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ABSTRACT As the fundamental control strategy of intelligent vehicles, car-following control directly affects
vehicle performance. In practical driving, drivers usually predict the behavior of vehicles in the adjacent
lane before modulating the driving strategy of the host vehicle. Therefore, an adaptive cruise control (ACC)
system should be equipped with the practical ability to predict the following target in advance to improve
the safety and acceptability of the intelligent control strategy. In this paper, a car-following strategy based
on merging prediction of adjacent vehicles is developed from the results of naturalistic on-road experiments.
Based on analysis of merging behavior parameters, the Fisher discriminant method is employed to establish
a merging behavior prediction model of adjacent vehicles. Then, the desired spacing car-following model is
ameliorated by the proposed merging prediction model. The simulation results of the proposed car-following
strategy with different cut-in scenes indicate that the prediction model could forecast two kinds of merging
behavior 2 s in advance, and the prediction accuracy rate reaches 88% and 90%, respectively. The improved
car-following model could allow for smoother vehicle manipulation, thus enhancing safety and ride comfort.
The results provide a reference for improving intelligent vehicle control algorithms and enhancing the
acceptability of intelligent systems.

INDEX TERMS Car-following, merging behavior prediction, desired spacing model, Fisher discriminant
method.

I. INTRODUCTION
Car-following control, as a fundamental control strategy of
intelligent vehicles [1], has developed progressively and has
been popular in advanced driving assistant systems (ADAS)
to improve driving safety and reduce driver load [2]–[4].
During the practical car-following process, the established
following condition would be destroyed when a vehicle in the
adjacent lane merges abruptly into the host lane. The sudden
reduction in distance and change of the relative velocity
between the host vehicle andmerging vehicle can easily result
in traffic conflicts [5]–[7]. However, drivers usually could
predict the behavior of vehicles in the adjacent lane before
modulating the driving strategy of the host vehicle during
practical driving [8]. Similarly, if the merging behavior of
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adjacent vehicles could be predicted precisely and enable
ADAS to implement prompt countermeasures in advance via
an intelligent car-following strategy, the deceleration jerk of
the host vehicle would be alleviated, and ride comfort and
safety would be enhanced.

In actual driving, the car-following strategy of the host
vehicle is observably related to the driving behavior of vehi-
cles in the adjacent lane. Variations in host vehicle behavior
include the driver’s response to the combined stimulus of
preceding vehicles in the same lane and parallel vehicles in
the adjacent lane [9]. On the basis of research on the influence
of vehicles in the adjacent lane on car-following behavior,
Gunay [10] developed a car-following model using the lon-
gitudinal distance between the preceding vehicle and host
vehicle and lateral distance between vehicles in the adjacent
lane and the host vehicle. The proposed model indicated that
an increase in the lateral distance would result in a reduction
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in the following distance between preceding vehicles and the
host vehicle. Elusion was the host vehicle’s primary option
when confronted with persistent pressure from vehicles in the
adjacent lane. In other words, the host vehicle driver would
maintain psychological comfort by increasing lateral distance
with the adjacent vehicle. In the case of insufficient space for
lateral elusion, the host vehicle would decelerate and enhance
the longitudinal distance to compensate for interference from
the adjacent vehicle. Ponnu and Coifman [11] proposed the
concept of ‘sympathy of speeds’ on the basis of research on
the relative velocity between the host vehicle and vehicles
in the adjacent lane. The study revealed that drivers usually
adopted a larger following distance when the relative speed
between the host vehicle and adjacent vehicle was large. Lei
and Huapu [12] established a comprehensive model of vehi-
cle behavior using a combination of the car-following model,
lane change model, and influence of the adjacent vehicle. The
research results indicated that the driver would regulate the
velocity when the adjacent vehicle either reached the alert
distance or possessed higher velocity than the host vehicle.
The above studies demonstrate that drivers usually would
predict the behavior of vehicles in the adjacent lane before
modulating the driving strategy of the host vehicle. Therefore,
for the sake of improving the acceptability and safety of
the adaptive cruise control (ACC) system, an intelligent car-
following strategy should possess the capacity to transform
the control strategy based on behavior prediction of adjacent
vehicles.

In recent years, many scholars have pursued various
approaches to improve the ride comfort and safety perfor-
mance of ACC systems using cut-in scenes [13]–[16]. By rec-
ognizing the target vehicle’s motion state, the performance of
car-following control strategies has been improved greatly.
Schmied et al. [17] proposed a robust adaptive cruise control
method to improve ride comfort in the ACC system. The
proposed model employed model predictive control (MPC)
to solve an optimal control problem in a receding horizon
manner by analyzing the lane change behavior of the sur-
rounding traffic participants. Also, simulation results with
different scenes demonstrated that robust control, when con-
sidering lane change behavior, effectively improved driving
comfort and exerted positive effects on traffic flow stabil-
ity. Li et al. [18] proposed a novel vehicular ACC system
to comprehensively address issues of tracking capabilities,
fuel economy, and desired driver response. By consider-
ing driver dynamic car-following characteristics, the model
provided substantial benefits for satisfying desired driver
behavior. Moon et al. [19] proposed a primary target selec-
tion algorithm for the ACC system based on analyzing the
state transitions of neighboring vehicles. Ararat modified
the primary car-following algorithm according to the col-
lision warning algorithm when considering human factors
and the motion of surrounding vehicles. In brief, the driving
behaviors of surrounding vehicles has been a pivotal ker-
nel in designing car-following control methods. However,
present control strategies are mainly based on the results of

