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ABSTRACT Recent studies have greatly promoted the development of semantic segmentation. Most state-
of-the-art methods adopt fully convolutional networks (FCNs) to accomplish this task, in which the fully
connected layer is replaced with the convolution layer for dense prediction. However, standard convolution
has limited ability in maintaining continuity between predicted labels as well as forcing local smooth. In this
paper, we propose the dense convolution unit (DCU), which is more suitable for pixel-wise classification.
The DCU adopts dense prediction instead of the center-prediction manner used in current convolution layers.
The semantic label for every pixel is inferred from those overlapped center/off-center predictions from
the perspective of probability. It helps to aggregate contexts and embeds connections between predictions,
thus successfully generating accurate segmentation maps. DCU serves as the classification layer and is a
better option than standard convolution in FCNs. This technique is applicable and beneficial to FCN-based
state-of-the-art methods and works well in generating segmentation results. Ablation experiments on
benchmark datasets validate the effectiveness and generalization ability of the proposed approach in semantic
segmentation tasks.

INDEX TERMS Dense convolution unit, fully convolutional network, overlapped prediction, semantic
segmentation.

I. INTRODUCTION
Semantic segmentation serves as an indispensable part in
image and video content analysis. It aims to assign each
pixel a predefined semantic tag and has long been a very
challenging problem due to the high intra-class variabil-
ity of data. Recently, many promising results have been
reported regarding this dense prediction task, mainly benefit-
ing from the advances in deep convolutional neural networks
(DCNNs) [1]–[8]. Most state-of-the-art methods [9]–[13]
consider semantic segmentation as a pixel-wise classifi-
cation problem and adopt fully convolutional networks
(FCNs) [14] to accomplish it. Remarkable performances have
been achieved on various benchmark datasets [15]–[23].

Initialized with the parameters of DCNNs pre-trained on
large-scale datasets such as ImageNet [24], FCN performs

The associate editor coordinating the review of this manuscript and
approving it for publication was Michele Magno.

relatively well on semantic segmentation tasks with only an
additional convolution layer serving as the classifier [14].
The superior ability of DCNNs in extracting high-level
semantics determines that even such a straightforwardly
assembled end-to-end network can be more effective than
specially designed methods with hand-crafted features.
Therefore, most following works inherit the fully convolu-
tion spirit and turn to discovering more suitable and effec-
tive structures for dense prediction networks. Among those
studies, dilated convolution and deconvolution have become
very popular techniques due to their excellent performances
in generating high-resolution feature maps. More powerful
baseline networks such as ResNet [2] further promotes the
development of the semantic segmentation community. Cur-
rently, a typical FCN-based framework can be seen in the
Deeplab family [10], [25].

Nevertheless, two inharmonious problems exist between
FCNs and the semantic segmentation task. First, the spatial
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context relationships between pixels are not explicitly
depicted in FCNs. Starting from deep classification net-
works, FCNs replace the last few fully connected layers with
convolution layers and optimize the whole network with a
pixel-wise loss function. Consequently, the label-prediction
process for one pixel is largely independent from others. This
unavoidably brings about many discontinuities and noises in
the segmentation maps, as shown in Fig.1(a). To eliminate
such discontinuities and noises, many approaches have been
developed. Conditional random fields (CRFs) are widely
adopted models in traditional methods. CRFs can, to some
extent, refine the segmentation map, but it is inconvenient for
them to be end-to-end trained with FCNs [26], [27]. Another
method that is shown to be crucial and rather effective is
incorporating more global context into the final classification
layer [11].

The other problem is related to the rigid computing mode
of standard 2D convolution. In current FCNs, convolution is
performed over a pre-defined regular grid. Within the same
layer, the receptive fields for all convolutions are actually
the same. This mechanism deduces that activations are gen-
erated through an identical, default and unchangeable man-
ner. Although the stack of convolutional layers exhibits a
powerful representation ability, the increases in depth cannot
fully offset this drawback. As pointed out in [28], standard
convolution cannot adapt to the semantic boundaries. This
limits the performances of convolutional neural networks
(CNNs). In semantic segmentation networks, a fair number
of predictions are performed over semantically vague areas,
as illustrated in Fig. 1(b).

In summary, the key problem lies in the classifier of the
FCN, which is currently performed by a single convolution
layer. In the classification network, a fully connected layer
or global pooling layer [2], [29] helps to enable adequate
context embedding over whole feature maps, which is vital
for accurate prediction. However, their counterpart in the
FCN lacks such a global view. The fully convolution fashion
determines that only part of the input map is involved in the
label-prediction processes for pixels. We observed that the
probability map generated by a typical FCN only exhibits
a high confidence level on pixels near the centre of objects
(‘‘right’’ areas). Apparently, many predictions are not made
over their semantically corresponding areas. Decisions on
pixels which are between objects are as random as a dice roll.

