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ABSTRACT Network densification, massive multiple-input multiple-output (MIMO), and millimeter-wave
(mmWave) bands have recently emerged as some of the physical layer enablers for the future generations of
wireless communication networks (5G and beyond). Grounded on prior work on sub-6-GHz cell-freemassive
MIMO architectures, a novel framework for cell-free mmWave massive MIMO systems is introduced that
considers the use of low-complexity hybrid precoders/decoders while factors in the impact of using capacity-
constrained fronthaul links. A suboptimal pilot allocation strategy is proposed that is grounded on the
idea of clustering by dissimilarity. Furthermore, based on mathematically tractable expressions for the per-
user achievable rates and the fronthaul capacity consumption, max–min power allocation and fronthaul
quantization optimization algorithms are proposed that, combining the use of block coordinate descent
methods with sequential linear optimization programs, ensure a uniformly good quality of service over the
whole coverage area of the network. The simulation results show that the proposed pilot allocation strategy
eludes the computational burden of the optimal small-scale CSI-based scheme while clearly outperforming
the classical random pilot allocation approaches. Moreover, they also reveal the various existing trade-
offs among the achievable max–min per-user rate, the fronthaul requirements, and the optimal hardware
complexity (i.e., the number of antennas and the number of RF chains).

INDEX TERMS Cell-free, massive MIMO, millimeter wave, hybrid precoding, constrained-capacity
fronthaul.

I. INTRODUCTION
A. MOTIVATION AND PREVIOUS WORK
Driven by the continuously increasing demands for high
system throughput, low latency, ultra reliability, improved
fairness and near-instant connectivity, fifth generation (5G)
wireless communication networks are being standardized [1]
while, at the same time, insights and innovations from indus-
try and academia are paving the road for the coming of the
sixth generation (6G) [2]. As stated by Marzetta et al. in
[3, Chapter 1], there are three basic pillars at the physical layer
that can be used to sustain the spectral and energy efficiencies
that these networks are expected to provide: (i) employing
massive multiple-input multiple-output (MIMO), (ii) using
ultra dense network (UDN) deployments, and (iii) exploiting
new frequency bands.

Massive MIMO systems, equipped with a large number
of antenna elements, are intended to be used as multiuser-
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MIMO (MU-MIMO) arrangements in which the number of
antenna elements at each access point (AP) is much larger
than the number of mobile stations (MSs) simultaneously
served over the same time/frequency resources. The operation
of massive MIMO schemes is based on the availability of
channel state information (CSI) acquired through time divi-
sion duplexing (TDD) operation and the use of uplink (UL)
pilot signals. Such a setting allows for very high spectral and
energy efficiencies using simple linear signal processing in
the form of conjugate beamforming or zero-forcing (ZF)1

[3], [5].
In UDNs, a large number of APs deployed within a given

coverage area cooperate to jointly transmit/receive to/from a
(relatively) reduced number of MSs thanks to the availability

1As stated by Björnson et al. in [4], the simple ZF precoder approaches
the performance provided by the capacity-achieving dirty paper cod-
ing/successive interference cancellation (DPC/SIC) precoder/decoder and,
thus, the use of much more complex precoding/decoding schemes can
only offer negligible performance improvements when compared to the ZF
approach, at the cost of increasing the amount of feedback information from
the MSs to the APs.
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of high-performance low-latency fronthaul links connecting
the APs to a central coordinating node. Coordination among
APs can effectively control (or even eliminate) intercellu-
lar interference in an approach that was first referred to as
network MIMO [6], [7], later led to the concept of coordi-
natedmultipoint (CoMP) transmission [8] and, more recently,
to that of cloud radio access network (C-RAN) [9]. In a C-
RAN, the APs, which are treated as a distributed MIMO
system, are connected to a cloud-computing based central
processing unit (CPU) in charge, among many others, of the
baseband processing tasks of all APs. Conceptually similar
to the C-RAN architecture, but explicitly relying on assump-
tions specific of the massive MIMO regime, distributed
massive MIMO-based UDNs have been recently termed as
cell-free massive MIMO networks [10], [11]. In these net-
works, a massive number of APs connected to a CPU are
distributed across the coverage area and, as in the cellu-
lar collocated massive MIMO schemes, exploit the channel
hardening and favorable propagation properties to coherently
serve a large number of MSs over the same time/frequency
resources. Typically using simple linear signal processing
schemes, they are claimed to provide uniformly good quality
of service (QoS) to the whole set of served MSs irrespective
of their particular location in the coverage area.

