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ABSTRACT The investigations show that the fractional calculus could be employed for complex biological
systems and capture intrinsic phenomena. At the same time, the research results also show that the neural
network has the characteristics of fractional calculus and its neuronal dynamics is complex. As a micro-
neural circuit placed in the spinal cord, the central pattern generator (CPG) is supposed to have the property
of fractional calculus. In order to study the application of the fractional order technique to the CPG,
the fractional order CPG model is established based on the Matsuoka model. The stable conditions are
given through mathematical analysis. In order to extract the relation between the motor cortex and the
fractional order CPG, the coupling model between the fractional order CPG and the neural mass model
(NMM) simulated the motor cortex is built. Moreover, the effects of coupling model parameters variations
on the CPG and the NMM are investigated. The main findings are: first, the CPG output obtained with
the fractional order is more accurate than the one obtained with the integral order. Increasing the fractional
order makes the CPG output more accurate. Second, the results show that the motor cortex has corresponding
modes with those of the CPG. And the NMM mode can switch in accordance with the change of fractional
order. Third, the simulations also show that a new stable state in motor cortex could be produced based on
the existing modes with the introduction of the fractional order CPG model. It can provide a helpful method
to understand the working principles of the motor cortex.

INDEX TERMS Central pattern generator, neural mass model, fractional calculus, motor cortex, limit cycle.

I. INTRODUCTION
The CPG consists of micro-neural circuits placed in spinal
cord. It can generate rhythmic motor activity without
descending and sensory inputs [1]–[3]. Previous works show
that the CPG is found in vertebrates and invertebrates and its
function is mainly for the motion of animals, such as walking
and swimming [1], [2]. According to the working mechanism
of the CPG, many mathematical CPG models are estab-
lished and used in the locomotion control, such as Matsuoka
model [4], [5], Wilson-Cowan neural model [6], Hopf oscil-
lator [7] and Rayleigh oscillator [8]. In these CPG models,
the state equations are usually integral order. There is no
mathematical model with fractional calculus.

The fractional calculus extends ordinary differentiation
and integration to their corresponding operations with arbi-
trary orders. The fractional calculus extend the concepts
of differentiability and incorporate non-local and system
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memory effects through fractional order space and time
derivatives. These characteristics allow researchers to model
complex system using multiple time and space scales with-
out dividing the problem into many smaller compartments.
The extension of linear system model to fractional order
model requires a new mathematical tool with which there are
substantial issues associated with identifying the appropriate
initial conditions and in selecting the proper definition of
fractional integration for a given problem [9], [10]. Recently,
many researchers have investigated the fractional calculus
in different areas of physics and engineering [10]–[12].
Moaddy et al. [11] derived the fractional order cable model
of the neuron system. Weinberg [12] employed a fractional
order Hodgkin-Huxley neural model to describe the spiking
features of the neuronal membrane patch, nerve axon, and the
neural network. These investigations [10]–[13] show that the
neural network has the character of fractional calculus and
its neuronal dynamics is complex. The research results also
show that the CPG is composed of different interneurons in
which the typical ones are Shox2 [14] and Hb9 [15]. As a
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neural network, the CPG should have the property of frac-
tional calculus. At the same time, the classical integral order
CPG models [4]–[8] generate only smooth and fixed sig-
nal shapes. The features of the integral order CPG cannot
explain the biological data [15]–[17] which have rich shapes
and complex dynamics. Therefore, the fractional order CPG
model is deserved to study. Since Matsuoka [4], [5] estab-
lished the CPG model, the Matsuoka CPG has been widely
applied to robot control [18], modeling [19] and made great
progress because the CPG has many outstanding proper-
ties [4], [5]. In the paper, the fractional order CPG model is
established based on the Matsuoka model [4], [5].

