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ABSTRACT In the last few years, organizations and business professionals have realized the value of
collaborative data analytics in supporting decision-making. Where several activities are performed on online
data by different stakeholders, such as cleansing, aggregation, analysis, and visualization, cloud-based data
analytics has become a favored choice for business professionals due to the elasticity, availability, scalability,
and pay-as-you-go features offered by cloud computing. However, large amounts of data stored on the cloud
are very sensitive (e.g., innovation, financial, legal, and customers’ data), and so data privacy remains one
of the top concerns for many reasons; mainly those relating to legal or competition issues. In this paper,
we review the security and cryptographic mechanisms which aim to make data analytics secure in a cloud
environment and discuss current research challenges.

INDEX TERMS Cloud computing, data analytics, data privacy, query processing.

I. INTRODUCTION
With cloud-based technologies and services flourishing,
many organizations have started adopting hybrid Information
System (IS) solutions, particularly the multi-hybrid cloud
deployment model, where IS services are outsourced and
shared with several cloud service providers and integrated
with the organization’s on-premises systems. Cloud comput-
ing appeals to businesses and organizations because of the
wide variety of benefits it offers. The pay-per-use model of
cloud computing is very attractive, especially for small and
medium enterprises, because it reduces start-up costs [95].
Some cloud outsourcing models go as far as outsourcing a
complete business process to a third party Cloud Service
Provider (CSP), and they share part of their IS assets through
the cloud system [4].

The growth of cloud-based services has made data ana-
lytics a feasible reality for organizations [95]. One closely
related outsourcing model that has recently emerged is data
analytics outsourcing [5], where organizations offer a value-
added third party agent access to their heterogeneous, large
datasets stored on the cloud in order to perform some ana-
lytical tasks and deliver insight to the organization [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuo-Hui Yeh.

Data analytics helps businesses and organizations analyze
data to gain a fuller understanding of the situation confronting
them and make better decisions [7]. Data analytics outsourc-
ing services, or Data Analytics-as-a-Service (DAaaS), entails
storing sensitive data on a remote CSP’s infrastructure, and
querying and retrieving data on demand [8]. Data Analytics-
as-a-Service is a customizable analytical platform which uses
the software-as-a-service (SaaS) cloud-based service delivery
model. Different customizable data analytics tools are typi-
cally used by companies which are collaborating in an inte-
grated value chain. The companies use DAaaS with the inten-
tion of integrating cross-organizational business processes to
maximize data-driven value and enable rapid innovation.

The security solutions and challenges we discuss in this
paper relate to securing data which is stored on a CSP’s
infrastructure and is subject to limited access by mul-
tiple organizations. These organizations are collaborating
with each other, and data analytics is crucial for them
collectively.

Although cloud data outsourcing provides many benefits,
it also raises security and privacy concerns. Ensuring data
privacy is not a trivial matter, because data owners lose con-
trol of their data in cloud environments. Threats to privacy
come from both outside and inside, so data privacy must be
guaranteed not only against external adversaries breaking into
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FIGURE 1. System architecture for securing cloud-based data analytics.

the system, but also malicious insiders and so-called honest
but curious CSPs [9].

A straightforward solution to the problem of data privacy
is to encrypt sensitive data locally in a trusted environment
before sending it to a CSP. Encryption protects sensitive data
even if the server is compromised. However, encrypting data
incurs additional storage costs, and query processing over
encrypted data is both non-trivial and costly in terms of
computing power in the cloud, and thus money. Moreover,
in addition to overheads, the levels of security and func-
tionality are other issues which must be addressed properly.
Typically, existing solutions from the literature [10]–[13]
cannot provide a seamless and complete solution which guar-
antees secure cloud data analytics, because they fail to deal
adequately with at least one of these issues [14]. Searchable
Encryption (SE) allows keyword searches over encrypted
documents [87], [88]. However, SE schemes involve a trade-
off between security and efficiency.

A common limitation of SE schemes is their prohibitive
computational cost. In the context of cloud outsourcing,
access control can be achieved by using attribute-based
encryption (ABE), which enables the decryption of data when
a user has certain attributes which satisfy the access struc-
ture [89]. However, the main disadvantages of ABE schemes
are deficiency and functionality issues. Consequently, choos-
ing an efficient cryptographic scheme with adequate levels
of security and functionality for computing analytical queries
over encrypted data, which would thus be an effective solu-
tion for secure cloud-based data analytics, is still a challenge.

In this paper, we give a comprehensive overview of secure
cloud-based data analytics which provides an easy entry point

for researchers with no cryptographic background. We intro-
duce a general architecture and system model which will
accommodate a wide range of uses of cloud data analytics.
This architecture incorporates a specific adversary and secu-
rity model, and we provide an overview of cryptographic
tools for ensuring data privacy with an emphasis on function-
ality and efficiency in terms of overheads. We then present
and compare practical secure solutions from the literature and
identify various security and efficiency issues. A comparative
analysis of security, overhead and functionality issues is pre-
sented at the end of the article in order to provide a series of
guidelines and insights to assist in designing and developing
secured cloud-based data analytics with a level of function-
ality and efficiency which meets user requirements. The rest
of the paper is organized as follows: we present our reference
system architecture, adversary and security model for cloud
data analytics in Section II. We classify the various crypto-
graphic schemes which can be implemented in the reference
system for preserving privacy in Section n III.We then review,
discuss and compare practical solutions in Section IV, while
limitations and unresolved issues are discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. ASSUMPTIONS AND REFERENCE MODEL
In this section, we introduce the main actors and their
activities in relation to data analytics in the cloud. Then,
we describe the ways in which the security of cloud-based
data analytics can be compromised. Since we review crypto-
graphic approaches for preserving privacy, we define a stan-
dard security model to specify the level of security guarantees
desired in cloud-based data analytics. Taking an adversary
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and securitymodel as our basis, we elaborate the system goals
which must be achieved in the cloud context

A. ACTORS AND ACTIVITIES IN CLOUD DATA ANALYTICS
A cloud-based data analytics system allows a server to store
and query encrypted data on behalf of a user without gaining
information about the underlying data.

Figure 1 depicts the basic system model and architecture
of cloud-based data analytics, which consists of three main
entities: the Data Owner, the Cloud Service Provider and
Authorized Users.

The Data Owner (DO) is an entity which has a large
amount of data to be outsourced in the cloud, and can be an
individual user, or a large, small or medium business or enter-
prise.

The Cloud Service Provider (CSP) provides data storage
services and computational resources.

Authorized Users (AU): the DO allows the authorized
users, which could be other enterprises or individual users,
to use the outsourced data. AU can query encrypted data and
retrieve encrypted results and decrypt them to get correspond-
ing plaintext.

In a secure cloud-based architecture, a trusted component
(TC) must execute confidential tasks such as key manage-
ment functions, query rewriting and post-processing, and
decryption. The DO and the AU are assumed the TC in some
settings (TC-DO and TC-AU in Figure 1). In this setting,
the TC must be installed and maintained on each AU and DO
separately. To avoid installing the TC in several machines,
the TC is set between the client (i.e., the DO or the AU) and
the CSP [12], which is called the proxy server (TC-PS in Fig-
ure 1). In this setting, the proxy server intercepts client/server
communications and performs data/query encryption and
decryption on behalf of the user. The proxy server maintains
some metadata and the private keys for data encryption and
query transformation. Finally, tamper-proof hardware can be
embedded at the CSP (TC-TPH in Figure 1), which performs
encryption/decryption and query rewriting [15]. The AU also
needs to perform a few security tasks like query rewriting and
decryption. Typically, the interactions in this architecture are
as follows:

1) TheDOoutsources data to a CSP (ormultiple CSPs [16],
[17], which are non-colluding with each other or with other
external adversaries) in encrypted form while still maintain-
ing the capability to query the data efficiently.