Since the microwave radio spectrum (from 300 MHz to
6 GHz) is highly congested, the use of massive antenna
systems and network densification alone may not be suffi-
cient to meet the QoS demands in next generation wireless
communications networks. Thus, another promising physi-
cal layer solution that is expected to play a pivotal role in
5G and beyond 5G communication systems is to increase
the available spectrum by exploring new less-congested fre-
quency bands. In particular, there has been a growing inter-
est in exploiting the so-called millimeter wave (mmWave)
bands [12]–[15]. The available spectrum at these frequen-
cies is orders of magnitude higher than that available at the
microwave bands and, moreover, the very small wavelengths
of mmWaves, combined with the technological advances
in low-power CMOS radio frequency (RF) miniaturization,
allow for the integration of a large number of antenna ele-
ments into small form factors. Large antenna arrays can then
be used to effectively implement mmWave massive MIMO
schemes (see, for instance, [16], [17] and references therein)
that, with appropriate beamforming, can more than compen-
sate for the orders-of-magnitude increase in free-space path-
loss produced by the use of higher frequencies.

The performance of cell-free massive MIMO using con-
ventional sub-6 GHz frequency bands and assuming infinite-
capacity fronthaul links has been extensively studied in, for
instance, [11], [18]–[20]. Cell-free massive MIMO networks
using capacity-constrained fronthaul links have also been
considered in [21], [22] but assuming, again, the use of
fully digital precoders in conventional sub-6 GHz frequency
bands. Sub-6 GHzmassiveMIMO systems are often assumed
to implement a fully-digital baseband signal processing
requiring a dedicated RF chain for each antenna element.

The present status of mmWave technology, however, char-
acterized by high-power consumption levels and high pro-
duction costs, precludes the fully-digital implementation of
massive MIMO architectures, and typically forces mmWave
systems to rely on hybrid digital-analog signal processing
architectures. In these hybrid transceiver architectures, a large
antenna array connects to a limited number of RF chains
via high-dimensional RF precoders, typically implemented
using analog phase shifters and/or analog switches, and low-
dimensional baseband digital precoders are then used at the
output of the RF chains [23]–[25]. The network of phase
shifters connecting the array of antennas to the RF chains
determines whether the structure is fully or partially con-
nected [26]. Thus, the assumptions, methods and analytical
expressions in [11], [18]–[22] cannot by applied directly
when assuming the use of mmWave frequency bands. Despite
its evident potential, as far as we know, besides [27], [28]
there is no other research work on cell-free mmWave massive
MIMO systems and, furthermore, the authors of these works
did not face one of the main challenges in the implementation
of cooperative UDNs, that is, the fact that these systems
require of a substantial information exchange between the
APs and the CPU via capacity-constrained fronthaul links.
Moreover, they also considered the use of oversimplified
mmWave channel models and RF precoding stages, without
constraining the available number of RF-chains at each AP.

B. AIM AND CONTRIBUTIONS
Motivated by the above considerations, our main aim in this
paper is to address the design and performance evaluation
of realistic cell-free mmWave massive MIMO systems using
hybrid precoders and assuming the availability of capacity-
constrained fronthaul links connecting the APs and the CPU.
The main contributions of our work can be summarized as
follows:
• The performance of both the downlink (DL) and UL
of cell-free mmWave massive MIMO systems is con-
sidered with particular emphasis on the per-user rate,
rather than the system sum-rate, by posingmax-min fair-
ness resource allocation problems that take into account
the effects of imperfect channel estimation, power con-
trol, non-orthogonality of pilot sequences, and fronthaul
capacity constraints. Instead of assuming the use of
rather simple uniform quantization processes when for-
warding information on the capacity-constrained fron-
thauls, the proposed optimization problems assume the
use of large-block lattice quantization codes able to
approximate a Gaussian quantization noise distribution.
Optimal solutions to these problems are proposed that
combine the use of block coordinate descent methods
with sequential linear programs.

• A hybrid beamforming implementation is proposed
where the RF high-dimensionality phase shifter-
based precoding/decoding stage is based on large-
scale second-order statistics of the propagation
channel, and hence does not need the estimation
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of high-dimensionality instantaneous CSI. The low-
dimensionality basebandMU-MIMOprecoding/decoding
stage can then be easily implemented by standard signal
processing schemes using small-scale estimated CSI.
As will be shown in the numerical results section, such
a reduced complexity hybrid precoding scheme, when
combined with appropriate user selection, performs
very well in the fronthaul capacity-constrained UDN
mmWave-based scenarios under consideration.

• A suboptimal pilot allocation strategy is proposed
that, based on the idea of clustering by dissimilarity,
avoids the computational complexity of the optimal pilot
allocation scheme. The performance of the proposed
dissimilarity cluster-based pilot assignment algorithm is
compared with that of both the pure random pilot allo-
cation approach and the balanced random pilot strategy.

• For those cases in which the number of active MSs in
the network is greater than the number of available RF
chains at a particular AP, a MS selection algorithm is
proposed that aims at maximizing the minimum aver-
age sum-energy (i.e., Frobenius norm) of the equivalent
channel between the APs and any of the active MSs,
constrained by the fact that each AP can only beamform
to a number of MSs less or equal than the number of
available RF chains.