The locomotor network of non-mammalian vertebrates
has been investigated in detailed, such as lamprey and the
tadpoles [20], [21]. The investigations show that the motor
cortex is coupled with the CPG [3] and the researchers con-
firm that the locomotion control system includes the motor
cortex, CPG and the musculoskeletal system [3], [22]–[24].
However, the coupling relationship of the locomotor network
for mammalians including human is still an open problem.
Neural processes could generate the locomotor patterns. The
basic rhythms and patterns of motoneuron activation could be
controlled by the CPG during locomotion [24]. The sensory
feedback from the moving limb influences each generator.
The locomotor command regions are employed to activate
these generators [3]. Therefore, the relationship among them
should be investigated. The mathematical model and the
computer simulation are effective tools to investigate this
scientific problem. Murphy et al. [25] utilized a simplified
musculoskeletal network model to simulate the organization
of control modules in motor cortex. Kerkman et al. [26]
used network analysis to investigate the relationship between
anatomical and functional connectivity. The relation between
the neural network and the integer order CPG was studied in
the literature [19], [27], [28]. In this paper, the couplingmodel
between the fractional order CPG and themotor cortex is built
and the relationship is discussed.

The remainder of this paper is organized as follows.
Section II studies the fractional order CPG model and its sta-
bility conditions. An appropriate coupling relation between
the motor cortex and the fractional order CPG is also estab-
lished in Section II. The effect of parameters variations on
the motor cortex and the fractional order CPG is verified in
Section III. Section IV gives some concluding remarks and
future perspectives.

II. MODELS
A. THE FRACTIONAL ORDER CPG MODEL
The CPG model [4], [5], [19] is given by.

Tr
•
x
1
+x1 = −bx2 − wg(x3)+ c

Ta
•
x
2
+x2 = g(x1)

Tr
•
x
3
+x3 = −bx4 − wg(x1)+ c

Ta
•
x
4
+x4 = g(x3)

(1)

where g(•) is a piecewise linear function describing the
neurons threshold property. This function could be defined
as g(x) = max(0, x). x1 and x3 represent the membrane
potential. The adaptation and fatigue specification of the real
neurons are described with two variables x2 and x4. The
continuous adaptation of the tonic input during the stim-
ulation procedure is described with adaptation parameter
c. This adaptation during the stimulation process leads to
action potentials. The mutual strength and self-inhibition are
denoted by w and b, respectively. The time constants of x1, x3
and x2, x4 (that shows their reaction times) are denoted by Tr
and Ta, respectively.

In order to analysis the equilibrium and stability of the
model, the parameters Tr and Ta are set as 0.1 and 1, respec-
tively. c is 0. Based on the method proposed in [4], (1) is
linearized and the following simplified equation is obtained.

•
x
1
= 10(−x1 − bx2 − wx3)
•
x
2
= −x2 + x1
•
x
3
= 10(−x3 − bx4 − wx1)
•
x
4
= −x4 + x3

(2)

According to the proposed method in [29], the fractional
order differential equation of the CPG is obtained and shown
below. 

Dαx1 = 10(−x1 − bx2 − wx3)
Dαx2 = −x2 + x1
Dαx3 = 10(−x3 − bx4 − wx1)
Dαx4 = −x4 + x3

(3)

where α is the order of fractional derivative and 0 < α ≤ 1.
Then the equilibrium and stability of the fractional order

equation are investigated.
Let Dαxi(i = 1, ldots, 4) = 0, (3) is changed to

x1 + bx2 + wx3 = 0
x1 = x2
x3 + bx4 + wx1 = 0
x3 = x4

(4)

Therefore, the equilibrium is xi(i = 1, ldots, 4) = 0 if b+
w 6= −1 and b− w 6= −1.
Then, the Jacobian matrix of system (3) is obtained and

shown below.
−10 −10b −10w 0
1 −1 0 0
−10w 0 −10 −10b
0 0 1 −1

 (5)

The characteristic equation is

λ2 + (11+ 10w)λ+ 10(1+ b+ w) = 0 (6)

Or

λ2 + (11− 10w)λ+ 10(1+ b− w) = 0 (7)
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The eigenvalues of (6) are

λ1,2

=
−(11+ 10w)±

√
(11+ 10w)2 − 40(1+ b+ w)

2
(8)

Based on the stability theorem [30], the system is asymp-
totically stable when |arg(λ)| ≥ απ/2. Then I study the
stability conditions of system (3) when α is 1.

