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ABSTRACT A quantum procedure for testing the commutativity of a finite dimensional algebra is intro-
duced. This algorithm, based on Grover’s quantum search, is shown to provide a quadratic speed-up (when
the number of queries to the algebra multiplication constants is considered) over any classical algorithm
(both deterministic and randomized) with equal success rate and shown to be optimal among the class of
probabilistic quantum query algorithms. This algorithm can also be readily adapted to test commutativity
and hermiticity of square matrices, again with quadratic speed-up. The results of the experiments carried out
on a quantum computer simulator and on one of IBM’s 5-qubit quantum computers are presented.

INDEX TERMS Deterministic algorithms, randomized algorithms, quantum algorithms, commutativity,
finite dimensional algebras.

I. INTRODUCTION
Quantum computation has been considered a promising tech-
nology since its introduction in the works of Feynman,
Manin, Benioff and others [3], [10], [11], [27]. The theoret-
ical potential of quantum computers to outperform classical
computers has driven many researchers to introduce specific
algorithms for this computational paradigm. Among the dif-
ferent ‘‘animals’’ in the quantum algorithm zoo [19], two
‘‘species’’ have received special attention from the scientific
community because of their cryptographic consequences:
Grover [14] and Shor [38] algorithms. Apart from them, not
many classes of quantum algorithms have been discovered.
In 2003, Shor pointed out that ‘‘all the quantum algorithms
known to offer substantial speed-up over classical algorithms
for the same problems fall into one of three classes’’ [39].
In the same paper, he tries to give explanations for this fact,
and encourages some lines of research that might lead to the
discovery of more quantum algorithms. In the last 15 years
the situation has remained more or less the same, so some
authors advocate now for widening the scope of problems in
which the known quantum algorithms can be applied:

‘‘As well as the development of new quantum algo-
rithms, an important direction for future research
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seems to be the application of known quantum
algorithms (and algorithmic primitives) to new
problem areas. This is likely to require significant
input from, and communication with, practitioners
in other fields.’’ [29]

In the meantime the actual technology has had a slow
development. As of December of 2018 a handful of quan-
tum computers with a small amount of qubits are available,
notably those made publicly accessible on the cloud through
IBM’s Quantum Experience [16], and promises of computers
with some dozens of qubits have been announced. This has
spurred research on both the theoretical and the practical
possibilities of quantum computing [13], [23], [28], [35].

In this context, we introduce our quantum algorithm for
testing the commutativity of a finite dimensional algebra.
It is based on Grover’s algorithm (a method that has been
successfully applied, for instance, in [4]) and it is intended
to address the ‘‘application of known quantum algorithms to
new problem areas’’. The problem of determining whether
a given algebraic structure (algebra, ring, group,...) is com-
mutative or not is traditional, and it has been theoretically
studied in several contexts (e.g., in [18], [25], [32]). From
an effective point of view, it has been specially considered
in the case of groups, where algorithms (not only random-
ized classical but also quantum) are known [26], [31]. In the
case of finite dimensional algebras, the need of an effective
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procedure for testing commutativity is natural in the context
of the computational study of finite semifields that we have
carried out in recent years [6], [7], [33], [34]. In particular,
our studies on four dimensional division rings over the finite
field with seven elements required a processing of hundred
of thousands of algebras in more than a million hours of
computer time. Each one of those has O(78) isotopes (for a
definition of isotopic algebras, see Section II below), being
the commutativity of one of them equivalent to the existence
of a symplectic semifield plane of order 74 [20], leading to
the interest of our algorithm.

The structure of the paper is as follows. In Section II
we collect basic notions on finite dimensional algebras.
Section III is devoted to classical algorithms (both deter-
ministic and randomized) testing whether a finite dimen-
sional algebra is commutative or not. In Section IV the main
algorithm is presented together with its computational anal-
ysis. Section V is devoted to numerical simulations and to
experiments carried out on one of IBM’s 5-qubit quantum
computers. Finally, in Section VI we draw some conclusions
and present ideas for further research.