driving behavior recognition of surrounding vehicles; strat-
egy exploitations according to the results of driving behavior
prediction (i.e., merging behavior prediction) remain sparse.
In reality, the sooner driving intentions are caught, the easier
it is to enhance car-following strategies.

Models of merging behavior prediction have been the
focus of numerous empirical studies that have investigated
different traffic environments. Deo and Trivedi [20] estab-
lished a long–short-term memory (LSTM) model for motion
prediction of surrounding vehicles on freeways. The model
took a vehicle’s historical trajectory coordinates as input,
and merging behavior was predicted by analyzing the dis-
tribution probability of the vehicle’s trajectory coordinate at
the next moment. Fuzzy control logic was used by Moon
et al. [21] to predict the merging behavior of surrounding
vehicles. The logic insisted that an adjacent vehicle would
prefer to perform merging behavior when the lateral distance
between the host vehicle and adjacent vehicle was small and
the lateral relative velocity was large. Vogel et al. [22] used
a fuzzy support vector machine (FSVM) method to predict
merging behavior, and model characteristic parameters were
determined as the host vehicle velocity, longitudinal and lat-
eral distance between the host vehicle and adjacent vehicle,
relative longitudinal and lateral velocity between the host
vehicle and adjacent vehicle, relative longitudinal and lateral
acceleration between the host vehicle and adjacent vehi-
cle. Yaping et al. [23] proposed a semantic-based intention
and motion prediction (SIMP) method to forecast merging
intentions by employing a deep neural network. Through
comparison with the support vector machine (SVM) method,
the established model could predict the merging intention of
an adjacent vehicle approximately 2 s in advance, and the
prediction accuracy was much higher than with the SVM
model. Gadepally et al. [24] established a mixed-state model
by coupling driver decision making with vehicle dynamics,
and a hidden Markov model (HMM) was employed to pre-
dict driver behavior by tracking the continuous state of the
target vehicle. However, current studies have mainly con-
centrated on the merging behavior prediction of the host
vehicle, the prediction models for surrounding vehicles are
scarce. In addition, the performance, especially by leveraging
prediction results to improve car-following strategies, also
warrants investigation.

In an attempt to precisely predict the merging behavior of
adjacent vehicles and promptly modulate the car-following
strategy of the host vehicle, this study analyzed the behav-
ior of a vehicle in the adjacent lane that merged into the
host lane during the car-following process on a freeway.
By exploiting the appropriate kinestate parameters of the
host vehicle and surrounding vehicles, a prediction model
to forecast the merging behavior of adjacent vehicles was
established. Then the existing desired spacing car-following
model was ameliorated on the basis of the prediction results.
In order to verify the effectiveness of the proposed strategy,
different cut-in scenes were designed to further explore the
safety and ride comfort of the car-following strategy. The
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FIGURE 1. Components of the test vehicle platform.

remainder of this paper is organized as follows. The char-
acteristic parameters of merging behavior are analyzed and
determined in Section II. A merging prediction model for
the adjacent vehicle, using the Fisher discriminant method,
is established in Section III. Simulation results and analysis
are reported in Section IV. Finally, conclusions are presented
in Section V.

II. CHARACTERISTIC PARAMETERS ANALYSIS
AND SELECTION
A. NATURALISTIC DRIVING EXPERIMENT
In order to collect the authentic merging behavior data during
the actual car-following process, naturalistic driving exper-
iments were implemented to support the prediction model
establishment of the merging behavior. A total of 17 expe-
rienced drivers (15 men, 2 women) were recruited to partic-
ipate in naturalistic driving experiments. Participants were
between the age of 27 and 48 years old with an average
age of 34.7 years. All participants had valid driving licenses
and driving experience ranging from 3 to 23 years (M=
8.4 years). Each participant was physically healthy, and none
had been involved in a severe traffic accident within the
past 3 years. For the sake of acquisition of the authentic
merging behavior data, an integrated data-gathering platform
using a real vehicle and common sensors was developed for
this study. The test vehicle and pivotal devices are shown in
Fig. 1. A millimeter-wave radar was used to acquire the rela-
tive velocity and relative distance between the host vehicle
and surrounding vehicles. A video monitoring system was
employed to calibrate time windows and record applicable
merging behavior of adjacent vehicles. The GPS device pro-
vided geographical positions of the host vehicle. Relevant
parameters of the host vehicle were collected via a controller
area network (CAN) acquisition card. All acquired data were
finally encoded in an industrial control computer. A full
closed two-way, 6-lane freeway was selected to accomplish
the naturalistic driving experiments. The total mileage driven
exceeded 5000 km.