2) An AU encrypts a query and sends the encrypted query
to the CSP.

3) The CSP executes the query over encrypted data and
returns encrypted results to the AU.

4) Finally, the AU decrypts the results.
All interactions between the DO/AU and the CSP can be

executed through the proxy server, TC-PS, when the TC-PS
is the TC.

B. ADVERSARY MODEL
An adversary model specifies an adversary’s ability to
threaten security. In cloud outsourcing scenarios, the

adversary can be either honest but curious (passive), or mali-
cious (active). Honest but curious is a widely-used adversary
model for cloud outsourcing scenarios [10], [11], [18]–[21].
An honest but curious CSP or insider faithfully complies with
any service-level agreement (SLA) and stores data, runs com-
putations and queries, and provides results without alteration.
However, such CSP may access data and gain information by
inferring from queries and results.

A malicious adversary can manipulate data and query
results, and even delete stored data, which compromises
integrity and availability. Since current known CSPs are well-
established companies such as Google or Amazon, it is hard
to see the possibility of them behaving maliciously, as this
would damage their reputation and have a negative impact on
their revenues [22]. Nevertheless, the malicious adversary is
taken into consideration in some settings [13], [23]. In this
paper, we consider the honest but curious adversary model,
i.e., the CSP or insider.

C. REFERENCE SECURITY MODEL
Security model is used to define the security guarantees of
an encryption scheme. Basically, an encryption scheme is
characterized by Π=(M, C,K, Enc,Dec), where M is all
possible plaintexts, C is a set of all possible ciphertexts, and
K a set of all possible keys belonging to a key space. Enc is
a randomized algorithm where Enc : K ×M −→ C and
Dec is a deterministic algorithm Dec : K × C −→ M.
For all possible plaintexts, the following property should be
satisfied [24].

∀m ∈M, ∀k ∈ K : Dec(k,Enc(k,m)) = m.

There are two fundamental types of encryption schemes:
symmetric-key and public-key encryption. In symmetric-key
encryption, the encryption and decryption keys are identical
while in public-key encryption there is a key for encryp-
tion and another key for decryption. In public-key schemes,
the encryption key is publicly available for encryption, but
only the authorized users who have access to the decryption
key can decrypt ciphertexts. We use PPT to denote the class
of algorithms that are in probabilistic polynomial time.

To define the security model of an encryption scheme,
the first step is defining a security goal. Then, it must be
examined whether this goal can be achieved by an adversary.
To this end, an experiment is defined between the adversary
and a challenger and the probability that the adversary wins
the experiment is studied. This experiment is called security
model. An adversary’s advantage is a measure of how much
more successful it is at winning the experiment compared to
the random guess.

For an encryption schemeΠ , the following game is defined
between an adversary A, which tends to break the sys-
tem and a challenger, C, who receives as input variable b
where b ∈ {0, 1}. First, the adversary chooses two equal-
length plaintexts m0, m1 ∈ M. The challenger picks one
of two plaintexts, encrypts it and sends the result to the
adversary. Then, the adversary should not be able to guess
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which plaintext is encrypted by the challenger. This model
is known as IND-CPA (Indistinguishability under chosen-
plaintext attack), which is formalized in the following defi-
nition.

An encryption scheme, Π , is IND-CPA if for any PPT
adversary A, the probability that A ‘‘wins’’ the following
game is negligible.

1) Challenger C takes a random key k
2) Adversary A chooses m0, m1 ∈ M such that
|m0| = |m1| and sends them to C

3) Challenger C chooses b ∈ {0, 1} uniformly at random
and sends cb = Enc(k,mb) to A

4) A outputs b′ ∈ {0, 1}, and is said to win if b′ = b
In other words, if we define the advantage of the adversary
A as follows.

AdvcpaA,Π = Pr[b′ = b]− 1/2

then, the encryption schemeΠ is IND-CPA secure ifAdvcpaA,Π
is negligible, i.e., A cannot guess b except with probability
close to 1/2.
Note that in the above game, the adversary can issue several

queries adaptively one after the other in order to simulate the
ability of distinguishing multiple ciphertexts encrypted under
the same key.

IND-CPA implies that the knowledge of ciphertexts pro-
vides no information about the underlying plaintexts for an
adversary, i.e., ciphertexts leak no information about the
plaintexts.

D. OBJECTIVES OF CLOUD-BASED DATA ANALYTICS
Secure cloud-based data analytics must target the following
goals.
• Privacy: Data privacy must be preserved in cloud-
based data analytics. Encryption is a promising solu-
tion because the adversary and the CSP can access
only encrypted data, but ciphertexts may leak some
information and compromise data privacy. Hence, IND-
CPA is desired to achieve this in cloud-based data
analytics.

• Functionality: Proposed solutions should efficiently
support different kinds of analytical workload, i.e., exact
match queries (equality checking, GROUP BY,JOIN,
DISTINCT), range queries (inequality checking,
SORT, ORDER BY), and aggregation queries (SUM,
AVG, MIN, and MAX) should be supported efficiently
and effectively [17]. Moreover, computations over mul-
tiple columns in a table in a database must be handled.
For instance, multiplication of two columns, C = A×B.

• Efficiency: A secure cloud-based solution should be
efficient in terms of computational, storage, and commu-
nication overhead. Computational and storage overhead
should be minimized for both the user and the CSP.
Basically, in data outsourcing scenarios, it is consid-
ered that the user has limited storage and computational
resources, thus, that overhead must be diminished as far

as possible. At the CSP, the pay-per-use model of cloud
computing is a good reason to minimize the total over-
head of the system. Communication overhead implies
the number of intermediate results that is transferred to
the user for query post-processing.

III. CRYPTOGRAPHIC METHODS
There are twomain cryptographic approaches that enable pro-
cessing over encrypted data without decryption. We describe
these cryptographic schemes, which can be implemented in
practical systems for preserving data privacy in this section.

A. HOMOMORPHIC ENCRYPTION
Homomorphic Encryption (HE) allows performing arbitrary
arithmetic operations over encrypted data without decryp-
tion [25]. HE provides IND-CPA security. Typically, an HE
scheme is a scheme with an additional evaluation algorithm,
Eval, to process over encrypted data [26]. The evaluation
algorithm takes a public key, Pk , a function, f , two cipher-
texts, c1 and c2 as inputs and outputs ciphertext c∗ where
c∗ = Eval(pk, f , c1, c2). In other words, Eval manipulates
the encryption of two plaintextsm1 andm2, c1 = Enc(pk,m1)
and c2 = Enc(pk,m2), and outputs Enc(pk, f (m1,m2))
(Figure 2).
If an HE scheme allows performing arbitrary computation,

then the scheme is called Fully Homomorphic Encryption
(FHE) [25]. FHE allows performing arithmetic operations
(+,−,×,÷) over encrypted data without decryption. FHE
is a powerful scheme and offers the highest level of security
and certainly has a role to play in privacy preserving query
processing [27]. FHE scheme is first introduced in [25],
followed by other researches to improve the performance of
the original scheme [13], [13], [28]–[34]. Even though many
improvements e.g., reducing encryption key size or eliminat-
ing some complicated phases, FHE is prohibitively slow and
requires so much computing power that it cannot be used in
practice. As a result, building an efficient and usable FHE is
still a great challenge.
Partially Homomorphic Encryption (PHE) for specific

operations is efficient and can be used in practice. PHE allows
either addition or multiplication over encrypted data, but not
both. PHE offers the same security guarantees, IND-CPA,
while being more efficient and closer to practical implemen-
tation. If a PHE scheme allows addition or multiplication,
it is referred to as additive homomorphic and multiplicative
homomorphic, respectively.
Paillier’s scheme [35] is an example of additive homomor-

phic scheme and is currently themost efficient.With Paillier’s
scheme, multiplying the encryption of two values is equal to
the encryption of the sum of the values, i.e., Enc(k,m1) ×
Enc(k,m2) = Enc(k,m1 + m2), where multiplication is
performed modulo some public-key k [12]. Paillier’s scheme
is used in practical solutions [12], [21] to compute SUM
and AVG aggregation queries over encrypted data without
decryption.
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FIGURE 2. Homomorphic encryption.