II. PRELIMINARIES
Let K be a field (it can be infinite such as the real or com-
plex number fields, or finite, i.e., a Galois field Fq [24]).
A K−algebra A is a K−vector space equipped with a bilinear
product · [22]. It is called commutative (resp. associative) if
the multiplication satisfies the commutativity (resp. associa-
tivity) property:

a · b = b · a (resp. (a · b) · c = a · (b · c))

for all a, b, c ∈ A. It is unital if the product has an iden-
tity element. Besides, it is known as division algebra if any
nonzero element has left and right multiplicative inverses.
AK−algebra is called finite-dimensional in case the underly-
ing K−vector space is finite dimensional. Particular cases of
K−algebras include matrix rings over the field K , Lie and
Jordan algebras (i.e., K−algebras satisfying Lie or Jordan
axioms [37]) or finite semifields (i.e., Fq−finite dimensional
division algebras [33]).

Given two elements a, b ∈ A, we define the commutator
[a, b] = ab − ba. It can be straightforwardly checked that
the sets C(a) = {b ∈ A | [a, b] = 0} and C(A) = {a ∈
A | [a, b] = 0 ∀b ∈ A} = {a ∈ A | C(a) = A} are K−vector
subspaces of A. Also, it is clear that A is commutative if and
only if C(A) = A.
If A is a n−dimensional K−algebra (n ∈ N), and

B = {x1, . . . , xn} is a K−basis of a A (i.e., A = K <

{x1, . . . , xn} >), then there exists a unique set of constants
{Mijk}

n
i,j,k=1 ⊆ K such that

xi · xj =
n∑

k=1

Mijkxk ∀i, j ∈ {1, . . . , n}

This set of multiplication constants is also known as cubi-
cal array, 3-cube or multiplication table corresponding to A

with respect to the basis B, and it completely determines the
product in A. Notice that, for all i = 1, . . . , n, the coordinate
matrix of the K−linear map Lxi : A → A given by Lxi (a) =
xi · a is (Mijk )nk,j=1. Remark also that A is a commutative
algebra if and only if [xi, xj] = 0, for all i, j = 1, . . . , n,
i.e., if and only if Mijk = Mjik , for all 1 ≤ i, j, k ≤ n.

As mentioned in the introduction, our motivation for the
study of the commutativity of finite-dimensional algebras
comes from its importance in the classification of semifields
(which are a particular case of algebras), where many tests
of commutativity must be performed. For this reason, in this
paper we focus on finding a speed-up for the decision prob-
lem ‘‘Given a finite dimensional K−algebra A, is A commu-
tative?’’ by using quantum computing.

III. CLASSICAL ALGORITHMS FOR TESTING THE
COMMUTATIVITY OF A FINITE DIMENSIONAL ALGEBRA
To the best of our knowledge, the problem of determining
with a classical algorithm whether a given K−algebra is
commutative or not has not been explicitly studied in the
literature. However, in this section we collect classical (ran-
domized or not) algorithms for that problem and we study
the number of queries needed in the general case. We will
consider a finite dimensional K−algebra A with basis B =
{x1, . . . , xn}. In this setting, it seems natural to consider as
input data the multiplication constants of A with respect to B.
They consist on n3 elements in the fieldK . Access to the input
data will be query modeled, i.e., we will assume there is an
oracle providing the multiplication constants of the algebra,
on demand. Namely, any access to one of these multiplication
constants will be counted as one query. Any other operation
involved in the algorithms is considered query free.

A first attempt to determine the commutativity of A is
to translate, into the language of algebras, the probabilistic
algorithm for testing group commutativity presented in [31].
It is therefore based on a direct computation of commutators
of A.

Algorithm 1 Computation of Commutators of Random Ele-
ments of A
Fix t ∈ N
For i from 1 to t do:
Pick uniformly (and independently) elements a, b ∈ A
Compute the commutator [a, b]
If [a, b] 6= 0, return NO

Return YES

Proposition 1: Algorithm 1 requires O(tn3) queries.
On output NO it provides an accurate answer, while on output
YES the error probability is bounded.

Proof: The algorithm performs, at most, 2t multipli-
cations in A, hence the number of algebra queries (observe
that each product requires access to n3 multiplication
constants).