B. DATA DESCRIPTION
According to practical merging data during naturalistic driv-
ing experiments, we divided merging behavior into three

FIGURE 2. Schematic diagram of merging behaviors of adjacent vehicle.

categories. The schematics of different merging behavior
categories are presented in Fig. 2, where M represents the
host vehicle, L0 represents the preceding vehicle in the same
lane as the host vehicle, and F1 represents the vehicle in the
adjacent lane. During the car-following process between host
vehicle M and preceding vehicle L0, vehicle F1 exceeded
vehicle L0 and merged in front of vehicle L0 in the first
merging behavior case, recorded as Merg1. In the second
case, vehicle F1 merged between vehicle M and vehicle
L0,recorded as Merg2. In the third case, vehicle F1 merged
after vehicle M , recorded as Merg3. Based on analysis of
actual merging behavior data, Merg3 was relatively scarce
and exerted negligible influence on vehicleM . Therefore, this
study emphasizes Merg1 and Merg2.
During the whole naturalistic driving experiments, all par-

ticipants were just informed of the initial points and desti-
nations; no other instructions were given. Participants could
navigate the host vehicle allodially under the premise of
obeying the rules and ensuring driving safety. For offline
extraction of car-following data and merging behavior data,
we defined data screening principles in advance, and the
detailed descriptions are provided below.

1) The velocity range of the test vehicle ranged from
60 km/h to 100 km/h. A velocity below 60 km/h did
not reflect normal freeway driving, and such data were
removed. Limits of the freeway sections were 100 km/h
and 110 km/h. A velocity more than 100 km/h was rare,
and only the data with a host vehicle velocity below
100 km/h were selected.

2) Determining the car-following state was the premise of
acquiring the merging behavior data. Literatures[25]
and [26] deemed 5 s and 6 s of headway time as
the demarcation point between free driving and car-
following behavior. In this study, we confirmed 5 s
of headway time as the demarcation value. There-
fore, scenes with a time headway of less than 5 s
and sustained for more than 10 s were defined as the
car-following stage.

3) The moment at which the turn signal was activated
was the criterion for merging intention judgment; the
moment of lateral displacement was regarded as the
criterion for merging initiation judgment. According
to videos recorded by the video monitoring system,
the initial merging intention of vehicle F1was taken as
the turn-signal starting time. The terminative merging
intention was confirmed as the moment that vehicle
F1began to make a lateral offset. Then, continuous data
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from 1-2 s before the moment of merging intention ter-
mination were intercepted for characteristic parameter
analysis.

On the basis of the above principles, we finally selected
50 instances of Merg1behavior and 50 instances ofMerg2
behavior. A total of 800 groups of Merg1 behavior samples
and 800 groups of Merg2 behavior samples were included.
Among them, data of Merg1, with the velocity of vehicle
M within the range of [60, 80) km/h, reached 370 groups,
and velocity situated in the range of [80, 100) km/h reached
430 groups. Data of Merg2 with the velocity of vehicle M
within the range of [60, 80) km/h reached 320 groups, and
velocity situated in the range of [80, 100) km/h reached
480 groups. The neighborhood smoothing filter method was
applied to denoise acquired data prior to analysis.

C. CHARACTERISTIC PARAMETERS ANALYSIS OF
MERGING BEHAVIOR
Selecting applicable characteristic parameters is a pivotal
kernel to establish a prediction model of merging behav-
ior. Appropriate parameter selection can effectively simplify
the prediction model and improve the accuracy of merging
behavior prediction. In this study, the velocity of host vehicle
VM , longitudinal distance between the host vehicle and pre-
ceding vehicle d1, headway time between the host vehicle and
preceding vehiclet1, relative velocity between the host vehicle
and preceding vehicleVML , longitudinal distance between the
host vehicle and adjacent vehicle d2, headway time between
the host vehicle and adjacent vehicle t2, relative velocity
between the host vehicle and adjacent vehicle VMF , accel-
eration of host vehicle a0, acceleration of preceding vehicle
a1, and acceleration of adjacent vehicle a2 were preliminarily
selected as characteristic parameters. All parameters could be
deduced from data collected by the test platform. However,
the acceleration of a0, a1, and a2demonstrated negligible dif-
ferences in the two velocity intervals forMerg1 behavior and
Merg2 behavior, respectively, and we first eliminated these
three accelerations from the candidate parameters. Then,
linear correlation analysis [27], [28] was performed on the
remaining seven parameters (i.e., VM , t1, t2, VML , VMF , d1,
and d2), and the correlation coefficient matrix is depicted
in Fig. 3.