To solve the above problem, we propose the ‘‘dense con-
volution’’ scheme and develop the corresponding dense con-
volution unit (DCU) as a better classifier to current networks.
As the name suggests, dense convolution produces a dense
output for a single receptive field. It enables off-center predic-
tion that is unavailable in the standard convolution. The final
semantic label for every pixel is inferred from those over-
lapped center/off-center predictions. Similar ‘‘dense’’ ideas
can be seen in [30]–[32]. With this mechanism, the ‘‘right’’
receptive field decides not only the semantic label of its
center pixel but also the neighbors. Thus, pixels offset from

FIGURE 1. In FCN, the prediction for each pixel is relatively independent.
Therefore, many discontinuities and ‘‘noises’’ exist in segmentation map.
Moreover, due to the rigid receptive field of standard 2D convolution, lots
of predictions are unreliable. (a) Discontinuities and noises.
(b) Semantically vague area.

the right positions can have the chance to further refine
their labels. The contributions of this paper include the
following:
• We give a comprehensive explanation about the motiva-
tion and mentality of the dense convolutional network
and present the network structures in detail.

• The complete formulation and thorough algorithm about
training dense convolutional networks are developed.
The theoretical analysis regarding the design of the
weight map in DCU and corresponding visual illustra-
tion are also included.

• We conduct extensive experiments on benchmark
datasets and report corresponding results. The ablation
study and experiments demonstrate its superior perfor-
mance over standard convolution and other competitors.

An early conference version of our work can be seen
in [33]. In this paper, the relationships and differences to
existing works are added to show the causes and effects.
Besides the original ablation study on baseline model,
we generalize the DCU to another well-known network as
well as additional datasets and achieve significant improve-
ments. In the following, we will first give a review to related
work in Section II. Then, we present the technical details in
Section III and show that dense convolution can be efficiently
implemented andworks well on semantic segmentation tasks.
Experimental results and corresponding discussions are given
in Section IV. The conclusion and future work are drawn in
Section V.
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II. RELATED WORK
Recent improvements on semantic segmentation can be
largely attributed to the application of fully convolutional
networks (FCNs) [14]. The typical convolutional neural net-
works (CNNs) used for classification tasks are transformed
into dense prediction networks in a straightforward way.
Such networks show amazing ability on semantic segmenta-
tion tasks, thus have becoming the paradigm in state-of-the-
art methods. Meanwhile, many works have focused on the
intrinsic drawbacks of the fully convolutional structure and
developed many variants, which are summarized as follows.

A. RESOLUTION RECOVERY
Deep networks usually adopt consecutive pooling layers to
embed more context, as well as to reduce the high compu-
tation requirements, which has been proven to be essential
in image processing [1]–[3]. However, FCN-based methods
suffer from such downsamplings a lot due to the loss in
image resolution. To alleviate such loss, dilated convolution is
proposed and has been widely adopted [34]. It can enlarge the
receptive fields by inserting holes (zeros) to filters. By remov-
ing pooling layers and increasing the dilation rate of sub-
sequent convolutions, feature resolution can be maintained
without any change to the structure and parameter size of the
model. Deconvolution [35]–[37] is another popular method
to recover resolution. It can be considered as the inverse of
convolution. Deconvolution realizes upsampling using learn-
able weights instead of nonparametric methods (e.g., bilinear
interpolation) and shows superior performance. A similar
idea can found in an encoder-decoder network [38].

B. MULTISCALE CONTEXT EMBEDDING
Unlike typical classification networks whose inputs are set
to a fixed size, dense prediction networks receive images
of arbitrary sizes. Unfortunately, mutative input limits the
accuracy of segmentation because the neural networks cannot
adapt to different scales effectively. Most existing works
choose to embed multiscale context when dealing with this
problem [39], [40]. Among those methods, multiscale testing
is straightforward and easy to conduct. This method resizes
input image to different scales then applies trained networks
(the same or different) to them separately. Final result is
obtained from the combination of segmentation maps in sev-
eral scales. The feature pyramid structure [10] merges such
multiscale embedding operation into networks in an end-to-
end way. Spatial pyramid pooling (SPP) [11] shares a similar
idea and obtains a significant margin compared to existing
methods. The recent proposed Scale Normalization for Image
Pyramids (SNIP) [41] was shown to better deal with objects
with small or large scales, but it has not been applied in
semantic segmentation tasks yet.

C. BOUNDARY REFINEMENT
Poor segmentation performance along object boundaries
might be the common problem for all deep learning based

methods. As the opposite of global context, local information
is not well captured by DNNs. Though increasing network
capacity (depth) leads to constantly better results [10], cor-
responding expenses in runtime and memory would soon be
unbearable. Therefore, inmany state-of-the-art works, CRF is
adopted as post-processing due to its excellent performance
along object boundaries. The end-to-end training of CRF
with DNNs also has been studied in many works [26], [27],
but specific modeling and inference methods can hardly
be extended to other networks. More popular ways tend to
add boundary refinement units into FCNs [12], [42]. Usually,
a small kernel size is adopted for better characterization of
local context. However, since the boundary accounts for a
small proportion of the whole image, those methods bring
limited improvements compared to techniques such as dilated
convolution, SPP and so on.