Let C be a proper m−dimensional K−vector subspace of
A. If a is picked uniformly on A, then P(a 6∈ C) = 1 if K is
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infinite, where as P(a 6∈ C) = 1 − P(a ∈ C) = 1 − qm

qn =

qn−m−1
qn−m , whenK = Fq is finite. For the algorithm to produce a

wrong answer, it is necessary that A is not commutative while
all the picked random pairs (a, b) ∈ A2 commute. When A is
not commutative, C(A) is a proper K−vector subspace of A
of dimension at most n−2 (this is because dimK C(A) = n−1
allows us to write any element in the algebra as c+λd , where
c ∈ C(A), λ ∈ K and d 6∈ C(A) is a prefixed element, so that
[c + λd, c′ + λ′d] = [c, c′ + λ′d] + [λd, c′] + λλ′[d, d] =
0, i.e., A is commutative, a contradiction). Moreover, if a 6∈
C(A), then C(a) is also a proper K−vector subspace of A. So,
the probability that a random pair does not commute is

P([a, b] 6= 0) = P(a 6∈ C(A) ∧ b 6∈ C(a))

= P(a 6∈ C(A)) · P(b 6∈ C(a) / a 6∈ C(A))

≥

(
q2 − 1
q2

)
·

(
q− 1
q

)
(1)

if K = Fq is finite, and equal to 1, when K is infinite
(incidentally, observe that this probability agrees with the
limit of previous bound when taking q to infinity). In both
cases it is a constant probability independent of n.
The main inconvenient to this approach is the amount of

queries required, as it is in the order of the number of queries
for the straightforward algorithm consisting in checking pairs
of corresponding multiplication constants. Namely,

Algorithm 2 Exhaustive Multiplication Constant Testing
For k from 1 to n do:
For i from 1 to n do:

For j from i+ 1 to n do:
If Mijk 6= Mjik , return NO

Return YES

Proposition 2: Algorithm 2 always gives the right answer
requiring O(n3) queries.

Proof: The number of queries is n ·n · n−12 ·2 = n3−n2,
which is exactly the number of constants Mijk with i 6= j.

A compromise between both approaches is the randomiza-
tion of Algorithm 2 using the ideas of Algorithm 1.

Algorithm 3 Randomized Multiplication Constant Testing
Fix t ∈ N
For i from 1 to t do:
Pick uniformly (and independently) integers i, k ∈
{1, . . . , n}
Pick uniformly an integer j ∈ {1, . . . , n} \ {i}
If Mijk 6= Mjik , return NO

Return YES

Proposition 3: Algorithm 3 requires O(t) queries. On out-
put NO it provides an accurate answer, while on output YES

the error probability is at most
(
n3−n2−2
n3−n2

)t
.

Proof: The algorithm requires, at most, 2t multiplication
constant queries. On the other hand, for a noncommutative

finite dimensional K−algebra A there must exist i, k ∈
{1, . . . , n}, j ∈ {i + 1, . . . , n} such that Mijk 6= Mjik . There-
fore, the probability of wrongly declaring A as commutative

is at most
(

n3−n2
2 −1
n3−n2

2

)t
.

Remark 1: The error probability of Algorithm 3 depends
of the dimension of the algebra, and approaches 1 as we make
n bigger. This marks a difference with the bounded error
probability of Algorithm 1. The price to pay, of course, is the
number of oracle queries required for the execution of this
algorithm.

The main drawback of this approach is that the error prob-
ability can not be improved in general. This is due to the
fact that one different pair of corresponding multiplication
constants suffices for the algebra to be noncommutative. This
fact yields the following result.
Proposition 4: If f (n) is a function such that

limn→∞
f (n)
n3
= 0 and M is an algorithm for the problem of

testing commutativity of finite-dimensional K−algebras with
the three following properties

1) For algebras of dimension n, M uses at most f (n)
queries to the multiplication constants

2) There exists a ≥ 0 such that for any commutative
K−algebra A it holds Pr(YES|A) ≥ a

3) There exists b ≥ 0 such that for any non-commutative
K−algebra A it holds Pr(NO|A) ≥ b

then a+ b ≤ 1.
Proof: This kind of result could be proved by means

of Yao’s minimax principle [40] (cf., for instance, [15] page
60 for the classical case related to Grover’s search algorithm),
but here we will opt for a more direct, constructive approach.

