. LONG-TERM ADMISSION RATE AND DELAY
CONSTRAINTS
In practice, many M2M applications typically require an
upper bound on delay and a lower bound on admission
rate [31]. In the following, the time-averaged constraint of
admission rate and delay are introduced.

Time-averaged constraint of admission rate is expressed as

an = lim
T→∞

1
T

T−1∑
t=0

An(t) ≥ On, (7)

where an is the time-averaged admission rate for Mn and
On denotes the long-term minimum rate requirement of Mn,
independent of specific time slot t .
Time-averaged constraint of delay is defined as the time

length that a packet waits in a queue until it can be transmit-
ted. Since we consider a network with heavy load, the trans-
mission delay is negligible compared with the queuing
delay. By Little’s theorem, the time-averaged delay ρn is
approximated [35] by

ρn =

lim
T→∞

1
T

∑T−1
t=0 E {Qn(t)}

lim
T→∞

1
T

∑T−1
t=0 E {Rn(t)}

≤ Dn, (8)

where Dn is the upper bound of the time-averaged delay
of Mn.

III. PROBLEM FORMULATION
The optimization of the QoE performances of all M2M
pairs requires solving a joint admission rate control, power
allocation, and sub-channel selection problem. Denote the
sets of sub-channel selection strategies, power optimization
strategies, and rate control strategies as � = {ωkn}, P = {pn},
and R = {Rn}, respectively. The joint optimization problem
is formulated by maximizing the weighted MOS of all M2M
pairs as

max
R,�,P

lim
T→∞

1
T

T−1∑
t=0

K∑
k=1

N∑
n=1

E {MOS[An(t)]}, (9)

s.t.C1 : ωkn(t) ∈ {0, 1} ∀Mn ∈M, Sk ∈ S,
C2 :

∑
Sk∈S

ωkn(t) ≤ 1,∀Mn ∈M,

∑
Mn∈M

ωkn(t) ≤ 1,∀Sk ∈ S,

C3 : 0 ≤
K∑
k=1

N∑
n=1

ωkn(t)pn(t) ≤ Pmax,

C4 : γCk ≥ γCk ,thd ,∀Sk ∈ S,
γMn ≥ γMn,thd ,∀Mn ∈M,

C5 : MOS[An(t)] ≥ MOSthd ,∀Mn ∈M,

0 ≤
N∑
n=1

An(t) ≤ Amax,∀Mn ∈M,

C6 : QueuesQn(t) are strongly stable,∀Mn ∈M,

C7 : an ≥ On ∀Mn ∈M, Sk ∈ S,
C8 : ρn ≤ Dn ∀Mn ∈M, Sk ∈ S. (10)

C1 and C2 ensure that each sub-channel Sk ∈ S can be
reused by at most one M2M pair at each time slot t to avoid
the excessive interference to existing cellular communication
and vice versa. C3 specifies the transmission power constraint
of M2M pairs. C4 is the SINR thresholds of CUEs and M2M
pairs. C5 ensures that the MOS of each M2M pair must be
larger than the threshold. C6 is the queue stability constraint
of M2M pairs. C7 and C8 ensure that the rate requirement
and time-averaged delay constraints of M2M pairs should be
guaranteed simultaneously.

IV. JOINT RATE CONTROL AND RESOURCE ALLOCATION
BASED ON LYAPUNOV OPTIMIZATION AND
GALE-SHAPLEY ALGORITHM
Lyapunov optimization which enables online optimization
without knowing the statistical knowledge of data arrivals and
channel states is applied to solve the formulated problem.

First of all, the long-term constraints in (9) are transformed
into queue stability constraints based on the concept of virtual
queue [32], [33]. The virtual queue Y (t) associated with the
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average rate constraint evolves as follows:

Yn(t + 1) = [Yn(t)− An(t)]+ + On. (11)

Theorem 1: If the virtual power queue Y (t) is mean rate
stable, then the average power constraint C7 holds automati-
cally.

Proof: Please see Appendix B.
The virtual queue Z (t) associated with the delay constraint

evolves as follows:

Zn(t + 1) = [Zn(t)− DnRn(t)]+ + Qn(t). (12)

Remark 2: From the above analysis and according to the
Theorem 1, if the two virtual queues (Y ,Z ) are stable for all
M2M pairs, both the delay and rate constraints are satisfied.