D. STRUCTURE EVOLUTION
Recent studies rethink the DCNN structure for embedding
high-level semantics. Deformable convnet [28] augments
those fixed sampling locations in typical networks with extra
parameters. As a data-driven method, it can adapt to the scale
and shape of an object, which is unachievable in standard
convolution. Dense upsampling convolution [32] divides the
whole output map into several equal subparts and generates
each part simultaneously using different channels. A similar
idea can be found in FCIS [30] used in instance segmentation,
where different channels encode position-sensitive features
and then are assembled to obtain the final segmentation map.
Methods of this kind exploit several specific structures for
dense prediction networks motivated by various observa-
tions or assumptions. Their successes indicate that, though
classification task transfers efficiently to semantic segmen-
tation, task specific design is still indispensable for further
breakthroughs.

We would mention that most above methods were tested
on several benchmark datasets for fair comparison. How-
ever, fully annotated segmentations in existing datasets are
relatively rare, so training DNNs from scratch is difficult.
State-of-the-art performances are achieved through trans-
fer learning based on classification networks. Therefore,
methods adopting weakly supervised and semi-supervised
learning [43]–[47] have a very promising future since they
can utilize data with weak or even no annotations. In that case,
specially designed loss functions and recursive training are
widely adopted. More details can be found in references.

This paper is close to those works on structure evolution
in terms of motivation. We argue that classifications should
be made over semantically corresponding areas so high con-
fidence level can be maintained. However, in contrast to
deformable convnet where each activation attempts to find its
semantic area, dense convolution lets semantic areas generate
more decisions and spreads the results through the pixel-wise
weight map. The extra channels in our network are not meant
to encode more features for the same content, which is more
like over-fitting, but established to encode different contents.
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This paper tries to demonstrate that not all receptive fields are
of the same importance when predicting the semantic labels
and offset prediction of the ‘‘center area’’ is more credible
than center prediction of the ‘‘offset area’’.

III. PROPOSED APPROACH
The convolutional neural network paves the way for the suc-
cessful application of artificial neural networks to computer
vision. Convolution (sometimes abbreviated as conv) takes
advantage of the local properties inside images and is widely
used in digital image processing. A standard convolution
layer performs the following process (feature maps and vec-
tors are shown in boldface):

y(o)h,w =
∑
i

∑
m

∑
n

θ (i,o)m,n · x
(i)
h+m,w+n + b

(o) (1)

where x and y denote the input and output feature maps, θ

denotes the weights of conv kernels, i, o represent different
channels and h,w,m, n represent the index in corresponding
feature maps and conv kernels. A simple end-to-end trainable
network for semantic segmentation is then completed once
the loss layer is applied after. The softmax loss function for
the above network is defined as:

Lsoftmax = −
1
N

∑
h

∑
w

log(exp(ylabelh,w )/
∑
o

exp(y(o)h,w)) (2)

where label denotes the ground truth label in position (h,w),
N is the number of elements in segmentation map and equals
to h · w.

A. DENSE PREDICTION INSTEAD OF CENTRE PREDICTION
From the perspective of signal processing, the last convolu-
tion layer in FCN gives the probability of class o on position
(h,w): P(o)h,w ∼ y(o)h,w. Analogous to forward prediction and
backward prediction, which are common in signal process-
ing, we can call the prediction manner standard convolu-
tion adopts as center prediction. Intuitively, the input-output
correspondence for dense prediction networks should not be
limited in such a fixed manner. In fact, the correspondence
between one pixel and its ‘‘perfect’’ receptive field varies
significantly when it lies in different positions of an object. To
further exploit the ability, we extend the standard convolution
and deduce the general form as the dense convolution.

For a clear presentation, in this section we use the similar
notation to [28], which expresses the 2D location (h,w) in
vector form and neglect dilation and stride for simplicity.
Then the standard convolution on a single input map x can
be reformulated as follows:

y(p0) =
k2∑
i=1

θ (pi) · x(p0 + pi) (3)

where p0 denotes the location in x and pi represents the ith
item of the following:

{(−
k
2
,−

k
2
), (−

k
2
,−

k
2
+ 1), . . . , (

k
2
,
k
2
− 1), (

k
2
,
k
2
)}

which enumerates all possible locations within the k × k
convolution kernel. In common practice, k is set to an odd
number and k/2 is rounded down to an integer. Usually
padding will be adopted in case of dimension mismatching.

In every convolution process, k2 inputs are sampled and
convolved with shared learnable parameters. Every equally
sampled k × k grid in x is responsible for one activation in
y that located at the center of it. Apparently, the number of
input and output in a standard convolution is k2 versus 1.
The proposed dense convolution introduces extra outputs into
the above process. For a k × k grid R in x, it computes k2

activations (also a grid):

yj =
k2∑
i=1

θ j(pi) · R(pi), j = 1, 2, . . . , k2 (4)

where θ j denotes the weights of the jth conv kernels. If
conducting such convolutions on the whole input map x and
assemble the jth activations, we get k2 output maps:

ỹj(p0) =
k2∑
i=1

θ j(pi) · x(p0 + pi + pj) (5)

where pj has the same meaning as pi and encodes the spatial
shift of ỹj to y. The maps in ỹj are of the same size but not
spatially aligned since they contain different elements of the
output grid.