We fix a dimension n and define Aijk to be the K−algebra
whose multiplication constants verifyMijk = 1 andMstu = 0
whenever (i, j, k) 6= (s, t, u). Consider the set An = {Aijk :
i 6= j}. Notice that every A ∈ An is non-commutative and
it has exactly two constants such that Mijk 6= Mjik . We are
going to estimate Pr(YES|A ∈ An), that is, the probability
that the algorithm says that A is commutative when we take
A from An.
For that, we first estimate the probability that, given that the

algorithm examines only the positions contained in a certain
setP of triples and thatA is taken fromAn, the unique position
(i, j, k) on whichMijk 6= 0 for A is not contained in P. If |P| =
p, this happens with probability at least

n3 − n2 − p
n3 − n2

≥
n3 − n2 − f (n)

n3 − n2
=: h(n)

because the constantMijk = 1 can be any of the triples (i, j, k)
with i 6= j, which are n3 − n2, and the ‘‘favorable’’ cases are
those in which the position is not in P, so we need to exclude
the p positions queried by the algorithm. Notice that h(n)
tends to 1 when n tends to infinity since limn→∞

f (n)
n3
= 0.

Also, the lower bound holds for any P but is independent of P,
so

Pr(witness undetected|A ∈ An) ≥ h(n)
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Now, if the algorithm doesn’t find the unique witness
of non-commutativity, then the execution will be exactly
the same as if the input were a commutative algebra and,
by hypothesis, the answer will be YES with probability at
least a. That is

Pr(YES|A ∈ An,witness undetected)

= Pr(YES|A is commutative)

Thus, abbreviating ‘‘witness undetected’’ by ‘‘wu’’,
we have

Pr(YES|A ∈ An) ≥ Pr(wu|A ∈ An)Pr(YES|A ∈ An,wu)

≥ ah(n)

since it is easy to verify that Pr(x|y) ≥ Pr(z|y)Pr(x|y, z).
Consequently

Pr(NO|A ∈ An) ≤ 1− ah(n)

We also know that Pr(NO|A) ≥ b for all non-commutative
A, so Pr(NO|A ∈ An) ≥ b and, consequently, we have b ≤
Pr(NO|A ∈ An) ≤ 1− ah(n), which implies

b+ ah(n) ≤ 1

Taking limits on both sides of the inequality we obtain the
result.

In this context a natural question arises: is it possible
that for some specific class of noncommutative algebras the
number of ‘‘failing’’ pairs (i.e., noncommutativity witnesses)
of corresponding constants must be greater than one? In
particular, what can be said for finite semifields? In this case,
since the algebra is unital, its unit commutes with any other
element, so the number of different pairs of constants is at
most (n−2)(n−1)2 ·n = n3−3n2+2n

2 .We have studied this problem
for finite semifields of small orders (as complete classifica-
tions are known), finding the existence of noncommutative
finite semifields of orders 24 and 33 with only one ‘‘failing’’
pair, while others of orders 34 and 35 with maximal number
of noncommutativity witnesses (12 and 30, respectively).

In view of the analysis of the randomized classical algo-
rithms presented in this section, we think that an approach
based on quantum computations seems reasonable. Our hope
is that the power of quantum computation improves the pre-
vious algorithms, specially from the point of view of the
number of queries required to test the commutativity of the
algebra without sacrificing the constant (on n) error proba-
bility. We consider this approach in the next section.

IV. A QUANTUM ALGORITHM FOR TESTING THE
COMMUTATIVITY OF A FINITE DIMENSIONAL ALGEBRA
A quantum algorithm for deciding the commutativity of a
finite dimensional K−algebra A with basis B = {x1, . . . , xn}
is introduced below. As in the previous section the multiplica-
tion constants ofAwith respect toBwill be the querymodeled
input data. This implies that a direct translation of the quan-
tum methods proposed in [26] for testing the commutativity

of a group based of commutators of elements, such as we did
in Algorithm 1, is useless (just notice that the computation of
a single product requires �(n3) oracle queries).
We will further assume that the multiplication constants,

which belong to the field K , are given by an l−bit repre-
sentation. For instance, if K = Fq is the finite field with
q elements, then l can be taken as dlog2 qe. On the other
hand, if K is an infinite field (such as R or C), then an
standard numerical representation can be used. In this case,
the potential error derived from the inaccuracy of this repre-
sentation has to be taken into account. Let us say by now that
our algorithm, not making any arithmetic operation with the
constants, will not introduce new numerical errors.