Therefore, we can transform the original problem in (9)
into a problem of maximizing the MOS of the M2M pairs
subject to the queue stability constraints along with C1∼C5.
The transformed problem is rewritten as follows:

max
R,�,P

lim
T→∞

1
T

T−1∑
t=0

K∑
k=1

N∑
n=1

E {MOS[An(t)]}

s.t. C1, C2, C3, C4, and C5,

Queues Qn(t),Yn(t), andZn(t)are stable,

∀Mn ∈M. (13)

LetQ = {Qn(t)},Y = {Yn(t)},Z = {Zn(t)} denote the sets
of the queue backlogs of Q, Y , and Z , respectively.
Definition 1: Let G(t) = [Q(t),Y(t),Z(t)] denote the

concatenated queue backlog of the M2M pair. Define the
following Lyapunov function:

L (G(t)) ,
1
2

∑
Mn∈M

(Q2
n(t)+ Y

2
n (t)+ Z

2
n (t)). (14)

Without loss of generality, we assume that all queues are
empty when t = 0, such that L (G(t)) = 0.
Definition 2: Define the one-slot conditional Lyapunov

drift 1(G(t))as follows:

1(G(t)) , E{L (G(t + 1))− L (G(t)) |G(t)}. (15)

Subtracting the conditional expectation of MOS[An(t)]
from (12), we obtain the following drift-minus-reward term:

1(G(t))− VE{MOS[An(t)]|G(t)}. (16)

where V is a nonnegative tunable parameter and is suffi-
ciently large. According to the design principle of Lyapunov
optimization [32], [34], the rate control and resource alloca-
tion decisions should be chosen to minimize the upper bound
of (16) at each time slot t .
Theorem 2 (Upper Bound of the Drift-Minus-Reward

Term): Under any control algorithms, the drift-minus-reward
term is upper bounded by [32], [34]:

1(G(t))− VE{MOS[An(t)]|G(t)}

≤ B+
1
2

N∑
n=1

E{2Qn(t)An(t)− 2Yn(t)An(t)

−VMOS[An(t)]|G(t)}

−

N∑
n=1

E{Qn(t)Rn(t)+ 2DnZn(t)Rn(t)|G(t)}

+

N∑
n=1

E{Yn(t)On + Zn(t)Qn(t)|G(t)}. (17)

where B is a positive constant which satisfies the following
inequality:

B ≥ B(t)

=
1
2

∑N
n=1 E{R2n(t)+ 2A2n(t)+ O

2
n + Q

2
max(t)

+D2
nR

2
n(t)}. (18)

Proof: Please see Appendix C.
By Theorem 2, we have transformed the problem defined

in (13) into minimizing the right-hand side (RHS) of (17) at
each time slot t subject to the rate control constraint C5 and
the resource allocation constraints C1, C2, C3, and C4.
Thus, the original stochastic long-term optimization problem
in (9) is converted into a series of successive instantaneous
static optimization subproblems, which are separated into rate
control subproblems and resource allocation subproblems.

A. RATE CONTROL SUBPROBLEM
Since the second term in the RHS of (17) involves only
the admission rate control decision An(t), the minimization
of this term can be decomposed into admission rate control
subproblems as follows:

min
R

N∑
n=1

f1[An(t)],

s.t. C5. (19)

where

f1[An(t)] = 2Qn(t)An(t)− 2Yn(t)An(t)

−VMOS[An(t)]. (20)

BecauseMOS[An(t)] is a concave function ofAn(t), we can
verify that the problem in (19) is a convex optimization
problem. Take the derivative of 2Qn(t)An(t)− 2Yn(t)An(t)−
VMOS[An(t)] with respect to An(t):

2Qn(t)− 2Yn(t)−
Vηn

An(t) ln 2
. (21)

Set the derivative to be zero, we obtain:

An(t) =
ηnV

2[Qn(t)− Yn(t)] ln 2
. (22)

According to the Karush-Kuhn-Tucker (KKT) conditions
[36], the optimal admission rate control decision is expressed
as follows:

A∗n(t) = min
{

ηnV
2[Qn(t)− Yn(t)] ln 2

,An,max

}
, (23)
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where An,max is the maximum of admission rate for Mn
corresponding to MOS[An(t)] according to the QoE func-
tion in (3). When A∗n(t) is determined, the associated quality
MOS∗[An(t)] can be determined directly by theQoE function.
Remark 3: The admission rate control strategy in (23)

means that the algorithm adjusts the admission rate associated
with the MOS based on the M2M pairs’ requirements and the
current data queue backlog. As an example, the M2M pairs
will decrease the amount of admitted data when the queue
backlog is large in order to avoid data overflow or congestion.
Furthermore, for a particular sub-channel, provided that the
nonnegative tunable parameter V is larger, the M2M pair will
implement a more relaxed rate control strategy to allow more
data to be accepted. Therefore, the correspondingMOS value
of the M2M pair is also increased.

B. RESOURCE ALLOCATION SUBPROBLEM
We can observe that the third term in the RHS of (17) involves
only the resource allocation decision pn(t) and ωkn(t). The
maximization of this term can be decomposed into subprob-
lems as follows:

max
�,P

N∑
n=1

f2[Rn(t), ωkn(t)],

s.t. C1, C2, C3, and C4. (24)

where

f2[Rn(t), ωkn(t)] = Qn(t)Rn(t)+ Zn(t)DnRn(t). (25)

The resource allocation problem is a mixed combinatorial
problem because the variable ωkn(t) is discrete, e.g., ω

k
n(t) ∈

{0, 1}, while the variable pn(t) is continuous. In practical
applications, the exhaustive search for optimal solutions is
prohibitive because of its high complexity.

In order to solve the above-mentioned resource alloca-
tion subproblem with high complexity, a low-complexity
sub-optimal algorithm based on matching theory is proposed
to decouple sub-channel selection and power allocation.
PART 1: Sub-Channel Selection Problem:
• Definition of Gale-Shapley Matching:

The sub-channel selection problem can be transformed into a
two-dimensional matching problem involving N M2M pairs
on one side and K sub-channels on the other side.
We give the following definition:
Definition 3: Amatchingφ is a one-to-one correspondence

from setM∪S onto itself, denoted as φ :M∪S →M∪S ,
i.e., φ(Mn) ∈ S,∀n ∈ N . And φ(Mn) = Sk reperesents that
Mn is matched with sub-channel Sk , i.e., ωkn(t) = 1. φ(Mn) 6=
Sk reperesents that Mn is not matched with sub-channel Sk ,
i.e., ωkn(t) = 0. If φ(Sk ) = ∅, it denotes that sub-channel Sk
has no matching partner, i.e., ωkn(t) = 0, ∀Mn ∈M.
Provided that Mn and Sk prefers to be matched each other

while φ(Mn) 6= Sk and φ(Sk ) 6= Mn, which means that the
current matching φ is unstable. In other words, (Mn, Sk ) is a
blocking pair for φ.

• Establishment of preference list:
In order to achieve double-sided matching between M2M

pairs and sub-channels, it is necessary for each M2M pair to
construct its preference list by comparing and ordering the
sub-channels on the other side according to preferences. For
the M2M pairMn, when multiplexing different sub-channels
(i.e., pairing with different sub-channels), the data trans-
mission rate of Mn is very different. Therefore, in order to
maximize the data transmission rate of all M2M pairs in
the network, we can define that the preference of M2M pair
towards sub-channels is proportional to the data transmission
rate.

The preference list of the M2M pairs to the sub-channels
is a N ×K matrix, which is defined asFM,S . The element of
the n-th row and the k-th column of the matrix is denoted as
FMn,Sk (t), indicating the degree of preference of Mn to Sk .
The value of FMn,Sk (t) is the data transmission rate of Mn
multiplexing Sk . The preference is calculated as

FMn,Sk (t) = Rn(t) = ωkn(t)Bw log2
(
1+ γMn (t)

)
. (26)