As shown in Fig. 3, different colors in the elliptical blocks
depicted the discrepant degree of linear correlation between
each pair of parameters. The size of elliptical blocks indi-
cated the strength of the correlation, and the long axis direc-
tion indicated that variables were positively correlated. The
value of the correlation coefficient between each parameter
pair was directly shown in the elliptical blocks, and the
larger the value, the higher the correlation. The value of
the linear correlation coefficients between d2 and t2 and d1
and t1 were largest, reaching 0.98 and 0.95, respectively.
In addition, the values between d1 and VM and d2 and
VM were also strong, reaching 0.57 and 0.61, respectively.
Collectively, the value of the linear correlation coefficients
between VML and other parameters as well as VMF and

FIGURE 3. Correlation coefficient matrix.

other parameters were all under 0.4. Hence, the parameters
of VM ,VML ,VMF , t1,and t2 were retained. On the contrary,
the parameters of d1 and d2 were eliminated.
In order to further filter out characteristic parameters,

multicollinearity diagnosis based on the variance inflation
factor (VIF) [29], [30] of each parameter was employed in
this study. Multiple linear regression was performed for the
remaining variables for parameter Xi, and the model determi-
nation coefficient R2i
was calculated as follows.

R2i = 1−
SSE i
SST i

(1)

where SSE i is the square sum of the residuals, and SST i is the
sum of squares of the total deviation.

The VIF of parameter i can be calculated as

VIF i = 1−
1

R2i
(2)

When diagnosing potential multicollinearity on the basis
of VIF values, the diagnostic criterions were as follows:
VIF<5 indicated no or weak multicollinearity; 5 6 VIF
6 10 indicated a moderate degree of multicollinearity; and
VIF> 10 indicated high multicollinearity, which should be
eliminated. Next, we calculated respective VIF values for
seven variables VM , t1,t2, VML , VMF , d1, and d2, respectively.
The results were as follows: VIF7 = [12.6140, 79.3822,
101.7321, 1.2747, 1.1917, 114.6772, 128.3634]. Apparently,
severemulticollinearity existed when the parameters of d1and
d2 were not eliminated. And results without d1 and d2 indi-
cated that VIF5 = [1.2823, 1.4933, 1.7139, 1.2515, 1.1387].
The results demonstrated that the parameters of VM , t1,
t2, VML , and VMF possessed weak multicollinearity, and
the parameters of d1andd2should be eliminated. In addition,
the four parameters t1, t2, VML , and VMF , along with data
ofMerg1 and Merg2 behavior under the velocity intervals of
[60, 80) km/h and [80, 100) km/h, are listed respectively in
Tables 1 and 2.
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TABLE 1. Parameter values oft1,t2,V ML,V MFwithin [60, 80) km/h.

TABLE 2. Parameter values oft1,t2,V ML,V MFwithin [80, 100) km/h.

By comparison with Tables 1 and 2, the t1 and VML
values of Merg2 behavior were larger than Merg1 behavior
under the two different velocity intervals. The VMF values
of Merg2 behavior were smaller than forMerg1 behavior.
As for t2, the trend between Merg1 and Merg2 with two
velocity intervals was inconsistent. In conclusion, by com-
prehensive consideration of the characteristic distribution and
collinearity of the parameters, VM , t1, VML , and VMF were
ultimately selected as characterization parameters of merging
behaviors.

III. MERGING PREDICTION MODEL ESTABLISHMENT
OF ADJACENT VEHICLE
A. MERGING PREDICTION MODEL ESTABLISHMENT
Prediction model establishment has been the objective of
abundant empirical researches that have investigated differ-
ent machine learning methods (i.e., Bayesian classification,
HMM, Gaussian classification, SVM, and artificial neural
networks) and deep learning methods [31], [32]. However,
in actual use for uncomplicated driving behavior forecasting,
under the premise that the prediction accuracy is basically the
same, the simpler themodel, themore efficient and practical it
will be. Hence, discriminant analysis method was used in this
study to establish themerging predictionmodel. Discriminant
analysis aims to distinguish categories of unknown samples
using the existing sample classification. The basic idea is
to discriminate category attributes of unknown sample types
according to the constructed discriminant function and dis-
criminant criterion according to the extracted samples [33].
The Fisher discriminant method decreases the dimensions of
high-dimensional independent variables through projection;
thus, data from different groups can be separated as much as
possible, and discrepancies in data from the same group are
as limited as possible to classify them into a low-dimensional
space. In addition, the Fisher discriminant method has no
requirement regarding data distribution type or magnitude of

the variance and possesses a range of uses [34]. In this study,
pivotal procedures of establishing the discriminant function
and discriminant criterion are as follows.