In order to execute the algorithm on an actual computer,
it is convenient that the dimension n is a power of two. Also,
in the proof of Theorem 1wewill need a bound on the number
of triples (i, j, k) such that Mijk 6= Mjik . For these reasons,
we will embed our algebra A in an algebra Â with holds the
same commutative character as A.
Lemma 1: For any n ∈ N, take m ∈ N such that 2m−1 ≤

3
√

4
3 (n

3 − n2) < 2m. Then, n̂ = 2m ≤ 3
√

32
3 n, and the

n̂−dimensional algebra K−algebra Â = A× K n̂−n with the
product given by the rule (a, λ) · (b, µ) = (ab, 0), is commu-
tative if and only A is. Moreover, the number of multiplicative
constants of Â such that M̂ijk 6= M̂jik is less than 3

4 n̂
3.

Proof: It is clear that n̂ = 2 ·2m−1 ≤ 2 · 3
√

4
3 (n

3 − n2) ≤
3
√

32
3 n. Also, the set B̂ = {(xi, 0)}ni=1 ∪ {(0, ei)}

n̂−n
i=1 is a

K−basis of Â ({ei}ni=1 is the standard basis of K n̂−n). The
corresponding multiplication constants are M̂ijk = Mijk if
1 ≤ i, j, k ≤ n, and M̂ijk = 0 otherwise. Therefore A and Â
are simultaneously commutative or not. Finally, the number
of multiplicative constants such that M̂ijk 6= M̂jik is at most
(see proof of Proposition 2) n3 − n2 < 3

4 n̂
3.

Remark 2: From the proof of the previous lemma it is clear
that n̂ = 2(n). Notice also that, if we are given a query oracle
OA for the multiplication constants of A, then a second oracle
OÂ for the multiplication constants of Â can be easily made.
It should return the output of the A−oracle if 1 ≤ i, j, k ≤ n,
and 0 otherwise. So, the Â−oracle only requires one access
to the A−oracle, at most.

Now, we can introduce a quantum algorithm for test-
ing the commutativity of a finite-dimensional K−algebra A.
Our algorithm will call Grover’s quantum search algorithm,
as described in [30, Chapter 6.1]. In this setting wemodel the
oracle OÂ in such a way that 3m index register qubits provide
the encoding of the triple ijk while the multiplication constant
M̂ijk is added to the l oracle qubits (see figure 1).

Calls to the quantum search algorithm require an specific
oracle made from the oracle OÂ. Namely, the function f for
which solutions are searched is (suitably encoded) f (ijk) =
1− δM̂ijk ,M̂jik

, i.e., f (ijk) = 1 if and only if M̂ijk 6= M̂jik . This

function can be straightforwardly modeled as an oracle Of

requiring a constant number of queries to the oracle OÂ. The
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FIGURE 1. Multiplication constant oracle.

FIGURE 2. Grover oracle Of when K = F2.

actual number of queries and the form of this oracle depends
on the field K . When K is the binary field, the Grover oracle
is the one in figure 2.

Observe that in this situation an advantage is taken from
the matching of the field addition and the mod 2 addition of
the computational basis qubits, and so only two oracle calls
are needed (and two swap operators for the interchanging of
the indexes i and j). However, for any other field K further
operations are required. First, the evaluation of the equality of
the multiplication constants M̂ijk and M̂jik , which is realized
by a combination of NOT and n−Toffoli gates. Secondly,
the restoring of the qubits (including the l ancilla qubits)
to their original state, so that they can be used in the next
iterations of Grover’s algorithm (see figure 3).

As we can see, four OÂ queries are required in this case.
Nevertheless, for any field K (equal to F2 or not), the number
of oracle queries to OÂ is in the same order of the number
oracle queries to Of .
Next, the algorithm is finally presented together with

the analysis of its oracle query optimality among quantum
algorithms.