B. PROPERTY-PRESERVING ENCRYPTION
Property-Preserving Encryption (PPE) preserves certain
properties of plain texts on the corresponding ciphertexts,
which enables the CSP to compute over encrypted data.
Typically, in PPE ideal security is relaxed to provide more
efficient solutions [36]. Order-preserving encryption (OPE)
and deterministic encryption (DET) are examples of PPE
schemes.

1) DETERMINISTIC ENCRYPTION
Deterministic (DET) encryption encrypts the same plain-
text into identical ciphertexts, thus the equality property is
preserved. DET allows equality checking by encrypting a
plaintext into the same ciphertexts when using the same key.
Thus:

∀k ∈ K,∀m1,m2 ∈M, Enc(k,m1) = Enc(k,m2),

iff m1 = m2.

DET allows performing SELECT with equality predicates,
equality JOIN, GROUP BY, COUNT, and DISTINCT
queries [14]. DET is not IND-CPA secure. The following
game shows that a DET encryption scheme, ΠDET , is not
IND-CPA secure.

1) Challenger C chooses b ∈ {0, 1} uniformly at random
2) The adversary A chooses m0,m1 ∈ M so that

m0 = m1 = m∗
3) C sends c∗ = Enc(k,m∗) to A
4) A chooses m′0 = m∗, m′1 6= m∗
5) C sends c = Enc(k,m′b) to A
6) A outputs 0 if c = c∗ and 1 otherwise

Hence, AdvcpaA,Π=1/2, i.e., non-negligible.
As a result, the adversary can learn data duplicates, which

leads to information leakage. In order to define the security
of DET schemes, the IND-CPA security game is replaced
by a new security game, IND-DCPA ( Indistinguishability
under Distinct Chosen Plaintext Attacks), where the adver-
sary is restricted to pick distinct plaintexts [37]. An encryp-
tion scheme, Π , is IND-DCPA if for any PPT adversary
A, the probability that A ‘‘wins’’ in the following game is
negligible [38].

1) Challenger C takes a random key
2) Adversary A chooses m0 and m1 where m0 and m1 are

distinct
3) Challenger C chooses b ∈ {0, 1} uniformly at random

and sends cb = Enc(k,mb) to A
4) A outputs b′ ∈ {0, 1} and is said to win if b = b′

In the other word, considering the advantage of the adversary
as follows

AdvdcpaA,Π = Pr[b′ = b]− 1/2

the encryption schemeΠ is IND-DCPA secure if AdvdcpaA,Π is
negligible.

IND-DCPA is weaker than IND-CPA, but they are
equivalent when the domain of plaintexts contains unique
values [39].

2) ORDER-PRESERVING ENCRYPTION
Order-Preserving Encryption (OPE) is a deterministic
encryption scheme that preserves the order of plaintexts in
ciphertexts [39], i.e., for any key k ,

∀ k ∈ K,∀m1,m2 ∈M, Enc(k,m1) ≤ Enc(k,m2),

iff m1 ≤ m2.

OPE allows performing range queries when given encrypted
constraints Enc(k, c1) and Enc(k, c2) corresponding to range
[c1, c2]. Aggregation queries MIN, MAX, ORDER BY,
and SORT can also be computed directly over encrypted data.

Since OPE is deterministic it is not IND-CPA secure.
The security definition of OPE is defined by Boldyreva
et al. in [39] which is called IND-OCPA (Indistinguisha-
bility under Ordered Chosen Plaintext Attacks). An IND-
OCPA secure scheme hides all information about the plain-
text values except the order, which is a minimum requirement
for order-preserving property. An encryption scheme, Π , is
IND-OCPA if for any PPT adversary A, the probability that
A ‘‘wins’’ in the following game is negligible [39].

1) Challenger C takes a random key
For i = 1, . . . , q
a) Adversary A chooses mi,0 and mi,1 where
|mi,0| = |mi,1|
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b) Challenger C chooses b ∈ {0, 1} uniformly at
random and sends cb = Enc(k,mi,b) to A
where m1,0, . . . ,mq,0 are distinct and m1,1, . . . ,

mq,1 are distinct
and m`,0 < mj,0 ↔ m`,1 < mj,1, 1 ≤ `, j ≤ q

c) A outputs b′ ∈ {0, 1} and is said to win if b = b′

In the other word, considering the advantage of the adver-
sary A as follows

AdvocpaA,Π = Pr[b′ = b]− 1/2

the encryption scheme is IND-OCPA secure if AdvocpaA,Π is
negligible. OPE is a weaker encryption scheme than DET
because in addition to leak data duplicates, it reveals the order
of plaintexts.

Different OPE schemes are proposed in both the database
and cryptography community. OPE is introduced in the
database community by Agrawal et al. as a tool to sup-
port efficient range queries over encrypted data [40], which
maps each value of the plaintext domain to one value in
the ciphertext domain. This scheme bears weak privacy
protection because the original data values can statistically
be estimated by an adversary who has access to cipher-
texts [41]. Damiani et al. propose an order-preserving index-
ing method, which preserves the order of plaintexts over
indexes [42]. A B+tree index is built over plaintexts and
is stored at the CSP in encrypted format. In order to query
processing, the encrypted tree must be travelled by the CSP.
However, the user should perform a sequence of queries to
retrieve nodes, which induces communication overhead. The
proposed scheme provides IND-OCPA security, but incurs
heavy communication and computation overhead. Sobati-M.
et al. introduce an order-preserving indexing method, which
destroys the frequency distribution of plaintexts [36]. Whilst
the proposed indexing method provides IND-OCPA security,
it is efficient in terms of communication and computation
overhead. Boldyreva et al. introduce a new OPE with a ran-
dommapping that preserves order [39]. The proposed scheme
cannot provide IND-OCPA because it leaks at least half of the
plaintext bits (i.e., more information than OPE) [43].

Popa et al. introduce the first practical IND-OCPA scheme
in the cryptography community, mutable order-preserving
encoding (mOPE) [43]. mOPE requires an interactive pro-
tocol for query processing. Additionally, mOPE relies on
user-defined functions (UDFs) for query processing, which
makes it unsuitable for cloud outsourcing. Liu et al. introduce
an OPE scheme that randomly splits the original plaintext
domain into successive intervals with different lengths [41].
Then, an extended ciphertext domain is selected and split
into the same number of intervals. Finally, nonlinear mapping
functions map the original plaintexts into ciphertexts in the
extended domain. The proposed method partially destroys
the distribution of original data and reveals some information
about underlying values, which breaks IND-OCPA security.

Table 1 shows the comparison between existing OPE
schemes. Among all OPE approaches, only Boldyreva’s
scheme is implemented in some practical solutions.