(1) According to (8), the eigenvalues are real if: (a) b ≤ 0.
(b) w ∈ (−∞,−0.9 − 0.2

√
10b] or w ∈ [−0.9 +

0.2
√
10b,+∞) if b > 0. For positive sign before radical and

w > −1 − b, |arg(λ)| = π that demonstrates the stability
of system (3) while for the negative sign and w > −1.1,
|arg(λ)| = π is obtained which confirms the stability of
system (3), too.

(2) if b > 0, (8) has complex roots for w ∈ (−0.9 −
0.2
√
10b,−0.9 + 0.2

√
10b). For positive sign before the

radical and w > −1.1, I have |arg(λ)| > π/2. This leads to
stability of system (3). For the negative sign case, it is obvious
that |arg(λ)| > π/2 which ensures the system stability.
The eigenvalues of (7) are

λ3,4

=
−(11− 10w)±

√
(11− 10w)2 − 40(1+ b− w)

2
(9)

(1) Equation (9) has real roots for (a) b ≤ 0. (b) (w ∈
(−∞, 0.9 − 0.2

√
10b] or w ∈ [0.9 + 0.2

√
10b,+∞)) and

b > 0. For positive sign before radical and w < 1 + b,
|arg(λ)| = π is obtained that confirms the stability of
system (3). Moreover, for the negative sign and w < 1.1,
|arg(λ)| = π which proves the system (3) stability.

(2) If b > 0, (9) has two complex roots for w ∈ (0.9 −
0.2
√
10b, 0.9 + 0.2

√
10b). Positive sign before radical and

w < 1.1 yield |arg(λ)| > π/2 that confirms the stability
of (3). Considering negative sign before radical gives
|arg(λ)| > π/2 or accordingly demonstrates the stability of
system (3).

Then the simulation of the fractional order CPG model is
studied. In the simulation, the fractional derivative definition
of Grunwald-Letnikov (G-L) [10] is employed to calculate
the output of the fractional order CPG model. The G-L defi-
nition of fractional derivative is shown below.

GLDαf (t) = lim
h→0

1
hα

(t−m)/h∑
i=0

(−1)i
(
α

i

)
f (t − ih) (10)

where (
α

i

)
=

0(α + 1)
0(i+ 1)0(α − i+ 1)

(11)

GLDα is the fractional differential operator based on
G-L definition. f (t) is an arbitrary differentiable function.
α is a non-integer number representing the fractional order.
[m, t] is the domain of f (t). 0 is the Gamma function.

FIGURE 1. Fractional derivatives of CPG output and the phase diagram
with order between 0.1 and 1. (a) Fractional derivatives of CPG output.
(b) Phase diagram.

Therefore, the fractional order CPG model is obtained and
shown below.

GLDαx1 = (−x1 − bx2 − wg(x3)+ c)/Tr
GLDαx2 = (−x2 + g(x1))/Ta
GLDαx3 = (−x3 − bx4 − wg(x1)+ c)/Tr
GLDαx4 = (−x4 + g(x3))/Ta

(12)

And the output of the model is GLDα(g(x1)−g(x2)). In fol-
lowing simulations, parameters Tr and Ta are set as 0.1 and
1, respectively. Parameters c, b and w are chosen as 1, 2.5 and
2.5, respectively. The order α is selected from range [0.1, 1]
(with step 0.1). The fractional derivatives of CPG output and
the phase diagram are shown in Figure 1.

In order to investigate the difference between the integral
order CPG model and the fractional order one, the CPG
output and phase diagram base on typical Matsuoka model
are obtained. And their differences are shown in Figure 2.