We first defined kp-dimensional populations G1, G2,. . . ,
Gk , and samples extracted from the population were denoted
as xi1, xi2,. . . , xin (i =1,2,. . . , k). The total number of samples,
the mean of samples, and mean values of respective samples
were denoted as n =

∑k
i=1 ni, x̄ =

1
n

∑k
i=1

∑
j=1

nixij and
x̄i = 1

ni

∑
j=1

nixij. Then, we assumed that the projection
direction was a = (a1, a2, . . . , ap)T, xij was projected on
a, and yij = a

′

xij(i = 1, 2, . . . , k; j = 1, 2, . . . , ni).
Therefore, the mean values of the projection data were ȳ =
1
n

∑k
i=1

∑
j=1

niyij = a
′

x̄, and ȳi = a
′

x̄i. The sum of squares
of the differences between groups of yij(i = 1, 2, . . . , k; j =
1, 2, . . . , ni) was denoted as SSG. The deviation squared sum
of squares in the group was denoted as SSE , as shown in (3)
and (4).

SSG =
∑k

i=1
ni(ȳi − ȳ)2 =

∑k

i=1
ni(a

′

x̄i − a
′

x̄)
2

(3)

SSE =
∑k

i=1

∑
j=1

ni (yij−ȳi)2=
∑k

i=1

∑
j=1

n
i (a
′

x ij−a
′

x̄i)
2

(4)

Here, we defined B =
∑k

i=1 ni (x̄i − x̄) (x̄i − x̄)
T, E =∑k

i=1
∑

j=1
ni (xij − x̄i)(xij − x̄i)T, hence the statistic can be

denoted as F = SSG/(k−1)
SSE/(n−k)

=
a
′
Ba/(k−1)

a′Ea/(n−k)
, 1(a) = a

′
Ba

a′Ea
. If

the projection of k groups data was significantly different,
thenF or1(a) should be sufficiently large. Thus, if we obtain
the maximum point of 1(a), then we can get a projection
direction a and constrain a as a unit vector. The maximum
value of 1(a) was the largest eigenvalue of E−1B.
Assuming that all non-zero eigenvalues in E−1Bwere

arranged as λ1 ≥ λ2 ≥ · · · ≥ λs, s ≤ min (k − 1, p),
the corresponding unit eigenvectors were t1, t2, . . . , ts, and

1(ti) =
tTi Bti
tTi Eti
=

tTi (λiEti)
tTi Eti

= λi(i = 1, 2, . . . , s). Then, thei-th

discriminant can be calculated by using (5).

yi = tix(i = 1, 2, . . . , s) (5)

The discriminant efficiency of thei-th discriminant was λi
and the contribution rate of each group was λi∑s

i=1 λi
(i =

1, 2, . . . , s). If the total contribution rate of the previous
r (r ≤ s) discriminants was higher than a threshold (e.g., 85%
or more), then the former r discriminants could be used to
distinguish the groups well. The former r discriminants were
applied to any sample x and obtained the projection vector
(y1, y2, . . . , yr )T , which was the discriminant vector of x.The
formerr discriminants were applied to the mean of the i-
th group, and the projection vector (ȳi1, ȳi2, . . . , ȳir )

T was
calculated. When the Euclidean distance of the two projec-
tion vectors was calculated, the discriminant criterion was as
shown in (6).

r∑
j=1

(yj − ȳij)2 =
r∑
j=1

(yj − ȳhj)2, x ∈ Gi (6)
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In this study, half of theMerg1 behavior andMerg2 behavior
samples were selected as the training set, and the remaining
samples were used to verify the prediction model. The mean
values of the training data of Merg1 behavior, Merg2 behav-
ior, and all merging behaviors were as follows:

x̄(1) = (82.59838, 2.8750, 1.5957, 0.68535)T (7)

x̄(2) = (81.18488, 2.4435,−2.08328, 2.6539)T (8)

x̄ = (81.89162, 2.65925,−0.24379, 1.669625)T (9)

After calculation, the eigenvalue was 1.5772, and the con-
tribution rate reached 100%. The discriminant matrix was
denoted as y =[0.000157,-0.37794,-0.7794,0.51538], and the
corresponding discriminant was

Can=0.00157VM−0.37794t1−0.76912VML+0.51538VMF
(10)

The mean values x̄(1) and x̄(2) of Merg1 behavior and Merg2
behavior were substituted into the Fisher discriminant Can;
the discriminant mean of Merg1 behavior was 2.0593, and
that of Merg2 behavior was -1.9477. In this study, we ana-
lyzed the two populations of merging behaviors, and the
Euclidean distance was equivalent to the distance in the one-
dimensional space. Therefore, the discriminant criterion was
equivalent to the value of the discriminant threshold obtained
by weighting the number of samples, and the final value was
0.0558.