Similarly, the preference list of the sub-channels to the
M2M pairs is aK×N matrix, which is defined asFS,M. The
element of the k-th row and the n-th column of the matrix is
denoted as FSk ,Mn (t), indicating the degree of preference of
Sk to Mn. The value of FSk ,Mn (t) is denoted by SINR of Ck .
The preference is calculated as

FSk ,Mn (t) = γCk (t) =
pk (t)gk (t)d

−αC
Ck ,BS

N0 + pn(t)gn,k (t)d
−αM
MTn,BS

. (27)

By temporarily paring sub-channels withM2M pairs, all of
the value of elements in FS,M, which shows interference of
the M2M pairs on each sub-channel can be obtained. Note
that a CUE can be more robust against the interference if
it can have a higher SINR γCk (t). Also, one with bigger
SINR γCk (t) can experience a less amount of interference.
If the interference caused by M2M pairs to existing uplinks
of CUEs are very serious, it is possible for CUEs to reject
sharing sub-channels with certain M2M pairs.
• Matching process and algorithm:

The matching process is implemented in multiple iterations,
and the detailed process is summarized as Algorithm 1. Note
that resource allocation based onmatching is implemented by
BS. Specifically, each M2M pair first uploads its preference
list to BS. Then, BS determines the stability of the match
based on the preference list of CUEs. Finally, BS derives
a stable match between the CUEs and the M2M pairs to
implement internal data transmission of the M2M pairs. The
steps of the detailed implementation process of Algorithm 1
are explained below.
Phase 1: Initialization of preference list
- Calculate FMn,Sk (t) for each M2M pair Mn ∈M.
- Calculate FSk ,Mn (t) for each sub-channels Sk ∈ S.
- φ is initialized as empty set firstly. M2M pairs submit
applications to their most preferred sub-channel based
on the established preference list FM,S .
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- Define �′ as the set of sub-channels which receive
multiple matching requests from M2M pairs, for it is
possible for more than oneM2M pairs to prefer the same
sub-channel at the same time-slot. Note that �′ = ∅ at
t = 0.

Phase 2: Iterative matching
- Declare the availability of each M2M pair and sub-
channel.

Repeat the following process iteratively (n from 1 to N,
k from 1 to K).

- if φ(Mn) = ∅ (∀n ∈ M), then set ωkn = 1(i.e.,Sk is
engaged to Mn).

- if φ(Mn) 6= ∅ (ωkm = 1) and FSk ,Mn > FSk ,Mm , then set
ωkn = 1(i.e.,Sk is re-engaged toMn) and set ωkm = 0 (i.e.,
re-declare the availability of Mm).
Until Every M2M pair has been matched with a sub-

channel, i.e., φ(Mn) 6= ∅,∀Mn ∈ M, or there exists none
of unmatched M2M pairs.
Phase 3: Sub-channel selection implementation
MTs multiplex the specified subchannel to send the data to

MRs, according to the matching result obtained in Phase 2.
In the case considered in this paper, the number of M2M
pairs is less than the number of sub-channels. Therefore,
each M2M pair is paired with one sub-channel, but some
sub-channels have no matching objects. For the set of
sub-channels not matched, they only carry out communica-
tion with BS due to the characteristics CUEs current time slot.
In the next time slot, FM,S and FS,M are cleared, and the
subchannel selection process is restarted from Phase 1.
PART 2: Power Allocation Problem:
When φ(Mn) = Sk , in other words, ωkn(t) = 1, the maxi-

mum value of f2[Rn(t)|ωkn(t) = 1] can be obtained by solving
the following power optimization problem:

max
P

N∑
n=1

f2[Rn(t)|ωkn(t) = 1],

s.t. C1, C2, C3, and C4. (28)

Problem (28) is also a convex optimization problem, where
the optimal solution exists, which is denoted as p∗n(t) and
the convexity of power optimization problem is proved in
Appendix D.