Main algorithm Quantum Multiplication Constant Testing

Pick uniformly an integer l ∈
{
0, . . . ,

√
n̂3
2 − 1

}
Initialize the state to

∑n̂3
x=1

1
√

n̂3
|x〉

Apply l iterations of Grover quantum search
Observe to estimate ijk
Call the oracle OÂ with ijk and jik
If M̂ijk 6= M̂jik , return NO
Else, return YES

Theorem 1: The main algorithm requires 2(
√
n3) queries

to the oracle OA. On output NO it always provides an accu-
rate answer, while on output YES the error probability is a
constant strictly less than 1. Moreover, it is query-optimal
among the quantum algorithms, in the sense that any other
algorithm with bounded error probability for testing the

commutativity of the finite dimensional K−algebra A, uses
�(
√
n3) queries.
Proof: Notice first that the main algorithm requires at

most 4
√

n̂3
2 − 2 = 2(

√
n3) queries to the oracle OA (this

can be clearly seen from Remark 2 and the comments below
it). Also, the algorithm is accurate when the answer is NO
(as it directly tests the existence of a pair of multiplication
constants witnessing the noncommutativity of A). On the
other hand, on answer YES the probability of error is derived
from the iterations of the Grover quantum search algorithm.
If we assume thatA is actually a noncommutativeK−algebra,
then the number of multiplication constants Mijk differing
from the corresponding Mjik is t ≥ 2. If 0 < θ < π

2 is
such that sin2 θ = t

n̂3
, then 1

sin 2θ =
n̂3

2
√
t(n̂3−t)

. Lemma 1

gives us t < 3
4 n̂

3, and so 1
sin 2θ <

√
n̂3
t ≤

√
n̂3
2 . Therefore,

we can apply [5, Lemma 2] to get that the probability of the
algorithm not finding a witness pair for the noncommutativity
of A is at most 3

4 , and so constant. This finishes the analysis
of the main algorithm.

Optimality of the algorithm can be directly derived
from [1, Theorem 5.1]. Namely, consider the Grover func-
tion f . Take the set X consisting on the zero algebra, and
the set Y whose elements are the n3 − n2 noncommutative
algebras whose multiplication constants are all but one equal
to zero (i.e., Mijk = 1 for some 1 ≤ i, j, k ≤ n with i 6= j,
and zero otherwise). Taking R = X × Y it is clear that for
every x ∈ X , there exist at least n3 − n2 different y ∈ Y such
that (x, y) ∈ R, that for every y ∈ Y , there exists at least 1
different y ∈ Y such that (x, y) ∈ R, that for every x ∈ X and
1 ≤ i, j, k ≤ n, there is at most 1 different y ∈ Y such that
(x, y) ∈ R with M x

ijk 6= M y
ijk , and that for every y ∈ Y , and

1 ≤ i, j, k ≤ n, there is at most 1 different x ∈ X such that
(x, y) ∈ R with M x

ijk 6= M y
ijk . So, [1, Theorem 5.1] yields the

desired lower bound of �(n3) oracle queries.

Remark 3: In virtue of Proposition 4, any classical algo-
rithm with the same success probability as our quantum
algorithm will require �(n3) queries to the multiplication
constants.
Remark 4: Observe that the extremal case l = 0 cor-

responds to randomly choosing a constant Mijk and testing
whether Mijk = Mjik or not (only two oracles queries are
needed in this case).
Remark 5: If the Grover oracles are subtly adapted, then

the previous algorithm can also be used to test whether a
matrix is symmetric or hermitian. Simply use two index
qubits instead of three and adopt a suitable representation of
the complex field in the later case. Obviously, in this situation
the number of queries would be 2(n).

V. NUMERICAL EXPERIMENTS AND IMPLEMENTATION
ON QUANTUM HARDWARE
To test the actual performance of the quantum algorithm,
we have implemented an (exact) simulation of its behavior
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FIGURE 3. Grover oracle Of when K 6= F2.