B. ANALYSIS OF MODEL RESULTS
The scatter plot for the 800 points of training sample data
is shown in Fig. 4. The red line in Fig. 4 represents the dis-
criminant criterion 0.0558 (i.e., the discriminant threshold),
and the established discriminant criterion can separate the
two merging behaviors effectively; only a fraction of sample
data could not be distinguished. The prediction result was
distinctly more effective forMerg1 behavior, and only sparse
data points were determined promiscuously. The normal den-
sity function curves for Merg1 behavior and Merg2 behavior
on the basis of Fisher discriminant scores obtained from the
training samples are shown in Fig. 5. As shown in Fig. 5,
the probability density ofMerg1 behavior andMerg2behavior

FIGURE 4. Distribution of discriminant scores of training samples.

FIGURE 5. Normal density curve for Merg1 and Merg2.

was 0.1 and 0.12, respectively, when the discriminant score
was 0.0558. Therefore, in this study, the prediction accuracy
ofMerg1 behavior was roughly 90%, and that of Merg2 was
approximately 88%.

Finally, the other 800 data points were employed to verify
the accuracy of the proposed merging behavior prediction
model. The confusion matrix of the prediction model is
shown in Table 3. For the 400 samples of Merg1 behavior,
12 samples were incorrectly predicted asMerg2 behavior. For
the 400 samples of Merg2 behavior, 43 samples were incor-
rectly forecasted asMerg1 behavior. Therefore, the prediction
accuracy rate of Merg1 behavior reached 97%, and that of
Merg2 behavior was 89.3%. The prediction results thus satis-
fied the requirements of car-following strategy modulation.

TABLE 3. Confusion matrix of prediction model.

IV. CAR-FOLLOWING STRATEGY IMPROVEMENT
AND SIMULATION
A. EXPECTED SPACING CAR-FOLLOWING MODEL
At present, the safety distance car-following model and
expected spacing car-following model have been exploited
diffusely in the ACC system. A critical value of headway
time between the host vehicle and preceding vehicle is given
by the safety distance model during the car-following pro-
cess. As a safety characteristic of car-following behavior,
the critical value of headway time cannot synthetically reflect
the driver’s car-following characteristics on the freeway. The
expected spacing model simulates psychological expectation
spacing when drivers are following a preceding vehicle, and
the model can more realistically and appropriately reflect
driver characteristics via comparisonwith other car-following
models. In this study, an anticipated spacing car-following
model proposed in our previous research was employed to
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re-design a car-following strategy on the basis of the merging
behavior prediction model.

The expected spacing car-following model was established
on the basis of naturalistic driving data on the freeway [35].
A detailed description (i.e., the expected spacing formula,
maximum spacing formula, minimum spacing formula, and
acceleration formula) is shown in (11), (12), (13) and (14).

Dexp (v)=−263.3+10.19v−0.1143v2+0.0001294v3

(11)

Dmax (v)=−577.2+22.5v−0.2584v2+0.001094v3

(12)

Dmin (v)=−108.2+4.738v−0.05821v2+0.0002407v3

(13)

an (t + T )= 0.0643+0.5084v
′

(t) (14)

where v is the host vehicle velocity, v
′

(t) is the relative veloc-
ity between the preceding vehicle and host vehicle, and T is
the driver’s reaction time, and here we took the value as 0.8 s
in this study.

B. CAR-FOLLOWING MODEL IMPROVEMENT
For common car-following strategies, if the adjacent vehicle
were to merge into the host lane, the car-following control
of the host vehicle would change the following target from
preceding vehicle L0 (shown in Fig. 3) to adjacent vehi-
cle F1. However, the following target usually switched at
the moment that vehicle F1crossing the lane. This strategy
indicated that the current car-following control strategy could
not accurately reflect practical driving behavior on the free-
way. The safety, ride comfort, and acceptability were also
affected. In this study, the expected spacing car-following
model accomplished control of the host vehicle when the
host vehicle was in a stable following state. According to the
established merging behavior prediction model, the merging
behavior of the adjacent vehicle F1would be forecasted 2 s
before the initial lateral distance of the vehicle F1.
In actual driving, the driver would release the accelerator

pedal or make a slight braking upon assessing the lateral
distance and relative velocity between the host vehicle and
adjacent vehicle after perceiving the merging intention of the
adjacent vehicle. In this study, we ameliorated the expected
spacing car-following strategy according to authentic driving
characteristics. The detailed strategy is as follows. When the
merging intention of the adjacent vehicle was forecasted by
the proposed predictionmodel, the throttle and brake pressure
of vehicle Mwere each adjusted to zero. If the longitudinal
distance between vehicle M and vehicle F1 was less than
the expected spacing, deceleration of 0.5 m/s2 was imposed
to vehicle M . After 0.6 s of lateral deviation (our previous
study results demonstrated that merging behavior would be
recognized after 0.6 s of lateral deviation [36]) and when
the velocity of vehicle F1 was lower than or equal to the
expected velocity of vehicle M , if the spacing between vehi-
cle M and vehicleF1 was greater than expected, control was

implemented according to the expected spacing model, and
the following target of the host vehicle was translated to
adjacent vehicle F1. If the distance between vehicle M and
vehicleF1 was less than the expected spacing and the distance
continued to decline, vehicle M would sustain deceleration,
and the following target of the host vehicle was translated
to adjacent vehicle F1 after vehicle F1 crossed the lane.
Reference [37] indicated that the average duration of merging
behavior was 5.6 s; therefore, the improved car-following
control strategy could switch the following target 2.2 s in
advance compared with the original control strategy. A flow
chart of the modified control strategy is illustrated in Fig. 6.