Substitute Rn(t) specific expression in (6) into the
f2[Rn(t)|ωkn(t) = 1] in formula (28). The following formula
can be obtained:

[Qn(t)+ Zn(t)Dn]

∗ log2

(
1+

pn(t)gn(t)d
−αM
MTn,MRn

N0 + pk (t)gn,k (t)d
−αC
Ck ,MRn

)
. (29)

Since[Qn(t) + Zn(t)Dn] in formula (29) does not contain
pn(t) and Rn(t) is a concave function of pn(t), take the deriva-
tive of Rn(t) with respect to pn(t) and the result is shown as
follows:

dRn(t)
dpn(t)

=

[
log2

(
1+

pn(t)gn(t)d
−αM
MTn,MRn

N0 + pk (t)gn,k (t)d
−αC
Ck ,MRn

)]′

Algorithm 1 Gale-Shapley Matching Based Sub-Channel
Selection Algorithm
1: M: The set of M2M pairs
2: S: The set of sub-channels
3: for n = 1 to |M| do
4: sort the sub-channels of each M2M pair according to

Rn(t) in decreasing order
5: end for
6: for k = 1 to |S| do
7: sort the M2M pair of each sub-channel according to

γCk (t) in decreasing order
8: end for
9: Declare the availability of each M2M pair and sub-

channel
10: for n = 1 to |M| do
11: while Mn is available do
12: Sk := the first sub-channel on the preference list of

Mn to whom Mn has not yet proposed
13: if Sk is available (ωkn = 0,∀n ∈M) then
14: Sk is engaged to Mn, set ωkn = 1
15: else
16: if Sk prefersMn to its ‘fiance’Mm (m 6= n) then
Re-engage
17: Sk to Mn, set ωkn = 1;
Re-decare
18: the availability of Mm, set ωkm = 0
19: else
20: Sk rejects Mn, set ωkn = 0
21: end if
22: end if
23: end while
24: end for
25: The matching results of the N couples are declared

=
1

1+
pn(t)gn(t)d

−αM
MTn,MRn

N0+pk (t)gn,k (t)d
−αC
Ck ,MRn

∗

d
pn(t)gn(t)d

−αM
MTn,MRn

N0+pk (t)gn,k (t)d
−αC
Ck ,MRn

dpn(t)
.

(30)

Set the derivative to be zero, we obtain:

pn(t) = arg
P

dRn(t)
dpn(t)

. (31)

According to the Karush-Kuhn-Tucker (KKT) conditions
[36], the optimal power optimization decision is expressed as
follows:

p∗n(t) = min
{
arg
P

dRn(t)
dpn(t)

, pn,min

}
, (32)

where pn,min is the minimum of transmission power of Mn.

V. SIMULATION RESULTS
In this section, the performance of the proposedGale-Shapley
matching based resource allocation algorithm is validated
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FIGURE 2. Rate control.

FIGURE 3. Power allocation and sub-channel selection.

TABLE 2. Simulation parameters.

through simulations. CVX, which is a Matlab-based mod-
eling system for convex optimization, is utilized to solve
the problem mentioned above. CVX turns Matlab into a
modeling language, allowing constraints and objectives to be
specified using standard Matlab expression syntax. Table 2
presents the simulation parameters.

FIGURE 2 shows the backlogs changes of different queues
versus time slot. We can observe that when random initial
backlogs is given, each queue tend to stabilize near a corre-
sponding value after only several slots. The numerical results
prove that the rate control can be achieved by exploiting our
method to continuous backlogs of the queues or excessive
processing capacity of the BS. It is worth mentioning that the

size of the backlogs is positively related to the priority for
the reason that the M2M pair with higher priority has more
data collection and more frequent data transmission leading
to more queue backlogs.

FIGURE 3 shows the joint resource allocation and
sub-channel selection versus time slot. Specifically, simi-
lar stable simulation result for virtual queue Z is shown
in FIGURE 3-(a), where the value represents total allo-
cated power Pmax . FIGURE 3-(b) reveals the power opti-
mization results with four gradients varying from device
to device. The transmission rate of the sub-channels is
as shown in FIGURE 3-(c) after allocation. Above results
demonstrate that combinatorial algorithm with Lyapunov
optimization and Gale-Shapley matching can not only
maintains the stability of the system, but also avoid
the influence of the time-varying channel as much as
possible.

FIGURE 4 compares the total system stability analysis
of our proposed algorithm and Lyapunov optimization with
random matching from the perspective of queue backlogs
and power allocation, in which two box-plots are shown
to display a set of data dispersion. Whatever referring to
backlogs or power allocation, the overall distribution of pro-
posed scheme is more concentrated than that of random
sub-channel selection on account of the possibility matching
a poor-performance sub-channel to the high queue with high
priority.
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FIGURE 4. Total system stability.