It is not necessary to increase the output channels of exist-
ing convolution layers k2 times to accomplish such a dense
prediction. Deep networks are always wide; therefore, all we
need do is to divide the channels into groups and maintain k2

channels within each group. In each group, the k2 channels
can be viewed as the dense prediction of one feature map.
To enable this, we reorganize the relative position of those
channels, as illustrated in the ‘‘Spatial Shift within Group’’
part of Fig. 2. In this way, we change the center prediction
manner of the standard convolution while keeping similar
parameters to existing models. Such division prevents the fast
growth of parameter size as k increases.
Upon doing this, the dense convolution brings a noticeable

problem called spatial overlap. This problem emerges when
the output maps overlapwith each other. In fact, such overlaps
can be avoided by increasing the convolution stride to k .
However, in those circumstances, the above process becomes
block-to-block convolution which shows obvious artificial
partition. Therefore, we keep the stride unchanged, which is
set to 1 in a typical classification layer, and find a strategy to
deal with the overlapped maps and generate the final outputs.

B. A COMBINATION STRATEGY: FROM THE PERSPECTIVE
OF PROBABILITY
As pointed out above, dense convolution is developed as the
extension to standard convolution. Note that, in the original
convolution layer, the activation indicates the probability for
each class o on position (h,w): P(o)h,w ∼ y(o)h,w. Similarly,
the multioutputs of dense convolution are also expected to
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FIGURE 2. Structure of the dense convolution unit (DCU) when k = 3. All operations are performed group by group. Each
group has k2 maps and corresponds to one output channel. The spatial shift operation adds shifts and pads zeros to the
feature maps. The triples denotes the height, width and channel of corresponding feature map. For better illustration,
the feature maps of ỹ are spatially arranged to show the differences in paddings. Best viewed in color.

represent some kind of probability. Since those overlapped
activations predict the same probability but are performed on
different sampling grids (receptive fields), it is reasonable to
view the overlapped activations as probabilities conditioned
on different inputs. In this respect, the final result P(o)h,w should
be computed following the total probability formula:

P(o)h,w =
∑
j

G(o)
h,w,j · P

(o)
h,w|j. (6)

Here, the conditional probabilities P(o)h,w|j are represented by

those overlapped maps ỹj(h,w) and the probabilities G(o)
h,w,j

act as the normalized coefficients. Considering that different
locations may encode different semantics and thus have dif-
ferent dependencies on those overlapped predictions ỹj(h,w),
a coefficient map can be used instead of sharing the coeffi-
cients across all positions. The coefficient maps Gj is gener-
ated through a convolution layer upon the input map x.
Equation (6) determines that G(o)

h,w,j should always adds
up to one for a single position (h,w). Therefore, we apply
the softmax function on those maps (called weight maps in
this paper) to satisfy this constraint. Softmax normalization
is used because it has a good numerical stability and is easy
to differentiate, i.e., Gj is normalized using the following:

G̃j(p0) = exp(Gj(p0))/
k2∑
m=1

exp(Gm(p0)), j = 1, . . . , k2.

(7)

Therefore, in the proposed dense convolution scheme,
weight summation is adopted as the combination strategy
for overlapped feature maps. This is a simple yet efficient
method. Finally, the output map z can be obtained via a

weighted summation as follows:

z(p0) =
k2∑
j=1

G̃j(p0) ·
k2∑
i=1

θ j(pi) · x(p0 + pi + pj). (8)

If the dilation rate is not 1, just replace the sample grid
R in (4) with corresponding grid and the process can still
be finished. When the stride s >1, the convolution can be
transformed into dilated convolution with stride 1, which
maintains the feature resolution; Thus, this paper leaves such
situations behind.

Under the most complete setting, the normalized coeffi-
cients (weight maps) are not shared by different positions nor
by different output channels. In practice, certain compromises
can be made in consideration of complexity. Fig. 3 illus-
trates how dense convolution works on one input image and
visualizes the corresponding feature maps. After the previous
feature extraction process, dense convolution first generate
multiple middle predictions. Then, the spatial shift unit helps
to correct their relative coordinates and relocates them prop-
erly. Meanwhile, normalized position-sensitive weight maps
are generated through another standard conv layer and help
to combine those multiple middle predictions. The ‘‘right’’
channel achieves the strongest activation and thus suppresses
other channels after the softmax operation. Finally, the seg-
mentation map is synthesized using argmax function.

C. TRAINING DENSE CONVOLUTIONAL NETWORK
To integrate dense convolution into current framework,
the dense convolution unit (DCU) is developed. The overall
structure is shown in Fig. 2. It includes two standard 2D
convolutions, one group by group normalization, one spatial
shift unit and one element-wise multiplication followed by
summation.
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FIGURE 3. Visualization of the middle predictions and corresponding weight maps in DCU. The overlapped part is
combined through element-wise multiplication and summation (kernel size is 3× 3). Best viewed in color.