Figures 2(a)-(b) are the CPG output and phase dia-
gram based on the typical Matsuoka model, respectively.
Figures 2(c)-(d), Figures 2(e)-(f) and Figures 2(g)-(h) are the
characteristics of the fractional order model whose orders
are 0.2, 0.5 and 1, respectively. Although the morphology of
output and phase diagramwith the integer order and fractional
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FIGURE 2. Difference between the typical Matsuoka CPG model and the fractional order CPG model. (a) CPG output based on typical Matsuoka model.
(b) Phase diagram based on typical Matsuoka model. (c) CPG output with order 0.2. (d) Phase diagram with order 0.2. (e) CPG output with order 0.5.
(f) Phase diagram with order 0.5. (g) CPG output with order 1. (h) Phase diagram with order 1.

order CPG model are similar, the CPG output obtained with
the fractional order is more accurate than the one obtained
with the integral order and it is more suitable for limn the

biological information. Increasing the fractional order makes
the CPG output more accurate. This shows the abundant
dynamic characteristics of the fractional order system.
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The following second-order differential equation could be
employed to describe the neuron populations in the Jansen’s
model [32].

••
y (t) = Aadx(t)− 2ad

•
y(t)− a2dy(t) (13)

In the above equation, the maximum value of the postsy-
naptic potentials is denoted by A while the overall delays due
to the synaptic transmission is represented with ad .
By change of variables, (13) could be rewritten as{•

y(t) = z(t)
•
z(t) = Aadx(t)− 2ad z(t)− a2dy(t)

(14)

If the fractional order CPG output is considered as the input
of relation (14), a time delay fractional order CPGmodel with
the following state space equations is obtained.

GLDαx1 = (−x1 − bx2 − wg(x3)+ c)/Tr
GLDαx2 = (−x2 + g(x1))/Ta
GLDαx3 = (−x3 − bx4 − wg(x1)+ c)/Tr
GLDαx4 = (−x4 + g(x3))/Ta
•
x
5
= x6
•
x
6
= AadGLDα(g(x1)− g(x2))− 2adx6 − a2dx5

(15)

where x5 and x6 correspond to y and z in (14), respectively.

B. MODEL BETWEEN FRACTIONAL ORDER CPG AND
MOTOR CORTEX
Based on research results [3], the motor cortex should be cou-
pled with the CPG. Based on previous studies [19], the neural
population [32]–[34] is chosen to simulate the motor cortex
which has a repetitive columnar structure. The NMM mod-
els as a population of pyramidal cells and it is very effi-
cient for determining the steady-state behavior of neuronal
systems [19], [32]. Because the principle of the NMM is
close to the motor cortex structure, the NMM is selected as
the motor cortex in following simulations. Now, the model
reflecting the coupling between the fractional order CPG and
the motor cortex is derived, as shown in Figure 3.

The NMM model and the fractional order CPG are shown
in the right and the left side of Figure 3, respectively. In the
NMM, a single neural population is modeled by a population
of the pyramidal cells receiving inhibitory and excitatory
feedback from local neurons and excitatory input from far
and near cortex areas with the connectivity constants C1, C2,
C3 and C4. The average pulse density p represents the excita-
tory input [31]. Considering the time delay, an appropriate
function hd (t) is employed to transform the output of the
fractional order CPG to an average postsynaptic membrane
potential. Consider that the obtained signal is multiplied
by a constant m. Now, the resultant potential is applied to
the NMM. Then, an appropriate feedback function hd (t) and
the gain m are employed to transfer the NMM output to the
fractional order CPG block.

FIGURE 3. Model between motor cortex and fractional order CPG.

FIGURE 4. Equilibrium points of NMM. (a) The first mode of NMM.
(b) The second and the third modes of NMM.

In Figure 3, the impulse response function of time delay
hd (t) [19], [31] is given by.

hd (t) =

{
Aad te−ad t (t ≥ 0)
0(t < 0)

(16)

where A and ad have the same meaning of ones in (13). If the
input is x(t), then the output is y(t) = hd ∗ x(t).
The state space equations of the overall model could be

obtained by combining the state space equations of the frac-
tional order CPG and NMM. Relation (17) gives the obtained
equations. Consider that the output of NMM (x2 − x3) is
connected to the input of the fractional order CPG while
the CPG output (g(x7) − g(x8)) is transferred through a
time delay to the NMM input. By dividing the time delay
of the excitatory impulse response obtained from the local
neurons to k , the parameter ad = a/k is obtained which
is given in (16). These parameters are adjusted [32] for
simulation of the relationship between the prefrontal and
occipital visual cortex. A constant parameter m is employed
for attenuating the one area output before transferring it to
the other one through a feedback. These two parameters are
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considered as 1.