VI. CONCLUSION AND FUTURE RESEARCH
In this paper, we have proposed novel QoE-oriented uplink
rate control and resource allocation schemes for IoT using
time-varying channels. We utilize the rate control associated
with QoE adjustment, and the resource allocation associ-
ated with sub-channel selection and power optimization to
perform the dynamic resource management. MOS model is
designed tomeasure the degree of assesses QoE.We employ a
stochastic optimizationmodel tomaximize the time-averaged
MOS of all M2M pairs subject to the network stability con-
straint, the admission rate control constraint and the delay
constraint intrinsic of the OFDM network.

We convert the original long-term optimization problem
into admission rate control subproblem and resource allo-
cation subproblem in each time slot, based on the recently
developed Lyapunov optimization, without prior knowl-
edge of channel statistics. In particular, we exploit the
special structure of the resource allocation subproblem to
develop extremely simple and low-complexity but optimal
Gale-Shapley matching based resource allocation algorithm
for the resource allocation subproblem. We show that the
optimal decisions achieved without any prior knowledge of
channel statistics can arbitrarily approach the optimal deci-
sions achieved by the algorithm with complete knowledge
of channel statistics. The simulation results verify that the
Gale-Shapley matching based resource allocation algorithm
can significantly improve the MOS compared with the ran-
dom matching algorithm.

In our future work, we will:

1) investigate the rate control and resource allocation
issues with externalities;

2) extend the work to more complex type of QoE model,
considering more measuring standards;

3) consider the problem closer to the actual situation of
life, e.g., three-dimensional matching between trans-
mitters, receivers and sub-channels, which involves
joint peer discovery, sub-channel selection and power
optimization problem.

APPENDIX A
PROOF OF THEOREM 1
A multiqueue network is strongly stable if all the individual
queues are strongly stable. According to the strong stability
theorem in [32], for finite variables An(t) and Rn(t), strong
stability implies the rate stability of Qn(t). The definition of
rate stability can be found in [32] and omitted here. Accord-
ing to the rate stability theorem in [32], the discrete queue
Qn(t) is rate stable if and only if the time-average transmis-
sion rate r satisfies

r ≥ a (33)

where r = lim
T→∞

1
T

T−1∑
t=0

Rn(t), a = lim
T→∞

1
T

T−1∑
t=0

An(t). The

assumption is reasonable since all physical quantities, such as
the admission rates, the transmission rates, and the transmit
power, are all bounded in real condition. Thus, if a queue is
strongly stable, the time-averaged transmission rate r satisfies
r ≥ a.

APPENDIX B
PROOF OF THEOREM 1
From (11), we naturally have

Yn(t + 1) ≥ Yn(t)− An(t)+ On. (34)

Summing (34) over t ∈ {0, 1, . . . ,T } and taking expecta-
tions, we obtain

E{Yn(T )} ≤
T−1∑
t=0

E{An(t)} − TOn. (35)

Dividing by T and taking T →+∞ yield

lim
T→+∞

E{Yn(T )}
T

≤

T−1∑
t=0

E{An(t)}

T
− On. (36)

From Jensen’s inequality, we have 0 ≤ |E{Yn(T )}| ≤
E{|Yn(T )|}. Thus, if Yn(t) is mean rate stable, i.e.,
lim

T→+∞
(E{|Y (T )|}/T ) = 0, we have

lim
T→+∞

E{Yn(T )}
T

= 0. (37)

Thus, we obtain

T−1∑
t=0

E{An(t)}

T
≥ On. (38)

which proves Theorem 1.