FIGURE 6. Flow chart of modified control strategy.

C. SIMULATION ANALYSIS
For the sake of examining the performance of the ame-
liorative car-following strategy, PreScan, CarSim, and
MATLAB/Simulink were employed to implement co-
simulation analysis. In this study, the co-simulation were
principally comprised by scenario assumptions, simula-
tion scenario settings, additional sensors addition and
control-module operation. PreScan was used to construct
different simulation scenarios. By coordinating different vir-
tual sensors, PreScan could also furnish the same real-time
kinematic data as our actual acquisition platform. The vehicle
dynamic model of our test vehicle was established in Car-
Sim. Moreover, the ameliorative car-following strategy was
encoded by MATLAB/Simulink. The following assumptions
were made before the co-simulation. Assumed that before
adjacent vehicleF1 merged, host vehicle M had reached a
steady car-following state, and preceding vehicle L0 was
always navigating in the host lane; also, the velocity of
adjacent vehicle F1 remained unchanged during the merging
process.
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In PreScan, we selected a model similar to the test vehi-
cle and set the relevant parameters according to data from
the naturalistic driving experiments. The detailed simulation
scenario was arranged as follows/. Set the simulation road
as a two-way, 6-lane road with a lane width of 3.75 m. The
initial velocity of vehicle M was 100 km/h, vehicle L0was
always steered at a uniform velocity of 100 km/h, and vehicle
F1navigated uniformly at a velocity of 72 km/h during the
whole merging process. The initial spacing between vehicle
M and vehicle F1 was 96m. According to the results of actual
road merging behavior data in China, the duration of merging
behavior was set to 3.2 s. Per the national standard, the aver-
age deceleration of theACC system should not be greater than
3.0 m/s2, and system acceleration should not be greater than
2 m/s2 [38]. Therefore, the acceleration range of vehicle M
was −3 m/s2 ≤a0 ≤ 2 m/s2. A TIS distance detection sensor
was used to detect the distance, relative velocity, and relative
angle between the host vehicle and preceding vehicle. The
selected expected spacing model and improved car-following
model were each encoded into the Simulink control module.

The co-simulation results for the original expected spacing
model and improved car-following strategy are displayed
from Fig. 7 to Fig. 10.

FIGURE 7. Simulation results for car-following space.

Fig. 7 shows the simulation results of the car-following
spacing variation compared with the original expected spac-
ing model and improved model, which included the maxi-
mum expected spacing, minimum expected spacing, average
expected spacing, and actual car-following spacing. As indi-
cated in Fig. 7, the spacing of the two car-following models
did not exceed theminimum expected spacing, indicating that
the two models demonstrated satisfactory safety. However,
the improved model responded earlier to merging behav-
ior than the original model. The inflection points of the
curves revealed that the following target had been changed
at that moment. All curves derived from the improved model
reached the inflection point earlier than those from the orig-
inal model. In addition, all curves from the improved model
possessed higher minimum spacing values than the original
model. The minimum spacing of real car-following spac-
ing between the original model and improved model were

FIGURE 8. Simulation results for host vehicle velocity.

FIGURE 9. Comparison of brake pressure.

FIGURE 10. Comparison of brake acceleration.

33 m and 40 m, respectively. A higher value of the real car-
following spacing implied that the improved model was more
secure than the original model.

Fig. 8 presents the simulation results of the host vehicle
velocity variation compared with the original expected spac-
ing model and improved model, which included the target
velocity and real velocity. As shown in Fig. 8, the inflection
points of the curves indicated that the following target had
been changed at that moment. The real velocity curve of
the improved model had already begun to descend gently
before the following target changed. At this stage, the host
vehicle had already captured the merging intention of the
adjacent vehicle, and the throttle and brake pressure were
each adjusted to zero. The host vehicle decelerated naturally
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due to rolling resistance and air resistance. Slight deceleration
was sustained until the lateral distance of the adjacent vehicle
was recognized (0.6 s after lateral deviation). On account of
the premature modulation, the real velocity of the improved
model transformed more gradually than the curve of the
original model. In addition, the minimum velocity of the
original car-following model was 64 km/h, whereas that of
the improved model was 69 km/h. Hence, the ride comfort
was clearly enhanced by the improved model.