Based on existing deep learning frameworks, only a small
modification is needed. The key point lies in the spatial shift
operation. This part implements ỹj following (4) and (5). Sup-
pose that input feature maps haveCin channels, output feature
maps have Cout channels and the convolution kernel size is
k × k . To achieve dense convolution, the DCU first generates
k2Cout middle maps yj using the standard convolution then
add offsets to them through spatial shift layer and get ỹj.
Notice that in Section III-A, dense convolution is described
on a single input layer. The multichannel formulation can be
easily deduced as follows:

z(Co)(p0) =
k2∑
j=1

G̃(Co)
j (p0) ·

(
∑
Cip

k2∑
i=1

θ
(Ci,Co)
j (pi) · x

(Ci)(p0 + pi + pj)+ b
(Co)) (9)

where Co and Ci denotes different output and input channels.
Now that the output hasCout channels, y and ỹ are divided into
Cout groups with each group having k2 maps, corresponding
to different output channels. Then, the spatial shift opera-
tion is performed group by group. The convolution uses no
padding since spatial shift will recover the reduced dimen-
sion. That means ỹ has the same dimension with input x,
yet y is smaller. Similarly, k2Cout normalized weight maps G̃
can be obtained with another standard convolution followed
by one group-by-group normalization using (7). In contrast,
padding is used this time.

In the forward propagation process, output maps can be
computed following (9). For backward propagation, the dif-
ferentiation formulas should be established. To keep consis-
tent with Section III-A, the following discussion is within a
single group and the superscript Cout is omitted. This paper
only presents the derivatives for the spatial shift operation.
The rest can be completed with back propagation of the
standard convolution and softmax layer.

Given ∂Loss/∂z for output map z, the gradient w.r.t. yj and
G̃j can be computed as

∂Loss
∂yj(p0)

=
∂Loss

∂z(p0 − pj)
· G̃j(p0 − pj) (10)

and
∂Loss

∂G̃j(p0)
=

∂Loss
∂z(p0)

· yj(p0 + pj). (11)

Here, the correspondence yj(p0) = ỹj(p0 − pj) is used. In the
above scheme, each output channel has its own weight maps
because they are expected to encode different semantics.
Thus, the back propagations for yj and G̃j in different groups
are independent from each other. However, during the exper-
iments, we found that if weight maps G̃ are shared across
the output channels, the network still works well and only
minor accuracy loss is observed. In that case, the gradient
∂Loss/∂G̃j(p0) should sum up over all Cout channels and the
formula becomes:

∂Loss

∂G̃j(p0)
=

∑
Co

∂Loss
∂z(Co)(p0)

· y(Co)j (p0 + pj). (12)
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Algorithm 1 End-to-End Training of Dense Convolutional
Network
Initialize: Set up convolution layers and set the kernel size

of DCU to k × k . Network parameters are denoted as 8.
Maximum number of iterations: max_iter .

1: while iter < max_iter do
2: Forward:
3: Generate {yCoj ,GCoj }

Co=1...Cout
j=1...k2

with previous layers.
4: for Co = 1 to Cout do
5: Add spatial shift to yj using correspondence

ỹCoj (p0) = yCoj (p0 + pj)

6: Normalize GCoj using (7)⇒ G̃Coj .
7: Output zCo using (9).
8: end for
9: Compute softmax loss through (2) then get

∂Loss/∂zCo .
10: Backward:
11: for Co = 1 to Cout do
12: Apply (10)⇒ ∂Loss

∂G̃Coj
.

13: Apply (11)⇒ ∂Loss
∂yCoj

.

14: end for
15: Back propagation to previous layers.
16: Update 8.
17: iter ⇐ iter + 1
18: end while
Output: Trained network for inference.

The overall procedure for training a dense convolutional net-
work is summarized in Algorithm 1.

IV. EXPERIMENTS
We conduct extensive experiments on the benchmark datasets
PASCALVOC 2012 [48] and Cityscapes [49] to demonstrate
the effectiveness of the proposed dense convolution scheme.
To begin with, a frequently used baseline model (with a sin-
gle convolutional layer as classifier) is established following
common practice. Then, several settings important for final
accuracy are given and discussed. After that, the dense con-
volution is applied to the baselinemodel to exhibit its superior
performance compared to the standard convolution. However,
since the proposed method introduces more parameters (two
middle convolutional layers) into the current network, it is
hard to tell whether the improvement comes from the spe-
cially designed structure or the extra parameters. To further
observe its capacity under similar or even fewer parame-
ters than the standard convolution, the dense convolution
is integrated into the well-known method PSPNet [11]. The
parameters in the standard convolution and dense convolution
are carefully controlled, and the corresponding results are
represented. In addition, running time and complexity are also
reported for comprehensive comparison. We make the code
available at https://github.com/hancy16/DCU.