APPENDIX C
DRIFT-MINUS-REWARD
Theorem 2: For any nonnegative real numbers x, y, and z,
there holds [32]

[max(x − y, 0)+ z]2 ≤ x2 + y2 + z2 − 2x(y− z).
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By employing Theorem 1 and squaring both sides of the
queue dynamics (1), (11), (12), we obtain By employing The-
orem 1 and squaring both sides of the queue dynamics (1),
(11), (12), we obtain

1(G(t))− VE{MOS[An(t)]|G(t)}

, E{L (G(t + 1))− L (G(t)) |G(t)}

−VE{MOS[An(t)]|G(t)}

≤
1
2

N∑
n=1

E{R2n(t)+ A
2
n(t)− 2Qn(t)(Rn(t)− An(t))|G(t)}

+
1
2

N∑
n=1

E{A2n(t)+ O
2
n − 2Yn(t)(An(t)− On)|G(t)}

+
1
2

N∑
n=1

E{D2
nR

2
n(t)+ Q

2
n(t)

−2Zn(t)[DnRn(t)− Qn(t)]|G(t)}

−
1
2

N∑
n=1

VE{MOS[An(t)]|G(t)}

≤
1
2

N∑
n=1

E{R2n(t)+ 2A2n(t)+ O
2
n + Q

2
max(t)+ D

2
nR

2
n(t)}

+
1
2

N∑
n=1

E{−2Qn(t)(Rn(t)− An(t))|G(t)}

+
1
2

N∑
n=1

E{−2Yn(t)(An(t)− On)|G(t)}

+
1
2

N∑
n=1

E{−2Zn(t)(DnRn(t)− Qn(t))|G(t)}

−
1
2

N∑
n=1

E{VMOS[An(t)]n(t)|G(t)}

≤ B+
1
2

N∑
n=1

E{2Qn(t)An(t)− 2Yn(t)An(t)

−VMOS[An(t)]|G(t)}

−

N∑
n=1

E{Qn(t)Rn(t)+ ZnDn(t)Rn(t)|G(t)}

+

N∑
n=1

E{Yn(t)On + Zn(t)Qn(t)|G(t)}. (39)

APPENDIX D
PROOF OF CONVEXITY OF THE RESOURCE ALLOCATION
SUBPROBLEM
After relaxing ωkn(t) to ω̃kn(t) ∈ [0, 1], the original RA
subproblem is formulated as follows:

max
�,P

N∑
n=1

[Qn(t)+ Zn(t)Dn] ∗ ωkn(t) log2

×

(
1+

pn(t)gn(t)d
−αM
MTn,MRn

N0 + pk (t)gn,k (t)d
−αC
Ck ,MRn

)
, (40)

s.t. 0 ≤ ω̃kn(t) ≤ 1,∀Mn ∈M, Sk ∈ S, (41)

0 ≤
∑
Sk∈S

ω̃kn(t) ≤ 1,∀Mn ∈M, (42)

C3, and C4.

Assuming that f (x) is concave, then its perspective func-
tion bf (x) is still concave in (b, x). From this, (40) is jointly
concave in W̃(t) = {w̃nk(t)} and P(t) because it can be
regarded as the perspective function of the concave function

log2

(
1+

pn(t)gn(t)d
−αM
MTn,MRn

N0+pk (t)gn,k (t)d
−αC
Ck ,MRn

)
. As a result, the objective in

the given optimization problem is jointly concave in W̃(t) and
P(t).

In addition, (41), (42), C3 and C4 are all linear constraints;
thus, the sets produced by them for W̃(t) and P(t) are convex.
Therefore, (41), (42), C3 and C4 together construct a con-
vex set as well. Therefore, the given optimization problem
maximizes a concave function over a convex set; thus, it is a
concave optimization problem.

APPENDIX E
GALE-SHAPLEY ALGORITHM
The stable marriage problem has been stated as follows:

See Algorithm 2.

Algorithm 2 Gale-Shapley Algorithm
1: Declare the availability of each M2M pair and sub-

channel
2: while Mn is available do
3: Sk := the first sub-channel on Mn’s preference list to

whom Mn has not yet proposed
4: if Sk is available (ωkn = 0,∀n ∈M) then
5: The Sk is engaged to Mn
6: else
7: if Sk prefers Mn to its ‘fiance’ Mm (m 6= n) then

Re-engage
8: Sk to Mn, set ωkn = 1;

Re-declare
9: the availability of Mm, set ωkm = 0
10: else
11: Sk rejects Mn, set ωkn = 0
12: end if
13: end if
14: end while
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