•
x
1
= x4
•
x
2
= x5
•
x
3
= x6
•
x
4
= AaSigm(x2 − x3)− 2ax4 − a2x1
•
x
5
= AaC2Sigm(C1x1)− 2ax5 − a2x2 + Aa(p+ mx12)
•
x
6
= BdC4Sigm(C3x1)− 2dx6 − d2x3

GLDαx7 = (−x7 − bx9 − wg(x8)+ c+ mx11)/Tr
GLDαx8 = (−x8 − bx10 − wg(x7)+ c+ mx11)/Tr
GLDαx9 = (−x9 − g(x7))/Ta
GLDαx10 = (−x10 + g(x8))/Ta
•
x
11
= x13
•
x
12
= x14
•
x
13
= AadSigm(x2 − x3)− 2adx13 − a2dx11
•
x
14
= AadGLDα[g(x7)− g(x8)]− 2adx14 − a2dx12

(17)

In (17), the maximum rate of firing for the neural pop-
ulation is denoted by Sigm(v) = 2e0/(1 + er(v0−v)).
e0 determines the maximum firing rate of the neural popula-
tion. The required postsynaptic potential to reach 50% firing
rate and the sigmoidal transformation steepness are denoted
by v0 and r , respectively [32]. The corresponding outputs
of three postsynaptic potential blocks are indicated by x1,
x2, and x3, respectively. The maximum amplitude of the
excitatory and inhibitory postsynaptic potentials are denoted
by A and B, respectively. The reciprocal summation of the
time constants of the passive membrane and other spatially
distributed delays in the dendritic network gives a and d .
The outputs of the NMM and the time delay fractional order
CPG are indicated with x11 and x12, respectively.

III. RESULTS
In this section, the connection between the NMM and the
fractional order CPG is discussed from two perspectives.
At first, the effects of changing parameters p and m on the
NMM and the fractional order CPG are investigated. Then,
the effects of changing parameters b, c, w and the fractional
order on the output of these models are studied.

A. EFFECTS OF PARAMETERS P AND M ON THE
FRACTIONAL ORDER CPG AND NMM
The default values for the parameters are considered as A =
3.25mV , a = 100s−1, B = 22mV , d = 50s−1, r =
0.56mV , e0 = 2.5s−1, v0 = 6mV , C1 = 1.25C2 =

4C3 = 4C4 = C = 135 [19], [31], [32]. Changing param-
eter p leads to different equilibrium points which are shown
in Figure 4.

The first mode of the NMM or its equilibrium point is
indicated with the red star in Figure 4(a) while its second

FIGURE 5. State trajectories of the models. (a) p = 10. (b) p = 113.
(c) p = 139. (d) p = 361.

mode or the spike-like epileptic activity is indicated with
a red cycle in Figure 4(b). The third mode or the alpha-
like activity is described with the blue cycle in Figure 4(b).
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FIGURE 6. State trajectories of the models with p = 62. (a) m = 5.
(b) m = 12. (c) m = 31.

The remaining parameters are considered as Tr = 0.1,
Ta = 1, b = 1.6, c = 10, w = 1.1, m = 1 and k = 3
[5], [19] and the order of the fractional order CPG is 0.5.