A. EXPERIMENTAL SETTINGS
EvaluationMetrics: To evaluate our approach, standard mean
intersection over union (mIoU) is used. This metric prefers a
class with large areas. However, in a dataset such as PASCAL
VOC 2012, the number of pixels varies significantly for dif-
ferent classes. The area of background could be several dozen
times larger than other class (as a result, background always
has the highest accuracy). Thus, we also give the class-wise
IoU score for better comparison. According to [14], the eval-
uation metrics are computed as:

• Pixel accuracy: ratio of correctly classified pixels to total
number of pixels, defined as

∑
i tii∑
i Ti

.
• Mean IoU:mean intersection over union percentage over

all classes, defined as 1
N

∑
i

tii
Ti+

∑
j tji−tii

.

where tji denotes number of pixels belonging to class j
whereas predicted to be class i, Ti denotes the total number
of pixels in class i, N is the number of classes.
Baseline Model: The Deeplab [10] framework is adopted

as the baseline model. According to [14], we first modify
ResNet-101 [2] into fully convolution fashion to enable dense
prediction. This is accomplished by replacing the last few lay-
ers behind conv5_x with a convolution (classification) layer.
In this way, the ResNet part serves as a feature extraction
module and the pretrained model provides a proper initial-
ization. The relative learning rate for previous layers is 1 and
for the classification layer it is 10. Then, the last two pooling
layers in original ResNet are discarded to maintain the feature
resolution and dilated convolution is employed to keep the
receptive fields unchanged. The dilation rate in conv4_x is
set to 2 and in conv5_x it is set to 4, so the entire network
has a downsample rate of 8. For our network, the conv
layer behind conv5_x is replaced by the dense convolution
unit. In our settings, the convolution layers in DCU use no
batch normalization. During training and testing, the batch
normalization layers in ResNet use the saved parameter, and
the learning rate is zero. To fit the size of the output map,
groundtruth maps are downsampled by 8 before being fed
into the loss layer. In the inference stage, output maps are
upsampled by 8 using bilinear interpolation. The loss layer
uses softmax function and multinomial logistic loss function
(see (2)) to compute the loss as well as pixel-wise gradients
for back propagation and is applied after the classification
layer.

B. RESULTS ON PASCAL VOC 2012
PASCAL VOC 2012 [48] is a widely used semantic seg-
mentation dataset. Following common practice [10], [11],
extra annotations provided by [50] are included in training.
Finally, we have 13,487 well annotated images, of which
10,582 images are used for training, 1,449 for validation and
1,456 for testing.

The PASCAL VOC2012 dataset has 20 object classes
and one background class. In addition, the dataset contains
another annotation which means that area is difficult to seg-
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ment, usually the object boundaries. Currently such areas are
ignored in training and testing.
Training Protocol: When training the dense prediction

networks, we randomly mirror and crop the training images
for data augmentation. The crop size is set to 321 × 321.
As suggested in [10], [11], the ‘‘poly’’ learning rate policy
is adopted, the power is set to 0.9, base learning rate is set
to 0.00025, momentum and weight decay are set to 0.9 and
0.0005, respectively. Our implementation is based on the
Caffe [51] platform with modification from [10]. The batch
size is set to 30. The baseline model has huge memory
consumption, so a large batch size can be achieved by set-
ting the batch size to 3 and iter_size to 10 in Caffe when
training on a single GPU. The training runs for 30K iterations
on the augmented PASCAL VOC2012 training dataset. The
new added layers are randomly initialized using the ‘‘msra’’
manner [52].

1) ABLATION STUDY ON NETWORK ARCHITECTURE
First, we would like to report more details about the results
presented in our conference paper and give some discussions.

There is an important factor in the baseline model that
affects the accuracy significantly, i.e., the dilation rate r
in the classification layer. Although the stacked layers in
ResNet 101 bring large enough receptive fields for PASCAL
VOC2012 images, a large dilation rate is still necessary in the
classification layer. Similar observations can also be found
in [10]. This phenomenon is partly explained in [53], i.e., the
effective receptive field is not as large as expected. Therefore,
we train several baseline models with different r following
the protocol introduced above. When r = 1, the mean IoU is
69.2% on the validation set; as r becomes larger, the mean
IoU improves. We finally choose r = 12 as the refer-
ence model, which achieves 70.1% mIoU. In the following
experiments, we keep the receptive field of the classification
layer unchanged to eliminate the effects brought by different
receptive fields.

a: RESULTS OF DIFFERENT WEIGHT MAP STRATEGIES
In the baseline model, classification is completed by a stan-
dard 2D convolution layer with kernel size of k = 3 and
dilation rate of r = 12. Our network replaces the standard
convolution layer with the dense convolution unit with the
same hyper parameters. To investigate which strategy best
combines the middle activations, three methods are tried for
generating the weight map G̃:

• M1: All activations (both the positions and channels) in
the output map share the same weights, which means
only 9 weights are needed. In this case, the weights are
not generated by previous layers and therefore are not
involved in further back propagation. The gradients are
computed using a formula similar to (12) and sum up the
overall output activations. Finally the network achieves
70.5% mIoU on the validation set.