TABLE 1. Number of queries and success probabilities of the classical
and quantum algorithms.

in Matlab and we have run the most challenging situation
(namely, when there is only a pair of values (i, j) and only
a k such that Mijk 6= Mjik ) for algebras of dimensions from
2 to 29. Notice that, because of the symmetry of Grover’s
algorithm, the probability of success (that is, of finding
a witness for non-commutativity) is equal for all the alge-
bras of the same dimension and with the same number of
non-commuting elements (and it is independent of the size
of the underlying field). We have also compared this prob-
ability of success with the one obtained with the classical
algorithms presented in Section III when implemented in a
classical computer. To make a fair comparison, we allow the
classical algorithms to consult the multiplication constants
as many times as the quantum algorithm does in the worst

case, namely 4
√

n̂3
2 − 2 (cf. the proof of Theorem 1). Notice,

though, that in average the quantum algorithm will make
only half that number of queries and that if the underlying

FIGURE 4. Success probability of quantum versus classical algorithms.

FIGURE 5. Connectivity of qubits on the ibqmx4.

FIGURE 6. Experiment Of.

field is F2 then the number of queries is, again, halved (see
Figures 2 and 3). Since the number of queries is less than n3,
this excludes Algorithm 1 from the comparison, for it needs
at least n3 queries to complete an iteration. We also adjust
Algorithm 2 to run for only a fixed number of queries and
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FIGURE 7. Grover algorithm without ancilla bits.

then stop, returning YES if it has not been able to find a pair
of non-commuting elements. Its success probability will then
be tk

n3−n2
, where k is the number of non-commuting constants

in the algebra and t is the number of iterations. In the case
of Algorithm 3, this probability is 1 − ( n

3
−n2−k
n3−n2

)t . Note that
both Algorithm 2 and Algorithm 3 require two queries per
iteration, since they need to compare Mijk and Mjik .
In Table 1 and in Figure 4, we present the results of

these experiments. Notice that, following Lemma 1, in the
quantum algorithm we sometimes need to embed the algebra
in another with a higher dimension. This causes the number of
queries and the success probability of the quantum algorithm
to be the same for all dimensions augmented to the same
2m and it explains the sudden increase in success probability
of the classical algorithms for those dimensions where the
embedding jumps from dimension 2m to 2m+1. Note that
the quantum algorithm beats both classical algorithms for
dimensions greater than 5 and, in fact, the success probability
of the classical algorithms tends to zero when the dimension
tends to infinity (cf. Proposition 4). Note also that the success
probability of the quantum algorithm remains almost con-
stant, as expected from Theorem 1. In fact, in this case the
probability is about 3

5 , greater than the value guaranteed by
the theorem, which was 1

4 .
As a proof of concept of a possible implementation on an

actual quantum computer when fault-tolerant quantum hard-
ware is available, the main algorithm has been implemented
(after successfully been tested on a quantum computer sim-
ulator) on ibmqx4, one of the IBM 5-qubit computers pub-
licly accessible through IBM’s Quantum Experience cloud
services ( [16]). The processor of this computer uses 5 super-
conducting transmon qubits. Available 1-qubit gates include
X , Y , Z , H , S, S†, T , T † as well as CNOT gates between
some pairs of qubits, with controls and targets as depicted
in figure 5. More details on the architecture can be found
on [17].

The number of qubits of the quantum computer limits the
size of the field and the matrices that can be considered. The
design of the oracle Of forces the election of m = l = 1,
so A must be a 2−dimensional algebra over the binary field.
We have opted for the following product on A = F2 × F2:

(a, b) · (c, d) = (0, ad + bd)

FIGURE 8. Experiment.

FIGURE 9. Experiment with phase oracle.

Observe that A is a noncommutative algebra, since (0, 1) ·
(1, 0) 6= (1, 0) · (0, 1). Its multiplication constants Mijk are:

k = 1, 2

{
i=1,2︷ ︸︸ ︷

j=1,2︷ ︸︸ ︷(
0 0
0 1

) j=1,2︷ ︸︸ ︷(
0 0
0 1

)
The indexes ijk of the multiplication constants, in the range
{1, 2}, will be encoded as qubits |0〉 and |1〉. Using this repre-
sentation the oracleOA is easily seen to be equal to |j AND k〉,
which will greatly simplify its wiring (in particular, no ancilla
bits will be used). Lemma 1 gives us n̂ = 2 = n, and so
there is no need for the embedding of A into Â. The Grover
oracle in our particular case is the one in figure 6. where
f (ijk) = (i AND k)⊕ (j AND k). Among the 8 different mul-
tiplication constants Mijk only 2 (exactly one fourth) differ
from the corresponding Mjik , so we are in the particular nice
case described in [5, Section 3.1]. When Grover quantum
search is applied (i.e., when l 6= 0), only one iteration is
required, providing a certain answer with two OA queries.
So, the general Grover circuit (figure 7) specializes in our
particular instance as that of figure 8.