The NMM modes could vary in accordance with varia-
tions of the parameter p [31]. Figure 5 shows how the state

FIGURE 7. State trajectories of the models with p = 127. (a) m = 1.
(b) m = 17.

trajectories of the NMM and the fractional order CPG are
varied with changing the parameter p.
If p ∈ [0, 61], the first mode of the NMM could be

observed. As could be seen in Figure 5(a), if p = 10,
periodic oscillations are observed in the fractional order
CPG output or equivalently a limit cycle is generated in its
state trajectory. Considering p = 113 leads to switch from
the first mode to the second one (Figure 5(b)). Figure 5(c)
shows that further increasing of p (e.g., p = 139) causes
to switch from the second mode to the third one. Accord-
ing to Figure 5(d), if p exceeds 161, the second and third
modes are merged to the third one. Therefore, parameter p
has the same function which leads to the switch of the
NMM states.

Now, let to verify the impact of parameter m on state
trajectories of the fractional order CPG and the NMM. Firstly,
the first mode is discussed. Parameter p is considered as 62.
If m = 5, only the first mode is observed in the NMM and
an oscillatory output is obtained for the fractional order CPG
(Figure 6(a)). If m exceeds 10, the second mode is generated.
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FIGURE 8. State trajectories of the models with p = 175. (a) m = 3. (b)
m = 26.

The state trajectories obtained for m = 12 confirms this
fact (Figure 6(b)). Further increasing of parameter m leads
to the merging of the second and the third modes (Figure 6(c)
for m = 31).

Now, let to discuss about the second case for p = 127.
For m = 1, the second mode is appeared in the NMM.
This produces a limit cycle in state trajectories of the frac-
tional order CPG (Figure 7(a)). Both the second and the
third modes could be appeared by increasing parameter m.
When m = 17, the second and the third modes merge
together (Figure 7(b)).

Now, consider p = 175 for the third case. For m = 3,
both the second and third modes are appeared in the NMM
while the significant mode is the third one. This generates
a limit cycle that could be seen in the state trajectory of the
fractional order CPG (Figure 8(a)). As parameterm increases,
the second and the third modes merge. For example, see the
results obtained for m = 26 in Figure 8(b).
In the three cases mentioned above, the CPG mode is the

limit cycle and the NMM starts with its first corresponding

FIGURE 9. State trajectories of the models with the parameter b and
p = 127. (a) b = 0. (b) b = 0.7.

mode. By increasing parameter m, the second and the third
modes will be appeared independently. When parameter m is
larger than a threshold value, the second and the third modes
merge together. During this procedure, the NMM is stable
while a limit cycle could be seen in the state trajectory of
the CPG. Therefore, changing parameter m while maintain-
ing p unchanged leads to conversion of the NMM and the
fractional order CPG states.

B. EFFECTS OF PARAMETERS B, C, W AND THE
FRACTIONAL ORDER ON NMM AND THE
FRACTIONAL ORDER CPG
To investigate how the NMM and the CPG are affected by
parameters b, c, w and the fractional order, p is chosen as 127
that is compatible with the secondmode of the NMM.At first,
if b is equal to zero, the output of the fractional order CPG
tends to zero, and the second mode of NMM can be observed
(Figure 9(a)). As could be seen from Figure 9(b), increasing
parameter b to 0.7 leads to the limit cycle phenomenon in the
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FIGURE 10. State trajectories of the models with the parameter w and
p = 127. (a) w = 0.2. (b) w = 1.5.

state trajectory of the CPG. If b exceeds 21, the state trajectory
of the CPG tends to the zero plane.

Now, let to verify the effect of changing parameter w. For
w = 0.2, the second mode of the NMM is generated and
the output of the fractional order CPG converges to zero
(Figure 10(a)). Figure 10(b) demonstrates that the limit cycle
phenomenon occurs in the state trajectory of the fractional
order CPG when parameter w is increased to 1.5. Select-
ing values for w more than 2.7, tends the fractional order
CPG output to zero.

In the following, the effect of parameter c is studied.
If c = 0.2, the NMM falls in its second mode and the output
of the fractional order CPG tends to zero (Figure 11(a)).
As could be seen from Figure 11(b), the limit cycle is
inevitable in the state trajectory of the fractional order CPG
when c is increased to 0.7.