• M2: Different activations within the same groups are
given different weights; thus, weight maps are estab-
lished. Different output channels share the weight maps.
Under this setting, 9 weight maps are produced and
expected to encode semantics in different positions. The
corresponding mIoU increases to 71.4%.

• M3: Based on previous setting, weight maps are
no longer shared across output channels. Com-
pared to M2, less than 0.05% mIoU improvement is
observed.

We finally choose the last method; in fact, the second is
just as good. In those experiments, the dilation rate of the
convolution layer that produces G and y is equal, denoted
as rG and ry. If rG is changed to 1, a 0.01% loss on mIoU
is observed. This indicates that a large receptive field is not
necessary when generating weight maps. Therefore, in the
following section, rG is always equal to ry for simplicity and
will not be mentioned anymore. The comparison of those
strategies is given in Table. 1.

TABLE 1. mIoU of different weight map strategies.

b: COMPARISON OF DIFFERENT METHODS
In the DCU, the parameter size increases rapidly with k .
Therefore, only one extra experiment regarding kernel size is
carried on with k is set to 5. Since the receptive field is vital
for final accuracy, the corresponding dilation rate is adjusted
to 6. In this way, the receptive field remains constant. The
class-wise IoU results of this setting together with previous
experiments are listed in Table. 2. For k = 5, the mIoU
achieves 71.7%. Under the same receptive field, a larger
kernel size could produce better segmentation results. For a
large kernel size, the kernel decomposition method proposed
in [53] can be adopted to balance accuracy and complexity.
The comparison with some other related methods are shown
in the top of Table. 3. Overall, the DCU has advantages over
its competitors which are still within the standard convolution
scheme.

To show the effect of dense convolution clearly and
avoid the influence of other factors, many common
accuracy-improving tricks are not used here, such as ran-
domly rescaling the training images, averaging the results
across serval input scales, pretraining the network on a
larger dataset then finetuning on the standard PASCAL
VOC2012 training set, using CRFs as postprocess and so on.
No batch normalization was adopted in the DCU for a fair
comparison with the baseline model.
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TABLE 2. Class-wise IoU of different settings.

FIGURE 4. Visual comparison of different methods. From left to right: Original Image, Ground Truth, Res101-Conv,
Res101-DCU, Res101-SPP-Conv, Res101-SPP-DCU. Conv denotes the standard convolution, DCU denotes the dense
convolution unit. Best viewed in color.

2) FURTHER EXPLORATION ON DCU
In the above experiments, the dense convolution unit is com-
pared with the baseline model and some related methods.
However, those networks do not have comparable param-
eters. This makes the results less convincing because it is
well known that for deep networks, improvements can be
achieved through stacking convolution or deconvolution lay-
ers. Meanwhile, the compatibility and generalization of the
DCU need to be tested since it is proposed as a substitution to
standard convolution. Based on such considerations, we add

the spatial pyramid pooling (SPP) module used in [11] to the
baseline model and apply the DCU after it. This section tries
to demonstrate that 1) the DCU exhibits superior performance
compared to straightforward stacking layers and 2) it can be
easily integrated into other frameworks and still be effective.

a: DETAILS ON NETWORK STRUCTURE
Note that in the original PSPNet [11], the classification is
accomplished by two standard convolution layers. The first
layer has 512 output channels with kernel size k = 3.
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FIGURE 5. Visual examples of our results on Cityscapes validation dataset. From left to right: Original Image, Ground Truth,
Res101-SPP-DCU. The model is trained on the training set. Best viewed in color.

TABLE 3. Mean IoU of different methods on PASCAL VOC2012 validation
set.

The second layer has 21 output channels with kernel size
k = 1. Such a setting gives us the chance to conduct con-
trolled experiments since they have comparable parameters
with the proposed network. For the DCU, the convolution
layers used to produce G and y have 378 channels in total,
and the remaining part has no trainable parameters. To keep
consistent with [11], one 1 × 1 convolution layer is placed
after the DCU, the crop size is reset to 473 and the size of the

output feature map is 60 × 60 after downsampling 8 times.
The spatial pyramid pooling module consists of four pooling
layers with kernel size and stride equaling 60, 30, 20, and
10. The output maps of the SPP are then concatenated with
its input. All the convolution layers after the SPP module
have a dilation rate of r = 1. In the experiments, layers
behind the SPP module are trained from scratch with ‘‘msra’’
random initialization [52], and the previous part is initialized
with pretrained weights in [11] because the model is slightly
different from the original Res101. Under such a setting, only
batch size 1 is available due to the limited physical memory
of the single GPU. The models are trained on 4 TITAN XP
GPUs. Limited by the number of GPUs, batch normalization
parameters are frozen for the baseline model and not included
in those newly added layers after the SPP.

b: CONSISTENT IMPROVEMENTS
The two networks are briefly denoted as Res101-SPP-Conv,
Res101-SPP-DCU and trained on augmented training set for
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TABLE 4. Comparison of parameter size, forward time and mIoU for
different methods.