Further simplifications were achieved from the use of a
phase oracle (see, for instance [12]). Namely, the state of the
qubits in the previous experiment just before applying the
oracle is (

∑n̂3
x=1

1
√

n̂3
(−1)f (x)|x〉)⊗H |1〉. As the measurement
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FIGURE 10. Toffoli gate in the ibmqx4.

FIGURE 11. Experiment with phase oracle in the ibmqx4.

TABLE 2. Results of the experiment on the actual quantum computer.

is only taken in the first qubits, the relevant part of the state
is
∑n̂3

x=1
1
√

n̂3
(−1)f (x)|x〉. We can realize the transformation

|x〉 →
∑n̂3

x=1
1
n̂3
(−1)f (x)|x〉without the need of the last qubit,

simply through the use of the phase oracle in figure 9.
Finally, because of the specific architecture of the ibmqx4

quantum computer we need to use the (optimal, see [36]) gate
substitution of figure 10.

Summarizing, the actual circuit to be tested is presented
in figure 11 (for convenience, a reordering of the qubits have
been made).

As expected, the outcome of the experiment carried out
in the quantum computer simulator provided by the IBM
Quantum Experience gives exact results, with only two states
of equal nonzero probability, |011〉 and |101〉. The perfor-
mance of the quantum computer ibmqx4, due to the intrinsic
error of the implementation of the quantum gates, makes the
outcome of the experiment a little bit fuzzier, as can be seen
on Table 2. Out of a total of 1024 runs of the experiment,
299 (29.19%) resulted on an observation of the state |011〉
and 356 (34.76%) resulted on |101〉. In the remaining 369
cases (36.03%), other, non successful states were obtained
due to the accumulated errors of the gates of the circuit. Note
that this execution on quantum hardware corresponds to the
case when we obtain l = 1 in the first step of the quantum
algorithm. Since in this case n̂ = 2, the other possibility is
l = 0 (that is, we select elements ijk uniformly at random,
cf. Remark 4) that has success rate 0.25. To obtain the overall
success probability of the algorithm for this algebra, we need
to average both situations, getting 0.4448. The difference

with the 0.625 obtained in the exact simulations (see the first
row of Table 1) comes from the noise of current quantum
hardware and will be overcome once fault-tolerant quantum
computing devices are available.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we have studied the problem of effectively
determining when a finite-dimensional algebra A over a field
is commutative. Any classical algorithm (randomized or not)
that solves the problem with bounded error needs �(n3)
queries to the multiplication constants of the algebra, where
n is the dimension of A. However, we have introduced a
quantum algorithm based on Grover’s search method that
uses O(

√
n3) queries and has no error on a NO answer and

bounded error on a YES answer. We have also shown that
this method is query-optimal among all quantum algorithms
and that it can be implemented with O(log(n)) qubits. This
algorithm can also be readily adapted to test commutativity
and hermiticity of n × n matrices with just O(n) queries.
We have also successfully tested our main algorithm with
numerical simulations for algebras of dimension ranging
from 2 to 29 and for a simple case of a 2−dimensional algebra
over F2 on an actual quantum computer, namely the imbqx4
publicly accessible through the IBM Quantum Experience.

On the light of these results, the application of quan-
tum computing to problems related to the one studied in
this paper seems very promising as does the use of other
techniques, such as quantum walks [2], [8], [21] and adia-
batic computing [9], to the same problem. In future works,
we would like to approach the design and implementation
of quantum algorithms for problems such as the determi-
nation of isomorphism and isotopy between semifields and
the possibility of applying quantum computing to speed-up
tasks such that the classification of all finite semifields of size
128, which is completely out of reach with current, classical
computing technology.
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