The effect of the fractional order on the state trajectories
is verified as follows. For α = 0.1, the second mode of
the NMM is appeared and a limit cycle in the state trajec-
tory combined with an oscillatory output could be obtained
(Figure 12(a)). Figure 12(b) shows that closing the fractional

FIGURE 11. State trajectories of the models with the parameter c and
p = 127. (a) c = 0.2. (b) c = 0.7.

order to 1 (α = 0.7) leads to considerable variations in the
state trajectory of the NMM and the fractional order CPG,
and the second mode begins to switch to next state. When
α = 1, the coexistence of the second and third modes in the
NMM is occurred while the dominant mode is the third one,
as shown in Figure 12(c).

The above studies demonstrates that the NMM output and
the state trajectories of the fractional order CPG change in
accordance with changes in parameters b, c, w and α. Param-
eter b reflects the self-inhibition strength of the CPG model.
As parameter b increases, the state trajectory of the CPGgrad-
ually closes to the limit cycle. When b is increased, the state
trajectory of the fractional order CPG tends to the zero plane
owing to the strong inhibitory effect. The inhibition strength
among CPGs could be represented with parameter w. If this
parameter is selected from an appropriate range, the CPG out-
put becomes oscillatory and the NMM system becomes sta-
ble. The excitatory tonic input is depicted in parameter c. The
CPG output amplitude depends on this parameter. As param-
eter c increases, the state trajectory of the CPG gradually
switches to the limit cycle. Based on above results, the frac-
tional order of the CPG model leads to switching of the
NMM modes.
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FIGURE 12. State trajectories of the models with the parameter α and
p = 127. (a) α = 0.1. (b) α = 0.7.(c) α = 1.

IV. CONCLUSION
Comparing with previous studies [19], [27], [28], the pro-
posed model combining the fractional order CPG and the
NMM has considerable dynamic characteristics that could
help the researchers to derive the relation between the
motor cortex and the locomotion. The dynamic properties
of this model show that the NMM and the fractional order
CPG states could be formed by adjusting its parameters.
This means that the locomotor patterns could be controlled
via the motor cortex by appropriate adjustment of these
variables. Stable locomotion patterns could be formed by
interaction between the motor cortex, body segments, and

the environment. Different CPG state responses could be
obtained by choosing different values for these parameters.
Choosing specific values for these parameters leads to the
limit cycle in the state trajectory of the fractional order CPG
model and stable states for the NMM model.

Unlike the integer order coupling model [19], some new
phenomena could be obtained by the fractional order one.
First of all, the third mode of the NMM does not exist
independently due to the input of the fractional order CPG.
Two different outputs are observed. The common property of
the two outputs is the coexistence of the second mode and the
third mode. The differences are their output patterns in which
one is independent and the other is mergence. The second
is the effects on the NMM when the parameters b , c and w
of the fractional order CPG model are varied. In the integral
order model [19], the modes of NMM could switch when the
parameters of CPG are altered. However, the modes of NMM
cannot change and only the output alters in the fractional
order model. The third is the effects on the NMM mode
when the fractional order is varied. With the increase of the
fractional order, the NMMmode changes from the first mode,
the second mode, the coexistence of the second and the third
modes and the converge state. Therefore, the fractional order
has the same function on the NMM as the parameter p in
NMM. With the introduction of the fractional order model,
a stable state emerges and can be used to explain the emer-
gence of the new motor mode based on the existing modes.
Therefore, the simulation results not only confirm the corre-
sponding relation between the motor cortex and the CPG, but
also provide an innovative method which is the introduction
of the fractional calculus to produce the new locomotion state.

In order to apply the coupling model to robot control, it is
a worthy field in which the researchers realize the nonlinear
networks and their working mechanism. Researchers [35]
have attempted to apply the field programmable gate array
(FPGA) to biology and neuroscience. The investigations
show that FPGA is more effective than software in neural
network. At the same time, the researchers also develop the
silicon chip to describe the biological CPG [36]. Therefore, it
is deserved to further study how to design a chip which shows
the structure of the neural network and the CPG.
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