TABLE 1. Comparison of OPE schemes.

IV. ENCRYPTION-BASED PRACTICAL SOLUTIONS
Building a secure cloud-based analytics system has been
discussed briefly in the literature with limited practical contri-
bution. Some solutions have nonetheless been proposed. The
most important challenge of secure solutions is weak security
guarantees or heavy overhead in the systems we review in this
section, to the best of our knowledge.

For each practical solution, we explain the main idea,
the architecture, how data are organized at the CSP, and
query processing. Then, we analyze the advantages and the
deficiencies of each solution in terms of security and perfor-
mance.

A. BUCKETIZATION
Bucketization is introduced as a privacy-preserving method
in [10], [11] that allows partial execution of a query at the CSP
with the help of indexes (Figure 3). Bucketization supports
queries over encrypted data without decryption. Queries are
evaluated in an approximate manner, thus the returned results
may contain some false-positives. The final result is found
by decrypting the data and executing query post-processing
at the users.

Bucketization divides data into buckets and provides
explicit labels for each bucket [44]. The domain of plaintexts
is partitioned into a set of non-overlapping buckets (subsets),
with the same size (or maybe different size). A label is
defined for each bucket and may or may not preserve the
order of values in the original domain. Then, bucket labels are
stored along with encrypted values at the CSP. These labels
allow equality, range (if preserving order) and join queries
at the CSP without decryption. Bucketization-based indexing
usually returns false-positives in the result of a query. Thus,
query post-processing is needed at the users to filter out false-
positives [45].

Any relation R in a database is encrypted in tuple-level and
auxiliary indexes, i.e., buckets’s labels, are used by the CSP
for query processing. Thus, the relation R(A1,A2, ...,An) is
stored at the CSP as: RS (etuple,AS1 ,A

S
2 , ...,A

S
n ), where the

attribute etuple corresponds to an encrypted tuple, and each
ASi corresponds to the index for the attribute Ai. An example
is shown in Figure 3.

The DOmust maintain metadata such as the label of bucket
for transforming queries to the appropriate representation on
the CSP and performing query post-processing.
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FIGURE 3. (a) An example of a relation R, (b) partition function used for attribute eid , and
(c) the encryption relation RS stored at the CSP [10].

In Bucketization architecture, queries are transformed by a
query translator and a query executor, which both reside with
the DO. For query processing, the AU poses the query to the
query translator.

Each query is transformed into the server-side and user-
side sub-queries, Qs and Qc, respectively (Figure 4). Qs is
executed by the CSP over encrypted data using corresponding
indexes (ASi s).
The result of Qs is sent back to the query executer, which

decrypts the result of Qs and executes Qc to filter false-
positives and retrieve the final result (post-processing).

Query execution in bucketization operates as follows.
– Step1.

The AU sends a query Q to the query translator.
The query translator rewrites Q into Qs and Qc.
To this end, the query translator uses somemetadata
(e.g.,the buckets boundaries) and replaces the plain-
text values in the query with bucket boundaries.
Then, the query translator sends Qs to the CSP.

– Step2. The CSP executes Qs and returns all
encrypted records back, whose bucket numbers sat-
isfy the query constrains. The encrypted results are
sent to the query executor.

– Step3. The query executor decrypts the results and
executes Qc to eliminate false-positives and sends
the final results to the AU.

Bucketization provides efficient query processing while
keeping the information disclosure to a minimum. Further-
more, query evaluation is often much simpler than crypto-
graphic schemes [46].

However, there is a trade-off between security and effi-
ciency. The smaller number of buckets leaks less information
and increases security, but induces more false-positives in
query results and more computation overhead at the AU.

When the labels are order-preserving, IND-CPA secu-
rity is not guaranteed. Note that here the encrypted data
is in the form of (ciphertext)||(bucketlabel), e.g., in Fig-
ure 3 the ciphertexts of attribute eid are in the form
of etuple||eidS . Additionally, bucketization-based indexing
reduces data granularity. All values in a row are encrypted
together, which means that all encrypted rows must be
shipped back to the AU inducing communication overhead.

B. CRYPTDB
CryptDB is a secure DataBaseManagement System (DBMS)
developed at MIT [12] with both academic [18], [20],
[21], [47]–[53] and industrial [54]–[58] impacts [14], e.g.,
Google [54] and SAP [55] produced their own CryptDB-
inspired solutions. CryptDB aims at providing data privacy
guarantees in the face of a compromised server and a honest
but curious CSP by data encryption. CryptDB uses a set
of encryption schemes based on the queries issued by the
AU [14] and adopts different kinds of encryption schemes,
i.e., PPE and PHE, which are dynamically adjusted depend-
ing on the queries [26]. Encryption in CryptDB is like
onion layers that store multiple ciphertexts within each other
(Figure 5).

For instance, given two encryption schemes Enc1 and
Enc2, the encryption of a value m is defined as:

c = Enc1(k1, (Enc2(k2,m))).

The outermost onion layers provide the highest level of
security, IND-CPA security, whereas the inner layers, pro-
vide more functionality and less security guarantees, e.g.,
IND-DCPA for DET layer.

Each value in a relation is encrypted independently.
Numeric values are maintained in three different onions,
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FIGURE 4. Bucketization query workload [10].

OnionEq, OnionOrd, and OnionAdd, which are used for
equality checking, range queries, and aggregations SUM and
AVG, respectively. In other words, for each value CryptDB
stores three encrypted values at the CSP. At the CSP, query
processing is computed using UDFs.

In CryptDB architecture, a proxy server intercepts com-
munications between the user and the CSP and applies
en/decryption of queries and results (Figure 6).

To create an encrypted database from a database, the proxy
server generates a master secret key and uses it to encrypt
each relation in the database [59]. The proxy server stores the
master key and the scheme of the database and uses them for
query rewriting. When a query is issued, the proxy dynami-
cally peels off onion layers down to a layer corresponding to
the given computation. Onion layers are adjusted by sending
the related key and updating the columns. Then, the proxy
server anonymizes each table and column name and encrypts
each constant in the issued query with an encryption scheme
corresponding to the requested operation.

Query execution in CryptDB operates as follows.

– Step1. The AU sends a query Q to the proxy. The
proxy rewrites Q into Qs operating at the CSP.
To this end, the proxy encrypts all constants in Q
adopting the encryption scheme that best suits the
operation to be computed [26].

– Step2. The proxy checks if the CSP should be given
keys to remove some encryption layers. In this case,
the proxy issues an UPDATE query that removes
specific layers of encryption, and then sends Qs to
the CSP.

FIGURE 5. An example of onion encryption layers in CryptDB [12].

– Step3. The CSP computes Qs and returns the
encrypted results to the proxy.

– Step4. The proxy decrypts the encrypted results and
sends the final results to the AU.

For instance, in order to evaluate a range query, each value
of an attribute is encrypted using an OPE scheme (first
encryption layer). Then, the resulting OPE ciphertexts are
encrypted with a randomized encryption (RND) scheme (sec-
ond encryption layer). A randomized encryption scheme
encrypts the same values into different ciphertexts using the
same key and allows no computation whilst providing the
highest level of security, IND-CPA. When a range query is
issued, the proxy server sends the decryption key for the sec-
ond encryption layer to the CSP. The CSP then decrypts the
randomized ciphertexts and gets access to order-preserving
ciphertexts. Hence, the CSP learns the order of values and
evaluates the range query [60] and sends the encrypted values
to the proxy server.

CryptDB supports standard SQL queries over encrypted
data and needs no change to existing applications. Basi-
cally, applications can transparently run on top of CryptDB.
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FIGURE 6. CryptDB architecture [12].