Simulation results of brake pressure variation and acceler-
ation variation compared with the original expected spacing
model and improved model are pictured in Fig. 9 and Fig. 10,
respectively. The brake pressure of the original car-following
model had a sudden change at the moment the following
target changed, and the maximum brake pressure increased
sharply to 70 bar. However, due to the merging intention
had been predicted, the improved model braked in advance,
and the maximum brake pressure did not exceed 10 bar.
The discrepant brake pressure directly affected the accel-
eration variation of the host vehicle. As shown in Fig. 10,
the inflection points of the curves indicated that the following
target changed at that moment. The maximum deceleration
of the improved model was −1.2 m/s2, whereas that of the
original model reached−4.4 m/s2. In addition, the maximum
acceleration between the improved model and original model
was 0.2m/s2 and 0.8m/s2, respectively. By eliminating decel-
eration jerk, the host vehicle would be more stable, and ride
comfort was enhanced dramatically.

During the merging process, the cut-in velocity of the
adjacent vehicle and cut-in distance between the host vehicle
and adjacent vehicle each exerted large effects on the host
vehicle control. In order to further analyze the performance of
the ameliorative car-following strategy, simulation scenarios
with different cut-in velocities of the adjacent vehicle and
different cut-in distances between the host vehicle and adja-
cent vehicle were used to test the improved model. A total
of 17 simulation scenarios were performed from 10 km/h to
58 km/h at an interval of 3 km/h of the cut-in velocity. From
16 m to 86 m, there were eight simulation scenarios at an
interval of 10 m of the cut-in distance. Based on the improved
car-followingmodel, a co-simulation study was conducted on
different cut-in conditions in the safety range, and results are
shown in Figs. 11 and 12.

After the following target changed, the spacing between
the host vehicle and adjacent vehicle would continue to on
account of the relative velocity difference. A traffic conflict
could easily occur when the car-following spacing was less
than the minimum safety distance. As shown in Fig. 11,
the minimum car-following spacing with different relative
velocities and different cut-in spacing were drawn in a 3D
contour map. The red part indicated a high probability of
collision, and the blue part indicated a low probability of
collision. As the relative velocity declined and the cut-in spac-
ing increased, the safer the host vehicle became during the
car-following process. The unsafe status (the red part) only
occurred in extreme cases. Similarly, maximum deceleration

FIGURE 11. Minimum spacing simulation results.

FIGURE 12. Maximum braking deceleration simulation results.

with different relative velocities and different cut-in spacings
is shown in Fig. 12. The red part indicated that the host vehicle
demonstrated strong deceleration, and the blue part indicated
low deceleration. As the relative velocity reduced and the
cut-in spacing increased, the lower the deceleration of the
host vehicle during the car-following process. The overall
deceleration did not exceed−2.5 m/s2, and high deceleration
only occurred in extreme cases. These results demonstrated
that the improved model could operate effectively under
almost normal cut-in conditions.

V. CONCLUSIONS
The merging behavior prediction of adjacent vehicles plays
a substantial role in improving the safety, ride comfort, and
acceptability of the intelligent car-following strategy. In this
work, an ameliorative car-following strategy based on merg-
ing prediction of adjacent vehicles is developed from the
results of naturalistic on-road experiments. On the basis of
collection and analysis of the kinematic parameters among
of the host vehicle, preceding vehicle, and adjacent vehi-
cle; host vehicle velocity, headway time between the host
vehicle and preceding vehicle, relative velocity between the
host vehicle and preceding vehicle, and relative velocity
between the host vehicle and adjacent vehicle are determined
to be the characteristic parameters of merging behavior. Then,
the Fisher discriminant method is exploited to establish a
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merging behavior prediction model on the basis of the four
characteristic parameters. Results manifest that the proposed
prediction model could forecast the two kinds of merging
behavior 2 s in advance. For the two behaviors in which the
adjacent vehicle mergers in front of the preceding vehicle and
mergers into the gap between the host vehicle and preced-
ing vehicle, prediction accuracy rates reach 90% and 88%,
respectively.

In actual car-following behavior on the freeway, a driver
would usually release the accelerator or apply the brake
slightly upon perceiving the adjacent vehicle’s merging inten-
tion. In this study, the existing expected spacing car-following
model is improved based on the merging prediction model.
When the intention of the adjacent vehicle is captured,
the throttle releases and the vehicle decelerates by rolling
resistance and air resistance. After 0.6 s of the initial lateral
displacement, the host vehicle switches the target and enters
ACC control. By comparing variations in the host vehicle
velocity, car-following spacing, and host vehicle deceleration
of the original model and the improved model, simulation
results demonstrate that the improved car-following strategy
eliminates deceleration jerk, the velocity control is more sta-
ble, and the real minimum following spacing increases com-
pared with the original model. The safety, ride comfort, and
acceptability of the ameliorative car-following strategy based
on the merging prediction model are effectively enhanced.
However, some deficiencies exist in this work. Future studies
should include more samples with complex traffic environ-
ments to train the prediction model and enhance the model
portability. In addition, hardware-in-the-loop tests and prac-
tical vehicle experiments should implement to verify the
performance of the proposed car-following model.
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