30K iterations using the protocol described above. Similarly,
the previous baseline model with dilation r = 1 and its
counterpart dense convolution based network with kernel
size k = 3 and dilation r = 12 are called Res101-Conv,
Res101-DCU, correspondingly. The comparison of those four
methods is presented in Table. 4 in terms of the parameter
size(Res101 blocks not included), forward time of whole
network and mean IoU. The main conclusions are as follows:
1) Starting from the baseline model, replacing the single

convolution layer with the SPP module followed by two
convolution layers brings 2.2% improvement of mIoU.
The result is very close to that achieved by the DCU
with a large FOV (dilation rate). However, the DCU has
only half as many parameters, which demonstrates its
superior performance over the spatial pyramid pooling
module.

2) Applying the DCU upon the SPP increases the accu-
racy greatly, with a 4.9% mIoU improvement. This
is not surprising since dense convolution is designed
for enhancing connection and interaction between con-
texts. Thus, the DCU has the wind at its back when
equipped with a powerful context embedding module,
i.e., SPP.

3) In terms of dense prediction tasks, the DCU is more
suitable than standard convolution. It achieves much
higher accuracy even with fewer parameters.

4) The computation and depth brought by the DCU result
in approximately 14% extra running time based on
our un-optimized CPU-implementation. This is half
time of that required by the SPP. In fact, the DCU
does not contain many computations and can be opti-
mized with a matrix multiplication manner and per-
formed in the GPU, which will further reduce the time
requirement.

As for multiscale training and testing, the images are
resized using factors 0.5, 0.75, 1.25, 1.5, and 1.75. During
inference, the probability maps are averaged across different
scales. Flipped images are also included. Under this condi-
tion, the model achieves a 76.8% mIoU. Such improvement
remains consistent with other works. Unexpectedly, setting
the dilation rate of the DCU in Res101-SPP-DCU to r = 12
results in decreased accuracy. The result is listed in Table. 5.
The decline in mIoU suggests that the spatial pyramid pool-
ing module provides large enough receptive fields for fol-
lowing classification; thus, a large FoV in the DCU brings
limited global context which could not offset the loss in
details.

TABLE 5. Experimental results with MS_Mirror testing and larger dilation
rate.

TABLE 6. Experimental results on cityscapes test set. only fine data is
used during training. ‡ means that the model is trained on both the
training and validation set.

c: VISUAL COMPARISON
In Fig. 4, some visual segmentation results are presented
for the four methods. Based on the visualization, the dense
convolution unit produces much fewer discontinuities and
smoother boundaries in the segmentation map. In the stan-
dard convolution, it is inevitable for some positions to
encounter confusing contexts within their corresponding
receptive fields. Then noise will definitely appear, especially
in complicated scenes. However, such discontinuities can be
corrected through the overlapped predictions in the DCU,
because the right predictions can likely be found from their
neighbors.

C. RESULTS ON CITYSCAPES
We also conduct experiments on the Cityscapes [49] dataset
with the Res101-SPP-DCU model. Cityscapes is a street
scene dataset that contains 2975, 500, and 1525 finely anno-
tated images for training, validation and testing. All the
images are 2048×1024 px. We use the same settings as above
except that the training process takes 90K iterations on this
dataset. The main difference in the model structure is that the
DCU contains 504 channels (y andG in total), which achieves
similar parameters with its baseline counterpart.

The results on the Cityscapes test set are reported
in Table. 6 and Table. 7. Multiscale fusing and mirroring
are used for testing. Some visual examples of the Cityscapes
validation set are presented in Fig. 5. Due to the lack of the
batch normalization layer and auxiliary loss as well as the
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TABLE 7. Class-wise IoU on cityscapes test set. ‡ means that the model is trained on both the training and validation set.

small crop size (473× 473 here, and 713× 713 in [11]), our
baseline result is a slightly lower than the original PSPNet.
In fact, recent improvements on the Cityscapes dataset have
been slow. Most advances introduce heavy computations
and more parameters. However, our technique still obtains
benefits under similar parameters and is quite concise to
reproduce.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose the dense convolution unit (DCU)
for semantic segmentation. DCU produces multioutputs and
introduces spatial overlaps into current convolutions. To
obtain the final segmentation map, weight maps are adopted
to enable an effective combination of those overlapped acti-
vations with learnable parameters. Ablation studies on bench-
mark datasets demonstrate the effectiveness of the proposed
approach and its superior ability over standard convolution.
Overall, the dense convolution unit is a promising component
for semantic segmentation and can be widely adopted in
dense prediction networks.

In the future, we will explore more unified and elegant
strategies to enable the dense convolution throughout the
whole networks. This indicates the cascade of dense convo-
lution units and requires more effective structures for both
computations and combinations. Such specially designed
structures for semantic segmentation networks help to reduce
the heavy computations in state-of-the-art methods and are
essential for their implementations in practical applications.
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