However, CryptDB is targeted for transactional work-
loads. It is not feasible to run analytical workloads over
CryptDB [61]. As a result, CryptDB supports only 2 queries
out of 22 queries from the TPC-H benchmark.

Some computations are not supported, for instance, com-
puting both summation and comparison on encrypted values.
Thus, to execute the following query.

Q1 :

SELECT SUM(price) AS total
FROM orders

GROUP BY order_id
HAVING total >100

CryptDB cannot check if total >100 at the CSP,
because total is encrypted with a PHE scheme, i.e., the
Paillier scheme, which does not support order compari-
son [21].

Complex queries over multiple columns in a relation, for
instance, the following query

Q2 :

SELECT SUM(t1.B ∗ t2.A) FROM T as t1 WHERE
t1.A = t2.B.

cannot be evaluated because multiplication of two encrypted
values is not supported in CryptDB.

Moreover, onion layers become an overhead as well as
peeling off a layer, especially in the case of big tables.
CryptDB performs almost all queries at the CSP with a
relatively small overhead in terms of query throughput [12].
However, the throughput is worst for queries that use PHE,
such as summations because, in order to compute summa-
tions, CryptDB implements modular multiplications at the
CSP. Improving the performance of aggregations is important
because aggregation is common in data analytics.

Although onions offer multiple levels of security but reveal
different information about the data [22]. It is easy to see
that security decreases over time when the outer layers
are removed. Because adjustable encryption architecture in
CryptDB is unidirectional, i.e., once a column is decrypted
to a weaker scheme like DET, it never returns to a higher
encryption level [62].

C. MONOMI
MONOMI extends CryptDB’s functionality to support ana-
lytical queries [21]. In contrast to CryptDB that focuses on

transactional workloads, MONOMI mainly targets analytical
workloads [61].

Instead of using the trusted proxy server, MONOMI splits
query processing between the CSP and the user. Using
user/server query splitting, MONOMI executes as much of
the query as is practical over encrypted data at the CSP
and executes remaining computations by the user, which
decrypts data and processes queries further [63]. To this end,
MONOMI introduces an optimized designer and a planner.
The designer chooses an appropriate database design based
on the target workload. Like CryptDB, MONOMI imple-
ments different cryptographic schemes, but unlike CryptDB,
there is no onion of encryption. To choose a set of encryp-
tion schemes, MONOMI uses an optimizing designer sim-
ilar to physical designers used by other databases, which
takes the kind of computations that are likely to appear
in future queries, e.g., SUM for attribute Salary (Figure 7).
In other words, the designer can be considered similar to
automated index selection and materialized view selection
tools.

MONOMI designer is invoked when a database is loaded
by the DO. The DO must also provide a query work-
load Q1,Q2, . . . ,Qn to represent the operations that the AU
will perform over data. Given the user’s inputs, MONOMI
designer provides a physical design consisting a set of
encryption schemes for each relation. For each query Qi
i = 1, . . . , n, the designer determines a set of required
encryption schemes and invokes the planner to determine how
to best execute Qi given the encryption schemes. MONOMI
planner determines different plans by determining for each
plan what parts of Qi would be executed by the AU and what
parts at the CSP. Then, a cost model is used by the planner
to estimate the cost of each plan (e.g., execution times).
The planner chooses the fastest plan for Qi and denotes the
corresponding subset of encryption schemes.

Once the best plan is determined for each query,
the designer takes the union of the required encryption
schemes and uses them for physical design. Hence, a plaintext
value is encrypted using different cryptographic schemes.
Further, the planner selects the query execution path for each
query given a particular physical design.

In order to execute queries that cannot be computed at the
CSP alone, MONOMI partitions query execution across the
CSP, which has access only to encrypted data, and the AU,
who has access to the decryption keys.
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FIGURE 7. MONOMI architecture [21].

However, query splitting technique cannot be optimal in
all situations and depends on data. To choose an optimal
splitting, MONOMI models the cost of query execution for
each query plan as the sum of execution time at the CSP,
transfer time, and post-processing time at the AU’s side.
Then, the lowest-cost plan is chosen.

Query execution in MONOMI consists the following
steps.

– Step1. The AU sends a query Q to MONOMI
planner. The planner computes different plans
PQ1 ,P

Q
2 , . . . ,P

Q
` , where P

Q
i i = 1, . . . , ` consists

of three sub queries Qsi , Q
e
i , and Q

c
i . The sub-query

Qsi is performed by the CSP over encrypted data,
Qei asks for retrieving some encrypted data Rei =
{e1, e2, . . . , en} from the CSP, and Qci is performed
by the AU over retrieved encrypted values, Rei , after
decryption.
For each plan PQi i = 1, . . . , `, the planner
computes a cost CQ

i = t1+ t2+ t3 where t1, t2, and
t3 are execution times at the CSP, transferring time,
and post-processing time by the AU, respectively.
Then, a plan with the lowest-cost is selected by the
planner. We show the selected plan as PQselect . The
planner sends Qsselect and Q

e
select to the CSP.

– Step2. The CSP computes Qsselect over encrypted
data and returns encrypted results, Rs, to the plan-
ner. The CSP also retrieves encrypted values, Re,
corresponding to Qeselect and sends them to the
planner, too.

– Step3. The planner sends the results Rs and Re to the
AU. The planner also sends Qcselect to the AU.

– Step4. The AU decrypts encrypted values in Re and
executes Qcselect over unencrypted values. The AU
also decrypts Rs to obtain the final results.

Like CryptDB, MONOMI implements PHE [35] for com-
puting aggregation queries SUM and AVG, which is compu-
tationally intensive and induces a large ciphertext size. How-
ever, large ciphertext size imposes storage cost and affects
query processing. Additionally, PHE requires modular multi-
plications, which is computationally expensive. To overcome
these drawbacks, MONOMI introduces some optimization
techniques. To avoid performing separate modular multi-
plications, MONOMI concatenates several plaintext values
into a single larger plaintext that will be encrypted as a
single value. In this way, MONOMI reduces storage over-
head and simultaneously decreases the number of modular
multiplications.
Query splitting enables executing more queries with opti-

mal costs. However, it requires that queries are declared ahead
of time by the user, which is not possible for all scenarios,
especially for ad-hoc analytical workloads. Moreover, it is
essential to cut down the bandwidth required to transfer
intermediate results, computation and storage resources for
the AU for query processing [21], because resources usage
at the AU must be minimum for maintaining the benefits of
outsourcing.
Optimization techniques used by MONOMI improve per-

formance, but also induce some limitations. Packing values
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FIGURE 8. Encryption of attribute A in SDB [64].

into a single value reduces storage overhead and also amor-
tizes computation overhead, but makes impossible partial
operation or partial query processing. For example, when
packing multiple values in a column into a single plaintext,
a query that updates only a part of the column cannot be
executed.

D. SDB
SecureDB (SDB) is a secure query processing system, which
allows a wide range of complex queries to be computed by the
CSP [64]. SDB introduces a new encryption scheme based
on so called secret sharing. In secret sharing, each plaintext
value is split into several shares that are stored at n users’ [65].
One single user has no means to reconstruct the secret, but a
subset of k ≤ n users can reconstruct the secret [66].
Each plaintext value, mi, is split into two shares, one kept

at the DO, which is referred as item key, mk , and another
at the CSP, which is regarded as ciphertext, me. In order to
reduce data storage at the DO’s side, item keys is considered
to be the same for all values. In order to encrypt the plaintext
values in an attribute, first a random secret key, k , is defined.
Then, for each row of attribute a random row-id, ri, is defined,
too. Then, the row-ids are encrypted by the secret key k ,
mk = Enc(k, ri) and mi is encrypted using encrypted row-
id,mk , which isme = Enc′(mk ,m). The values of row-ids are
encrypted and stored along with the ciphertexts at the CSP
(Figure 8).

The proposed scheme simulates FHE, which leads to a
wide range of queries supported by the CSP. The proposed
encryption scheme supports data interoperability, i.e., the
output of an operator is used as the input of another opera-
tor. SDB computes complex analytical queries over multiple
columns in a table using data interoperability. For instance,
computing ‘‘A+B > 1000k’’ is possible in SDB, but the same
computation is not supported by the other secure systems like
CryptDB.

SDB architecture is similar to CryptDB’s in which a proxy
server is set between the DO/AU and the CSP.

Query execution in SDB operates as follows.
– Step1. The AU sends a query, Q, to the proxy

server. The proxy rewrites Q into sub queries Qs

operating at the CSP and Qc which is computed at
the proxy server.

– Step2. The proxy server executes Qc and produces
new secret keys.

– Step3. The proxy server sends the new secret keys
andQs to the CSP. Note that the new keys generated
by the proxy are needed for computing the sub-
query Qs at the CSP.

– Step4. The CSP computes Qs and returns the
encrypted results to the proxy.

– Step5. The proxy decrypts the encrypted results and
sends the final results to the AU.

SDB sends an UPDATE query to the CSP for some oper-
ations. For instance, consider two columns A and B, which
are encrypted with two different keys, ak and ab. To compute
C = A + B, the proxy server generates a new key ck using
ak and ab and sends ck to the CPS. The CSP executes the
UPDATE query to encrypt A and B with the new key, ck , and
gets new columns A′ and B′, and then adds the encrypted
values of A′ and B′.

SDB requires modular multiplication for decryption,
which induces heavy computation overhead at the proxy
server. Computations at the CSP also consist of modular
exponential, which is expensive and affects query processing.

While the proposed scheme supports a wide range of
queries, there are still some queries that are not supported,
e.g., keyword search over encrypted strings.

Security guarantees in SDB is the highest, i.e., IND-
CPA security. Yet, IND-CPA reveals no information about
the underlying plaintexts, which makes impossible using
optimization techniques, e.g., B+tree indexing. As a result,
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query processing needs scanning the whole database, leading
to poor performance. Like CryptDB and MONOMI, SDB
strongly relies on UDFs at the CSP for query processing,
which makes it unsuitable for cloud-based scenarios because
the DO has no permission to create UDFs, e.g., small enter-
prises deploy their secure web-based system using the rented
database [41].

E. TRUSTEDDB
TrustedDB is an outsourced database prototype that
implements tamper-proof trusted hardware for secure query
processing in the cloud [15]. A secure co-processor (SCPU)
such as the IBM 4764/5 [67] is deployed at the CSP’s
side to compute query processing over encrypted data. The
SCPU provides a secure computation environment. How-
ever, SCPUs are constrained in both computation ability and
memory capacity. Hence, data are classified as being either
private, sensitive or insensitive public [68]. The former are
encrypted and operations are performed inside the SCPU,
and the latter are stored unencrypted at the CSP. All sensitive
data are encrypted by the DO before uploading to the CSP.
The entire database is stored outside the SCPU. Data are
encrypted using a symmetric encryption scheme such asAES.
Some randomness is also added to ensure IND-CPA security.
However, such randomized encryption schemes allow no
computation over encrypted data. Sensitive encrypted data
that need to be accessed by the SCPU for query processing
are pulled in by the SCPU.

An issued query is rewritten by the AU into two sub-
queries, which are executed by the CSP and the SCPU [15].
The SCPU in TrustedDB consists of a Request Handler,
a Query Parser, and a Query Dispatcher to handle query
rewriting (Figure 10).

Query execution in TrustedDB operates as follows.
– Step1.TheAU encrypts a query using the public key

used by the SCPU and sends the encrypted query to
the CSP.

– Step2. The CSP forwards the encrypted query to
the SCPU. The Request Handler (RH) receives the
encrypted query.

– Step3. The RH decrypts the query and sends the
unencrypted query to the Query Parser (QP).

– Step4. The QP rewrites the query into three sub-
queries, Qs, Qe, and QTC , and sends them to the
Query Dispatcher (QD).

– Step5. The QD sends Qs and Qe to the CSP.
– Step6. The CSP executesQe and retrieves requested

encrypted data, Re, and sends them to the QD. The
CSP also executes Qs over unencrypted data and
sends the results back again to the QD.

– Step7. The QD decrypts data in Re and sends
decrypted values along with QTC to the DB engine
residing inside the CSPU. After executing QTC ,
the final results are re-encrypted by the QD and
sent to the RH. Finally, the RH sends the encrypted
results to the AU.

Note that the execution of private queries, i.e., QTC ,
depends on the output of public queries, i.e., Qs, and
vice-e-versa.
Using the SCPU and a randomized encryption scheme,

TrustedDB simulates FHE, i.e., the security guarantees of
TrustedDB is IND-CPA. However, leaving some data unen-
crypted at the CSP may compromise the privacy of encrypted
sensitive data by linking between them. Moreover, sending
encrypted data to the SCPU incurs communication overhead,
which affects query processing and results in poor perfor-
mance. Sending the final results to the QD, which encrypts
the results imposes computation overhead.

F. CIPHERBASE
CipherBase is another solution based on tamper-proof trusted
hardware to preserve the confidentiality of sensitive data [20].
A FPGA (Field Programmable Gate Array) is set at the CSP
as a trusted component, TC, which computes some computa-
tions over sensitive data on behalf of the CSP. Computations
are decomposed between the trusted TC and the CSP. Like
TrustedDB, the sensitivity of data must be defined by the
DO on the scheme definition. Insensitive public data are
stored unencrypted at the CSP. Highly sensitive data, e.g.,
Patient.ID, are encrypted using a strong encryption scheme,
i.e., an IND-CPA secure scheme. Less sensitive data, e.g.,
Patient.Age are encrypted by a weaker encryption scheme,
e.g., a PPE scheme.
Highly sensitive data are shipped to the TC, which are

decrypted and processed. In fact, CipherBase simulates FHE
by integrating non-homomorphic encryption schemes (e.g.,
AES in CBC mode) with trusted hardware’s to compute any
operation.
Query processing in CipherBase consists of several round

trips between the TC and the CSP. A query planner, which
resides at theAU’s, is responsible for query re-writing Fig. 10.
The query planner rewrites an issued query into three

sub-queries. Among them, two sub-queries are executed by
the CSP and the third sub-query is sent to the TC. Query
execution in CipherBase operates as follows.
– Step1. The query planner rewrites an issued query,

Q, into three sub-queries, Qs, Qe, and QTC and
sends them to the CSP.

– Step2.The CSP executesQe and retrieves encrypted
tuples, Re, and sends them along with QTC to the
TC. The CSP also computes Qs over unencrypted
data.

– Step3. The TC decrypts all tuples in Re and executes
QTC over decrypted data.

– Step4. The TC encrypts the results and ships them
back to the CSP.

– Step5. The CSP sends all results consisting
encrypted and unencrypted results to the AU.

Security guarantees in CipherBase is specified by the DO.
The highest level of security achieves when all data are highly
sensitive. However, security comes at a cost of poor perfor-
mance. Specifying some data as less sensitive and insensitive
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FIGURE 9. TrustedDB architecture and query processing workload.

FIGURE 10. CipherBase architecture and query processing workload.

by the DO degrades security guarantees and increases perfor-
mance. In this case, CipherBase provides the same level of
security as CryptDB.

Query processing in CipherBase involves shipping
encrypted data from the CSP to the TC, decrypting, query
processing, and re-encrypting data in TC, and shipping results
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back to the CSP.Moving encrypted data between the CSP and
the TC incurs communication overhead. Moreover, decryp-
tion and re-encryption are also costly in terms of compu-
tation. Whilst some optimization techniques are considered
to minimize round trips, but the overhead of decryption/re-
encryption is still a bottleneck.

G. COMPARISON OF EXISTING SOLUTIONS
In this section, we compare the existing solutions presented
in Section IV regarding to overhead, security, trusted com-
ponent, and query support features. Table 2 summarizes the
features of all solutions, which we discuss below.

1) COMMUNICATION OVERHEAD
Communication overhead is defined as the number of
encrypted records sent as the result of an issued query. Con-
sider a query Q, the encrypted results that satisfy the query
is shown as |Q(e)|. Bucketization induces a communication
overhead of |Q(e)|+|Q(f )|where |Q(f )| indicates the number
of false-positives. Since MONOMI planner requests retriev-
ing some encrypted values, Rs, the communication overhead
of MONOMI is |Q(e)| + |Q(Rs)|.
Like MONOMI, TrustedDB and CipherBase retrieve some

encrypted values, Rs, and send them to the TC. Hence,
the communication overhead of TrustedDB and CipherBase
is |Q(Rs)|, which is imposed at the CSP’s side when data are
moved to the TC.

2) COMPUTATION OVERHEAD
Computation overhead at the user’s side is defined as the time
of decryption, te. Bucketization requires also auxiliary time,
tf , to eliminate false positives after decryption. MONOMI
induces an extra time, td , for decrypting encrypted values in
Rs and also tpost for query processing over decrypted values.
Hence, MONOMI has the largest computation overhead at
the user’s side.

At the CSP, computation overhead consists of the required
time for query processing over encrypted values, tquery.
CryptDB and SDB sends also an UPDATE query, which
induces tquery + tUPDATE computation overhead at the CSP.
MONOMI also requires tretrieve for retrieving encrypted val-
ues. Nevertheless, the computation overhead of MONOMI
is less than CryptDB and SDB because the UPDATE query
consists of the re-encryption of encrypted values and con-
tains expensive modular operations such as modular multi-
plication. Computation overhead for TrustedDB consists of
tp for querying public unencrypted data, tretrieve for retriev-
ing encrypted private values, tdec for decrypting private
encrypted data, and tTC for querying data after decryption
inside the SCPU. CipherBase needs also tquery for query-
ing less sensitive data at the CSP. However, comparing to
TrustedDB, CipherBase incurs less computation overhead
because CipherBase needs less data decryption because some
computations are computed over less sensitive data without
decryption.

3) SECURITY
Security guarantees depend directly on the cryptographic
schemes which are used in a solution. Bucketization uses
PHE, but cannot provide IND-CPA because the bucket’s
labels reveal some information about the encrypted values.
Bucketization introduces a trade-off between security and
efficiency; for example, when the labels are order-preserving,
query processing is more efficient, but at the cost of a lower
level of security. In fact, the security level of order-preserving
labeling is the same as that of PPE [6].

On the other hand, having a small number of buckets
increases security, but triggers more false-positives in query
results, leading to poor performance and less efficiency. PHE
is implemented in CryptDB and MONOMI to provide IND-
CPA security; however, security is relaxed to improve the
efficiency of query processing [66]. CryptDB and MONOMI
implement PPE to support more queries, which discloses
IND-CPA security. IND-CPA is guaranteed when no query
is executed and the outermost layer of encryption, random-
ized encryption, has been kept. Once the randomized layer
is removed, however, security is degraded to the level of
PPE.

The proposed encryption scheme in SDB provides IND-
CPA security. However, IND-CPA is no longer guaranteed
when a query is executed. After an updating query, the values
of a column are transformed in such a way that the query
can be executed by the CSP. For instance, in order to execute
a GROUP BY for a column, after updating, the encryption
values are equal for the same plaintexts, and so equality
leaks, which degrades the level of security to the level of
PPE.

Implementing randomized encryption schemes along with
the SCPU in TrustedDB guarantees IND-CPA, so TrustedDB
offers the same level of security as FHE, but greater effi-
ciency. At the same time, leaving less sensitive data unen-
crypted at the CSP raises concerns about linking attacks.
In linking attacks, the attacker tries to find some information
about sensitive data using public unencrypted data, which
may compromise data privacy [86]. More importantly, secu-
rity is guaranteed as long as the SCPU is not in danger [64].
Similarly, the TC in CipherBase simulates FHE by execut-
ing computations inside the TC, and security is guaranteed
as long as the TC is not compromised [96]. Yet the level
of security required depends on the sensitivity of the data,
i.e. highly sensitive data should be encrypted with a strong
encryption scheme so that no information will be revealed.
Even though CipherBase provides a reasonable security level
for highly sensitive data, using PPE schemes for less sensitive
data degrades security guarantees.

The vulnerability of PPE to inference attacks is studied
in [1]. The authors describe an inference attack directly
over encrypted data. Even if a non-deterministic encryption
scheme is used to encrypt data, such an attack can be executed
successfully. The results convincingly illustrate the trade-offs
between security, performance and functionality for query
processing in a TC.
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4) TRUSTED COMPONENT (TC)
The TC is set at the user’s side (the AU and the DO’s side)
in Bucketization and MONOMI. CryptDB and SDB rely
on TC-PS as the TC. Considering the DO and the AU as
a TC eliminates the need of extra components. However,
the TC must be installed and maintained on each AU and
DO separately. Setting a proxy server adds a new point of
attack and induces computational and storage cost, but elim-
inates the need of installing the TC for each DO and AU.
The TC is configured at the CSP (TC-TPH in Figure 1) in
TrustedDB and CipherBase. Whilst installing the TC at the
CSP minimizes computational burdens for the AU, it needs
an agreement with the CSP, which is not always feasible.
Moreover, using tamper-proof hardware is still expensive
and it is not affordable for small/medium businesses. More
importantly, installing the TC at the CSP protects data privacy
against attackers that compromise the CSP, but not insiders
and the CSP who has access to the TC.

5) QUERY SUPPORT
Equality checking, inequality, and aggregation queries are
supported in all systems. All those queries are executed
on only one column in a table, but SDB handles opera-
tions between separated columns, e.g., addition between two
columns A and B, A+ B.

Regarding to standard benchmarks, SDB is the only system
that supports all TPC-H queries. Bucketization, CryptDB,
and MONOMI handle only 2, 4, and 19 out of 22 TPC-
H queries, respectively. TrustedDB supports only 4 non-
nested queries from TPC-H because nested queries are not
supported by TrustedDB. CipherBase is designed for OLTP
workloads; hence query processing for TPC-H workloads is
not discussed.

V. LIMITATIONS AND OPEN ISSUES
A. PRIVACY VS. FUNCTIONALITY
Despite the highest level of security provided by FHE, current
FHE schemes are inefficient for practical data analytics due to
computation overhead [59]. Contrary, PHE schemes are more
efficient and closer to practical solutions. However, PHE
schemes provide less functionality due to supporting limited
operations only. PPE schemes allow operating over encrypted
data in the same way as they would operate on plaintext. PPE
are crucial for practical secure solutions because of their func-
tionality. However, such PPE schemes provide lower security
guarantees, e.g., IND-DCPA security for DET encryption,
leading to the leakage of a non-trivial amount of information,
which makes such schemes vulnerable to some attacks (e.g.,
frequency analysis attacks). Recent works [1], [2], [59], [69],
[70] apply and develop different attacks using the leakage of
PPE schemes. For instance, Naveed et al. demonstrate that a
large fraction of the records from the DET encrypted columns
in a database can be decrypted when the adversary pos-
sesses statistical information about the plaintexts [59]. Hence,
secure systems such as CryptDB andMONOMI sacrifice data

privacy for enhancing functionality, i.e., there is a trade-off
between a higher level of functionality and less data privacy.

B. PRIVACY VS. EFFICIENCY
Processing over encrypted data is computationally more
expensive than original plaintext [71]. The first reason is data
expansion. For instance, a 32-bit plaintext is expanded to
256-bits of ciphertext using classic AES+CBC (Cipher-
Block Chaining) encryption [18] and 1,024 or more bits
long using PHE. Such enormous data expansion induces
both storage and computation overhead. The second reason
is the nature of operations. In particular, operations at the
CSP should not involve any expensive modular arithmetic
operation like modular multiplication or exponentiation [72].
Whilst FHE and PHE offer the highest security guarantees,
but necessitate modular operation for query processing. Secu-
rity guarantees are relaxed in PPE to provide more efficiency.

Setting a trusted server like a trusted proxy server in
CryptDB induces extra cost, which does not fit cloud data
outsourcing. Moreover, since the trusted server has access to
the encryption keys and plaintext information, it becomes an
appealing target for attackers.

Splitting queries in [10], [21] to be executed partly at the
CSP and partly by the AU incurs computation overhead at
the end user. In data outsourcing the goal is fully outsourc-
ing computations because the resources for the AU are lim-
ited. Moreover, transferring intermediate results to the user
induces communication overhead. Hence, it is essential to cut
down the bandwidth required to transfer intermediate results
to the AU and reduce computation overhead at the AU’s side.

Tamper-proof hardware used in TrustedDB andCipherBase
is significantly constrained in both computation ability and
memory capacity, hence setting such components at the CSP
faces major efficiency challenges. A trade-off should be
defined between more efficient untrusted main CPU com-
putation and less efficient trusted computations inside the
tamper-proof component [15]. Moreover, leaving some data
unencrypted at the CSP for the sake of memory capacity
limitation may disclose the privacy of encrypted sensitive
data.

C. ACCESS PATTERN PRIVACY
Data protection methods, discussed before, guarantee the
confidentiality and privacy of the data stored at the CSP.
Another security issue in outsourcing scenarios arises when
querying data whilst preserving the privacy of access patterns.
In fact, by observing enough query results the adversary could
infer about data and data privacy could be compromised
by correlating prior information with frequently queried
data [72]. Private access patterns have recently raised the
attention of researchers [45]. New cryptographic schemes are
needed that allow the CSP to send items in response a query
without knowing which item is being sent. Private Informa-
tion Retrieval (PIR) [73]–[76], theoretically enables access-
ing data items while preventing the CSP to learn anything
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TABLE 2. Features of practical solutions.

about query access patterns [77]. The most of current PIR
solutions aim at very strong security bounds and remain
unsuitable for practical purposes [78]. Deployment of exist-
ing PIR protocols would have been orders of magnitude more
time consuming than transferring the entire database to the
user [79].

Oblivious RAM (ORAM) [80] provides access pattern pri-
vacy, too [79]. ORAM allows reading and writing to memory
without revealing access pattern to the CSP. ORAM continu-
ously shuffles and re-encrypts data as they are being accessed,
thereby completely hiding access pattern [81].

While the idea of relying on ORAM and PIR to enable
access pattern privacy is promising, but a key challenge is the
efficiency of such schemes.

Another solution could be sending frequently fake queries
without taking care with the results [82], [83]. The goal is
to mislead the adversary of making valid inference about
correlation between hot frequently queried data and other
data. Submitting such queries requires more investigation on
the way of generating that looks realistic.

D. DATA INTEGRITY
While a passive model is by far the most widely assumed
adversary model in the literature, in some scenarios the
active model should be considered. Thus, there is also the
need to address an active adversary model. In an active
model, the adversary has malicious intension and may
change or modify the data, results of queries or even in some
cases interrupt or cause denial of service. Such threats are
aimed at data integrity and availability. Protecting against
such an adversary needs more effort by the user to ensure
the correctness of data and query results. The results must be
demonstrably authentic to ensure that the data has not been
tampered with (integrity). The proof of completeness must
be carried by the results that allow the user to verify that the
CSP has not omitted any valid tuples that match the queries
predicate [84] (completeness). Such proof assures that the
query is executed with completeness over their entire target
data set [72]. For instance, when executing a JOIN query,
the user should be able to verify that the CSP returned all
matching values.

Authentication and integrity checking along encryption
become important in such scenarios. Typically, signa-
ture or MAC (Message Authentication Code) is used to allow
the user to check the integrity of returned items [23], [85].
However, existing works introduce mechanisms for efficient
integrity and authentication checking only for simple queries
and they are limited to the queries of some specific kind.

E. HIGH DIMENSIONAL DATA
Cloud-based EHRs (Electronic Health Record systems)
are another case of cloud-based data analytics. In EHRs,
a patient’s sensitive data (e.g. data extracted from disease
images) is stored at the CSP. The patient’s data is always
stored in the form of high-dimensional vectors [91]. The
objective of cloud-based EHRs is to find approximate k
Nearest Neighbors (KNN) in a privacy-preserving manner,
so approximate kNN queries are executed over vectors with-
out any leakage of information about the underlying vec-
tors [90]. Differential Privacy techniques [93], [94] add a
great amount of noise to query results, leading to low accu-
racy and making query results useless. However, encryption
cannot be implemented for EHRs due to the heavy compu-
tation overhead for high-dimensional vectors [92]. Existing
solutions focus on low-dimensional datasets and are unable
to handle high-dimensional data [91].

VI. CONCLUSION
In this paper, we discuss data security issues which emerge
when organizations outsource both data and data analytics to
Cloud Service Providers. We review the security mechanisms
which can be used for the deployment of secure cloud-
based data analytics services. We focus particularly on cryp-
tographic schemes and practical systems which enable the
execution of queries over encrypted data without decryption.
We highlight the benefits and drawbacks of existing solutions
in a cloud computing context and suggest practical solutions.

Building practical secure systems is a challenging task
because there is a trade-off between privacy and functional-
ity/efficiency. Using FHE in practical solutions enables com-
puting arbitrary operations, i.e., combining high functionality
with the highest level of security, which is promising for
cloud-based data analytics. However, the level of efficiency
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of FHE is still a major problem. PHE schemes on the other
hand are more efficient and therefore closer to being practical
solutions, but they support partial computations only and
cannot provide a completely practical solution with all the
desired functionality. In PPE schemes privacy is relaxed to
provide greater efficiency, and whilst they provide the same
functionality as computing over unencrypted data, their poor
level of security is a great challenge. Implementing tamper-
proof hardware for secure query processing simulates FHE
with greater efficiency, although this is affected by the limited
memory capacity of such trusted hardware.

Cryptography cannot simultaneously provide the highest
levels of security, efficiency and functionality. It is thus essen-
tial to specify clearly the objectives of any deployment of
cloud-based data analytics and adopt cryptographic schemes
which are tailored to those objectives. In future work, we plan
to analyze the efficiency of various practical solutions by
carrying out different tests with various datasets.
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