C. PAPER ORGANIZATION AND NOTATIONAL REMARKS
The remainder of this paper is organized as follows.
In Section II the proposed cell-free mmWave massive MIMO
system is introduced. Different subsections are devoted to the
description of the channel model, the large-scale and small-
scale training phases, the channel estimation process, and
the DL and UL payload transmission phases. The achievable
DL and UL rates are presented in Section III and further
developed in Appendices A and B. Section IV is dedicated
to the calculation of the capacity consumption of both the
DL and UL fronthaul links. The pilot assignment, power allo-
cation and quantization optimization processes are described
in Sections V and VI. Numerical results and discussions are
provided in Section VII and, finally, concluding remarks are
summarized in Section VIII.
Notation: Vectors and matrices are denoted by lower-case

and upper-case boldface symbols. The q-dimensional identity
matrix is represented by Iq. The operator det(X) represents
the determinant of matrix X , tr(X) denotes its trace, ‖X‖F is
its Frobenius norm, whereas X−1, XT , X∗ and XH denote its
inverse, transpose, conjugate and conjugate transpose (also
known as Hermitian), respectively. With a slight abuse of
notation, the operator diag(x) is used to denote a diagonal
matrix with the entries of vector x on its main diagonal, and
the operator diag(X) is used to denote a vector containing the
entries in the main diagonal of matrix X . The expectation
operator is denoted by E{·}. Finally, CN (m,R) denotes a
circularly symmetric complex Gaussian vector distributions
with mean m and covariance R, N (0, σ 2) denotes a real
valued zero-mean Gaussian random variable with standard

FIGURE 1. Allocation of the samples in large-scale and short-scale
coherence intervals.

deviation σ , and U[a, b] represents a random variable uni-
formly distributed in the range [a, b].

II. SYSTEM MODEL
Let us consider a cell-free massive MIMO system where a
CPU coordinates the communication between M APs and
K single-antenna MSs randomly distributed in a large area.
Each of the APs communicates with the CPU via error-free
fronthaul links with DL and UL capacities CFd and CFu,
respectively. Baseband processing of the transmitted/received
signals is performed at the CPU, while the RF operations are
carried out at the APs. Each AP is equipped with an array of
N > K antennas and L ≤ N RF chains. A fully-connected
architecture is considered where each RF chain is connected
to the whole set of antenna elements using N analog phase
shifters. Without loss of essential generality, it is assumed in
this paper that the number of active RF chains at each of the
APs in the network is equal to LA = min{K ,L}. That is,
if K ≤ L, all APs in the cell-free network provide service
to the whole set of MSs and if K > L, instead, each AP can
only provide service to L out of the K MSs in the network
and, thus, an algorithm must be devised to decide which are
the MSs to be beamformed by each of the APs.

The propagation channels linking the APs to the MSs
are typically characterized by small-scale parameters that
are (almost) static over a coherence time-frequency inter-
val of τc time-frequency samples (see [3, Chapter 2]), and
large-scale parameters (i.e., path loss propagation losses and
covariance matrices) that can be safely assumed to be static
over a time-frequency interval τLc � τc. As shown in the
following subsections, these channel characteristics can be
leveraged to simplify both the channel estimation and the
precoding/combining processes. In particular, DL and UL
transmissions between APs and MSs are organized in a half-
duplex TDD operation whereby each coherence interval is
split into three phases, namely, the UL training phase, the DL
payload data transmission phase and the UL payload data
transmission phase, and every large-scale coherence interval
τLc the system performs an estimation of the large-scale
parameters of the channel (see Fig. 1). In the UL training
phase, all MSs transmit UL training orthogonal pilots allow-
ing the APs to estimate the propagation channels to every MS
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FIGURE 2. Operational schedule of the proposed cell-free mmWave
massive MIMO system.

in the network.2 Subsequently, these channel estimates are
used to detect the signals transmitted from the MSs in the UL
payload data transmission phase and to compute the precod-
ing filters governing the DL payload data transmission. Not
shown are guard intervals between UL and DL transmissions.
In order to ease the identification of the different tasks that
need to be conducted at both the CPU and the APs, Fig. 2
provides the operational schedule of the proposed cell-free
mmWave massive MIMO system and the sections of this
paper describing each of these tasks.

A. CHANNEL MODEL
MmWave propagation is characterized by very high
distance-based propagation losses that lead to sparse scatter-
ing multipath propagation. Furthermore, the use of mmWave
transmitters and receivers with large tightly-packet antenna
arrays results in high antenna correlation levels. These char-
acteristics make most of the statistical channel models used
in conventional sub-6 GHz MIMO research work inaccurate
when dealing with mmWave scenarios. Thus, a modified
version of the discrete-time narrowband clustered channel
model proposed byAkdeniz et al. in [14] and further extended
by Samimi and Rappaport in [29] will be used in this paper
to capture the peculiarities of mmWave channels.

The link between the mth AP and the kth MS will be
considered to be in one out of three possible conditions:
outage, line-of-sight (LOS) or non-line-of-sight (NLOS) with
probabilities:

pout(dmk ) = max
(
0, 1− e−aoutdmk+bout

)
, (1a)

pLOS(dmk ) = (1− pout(dmk )) e−aLOSdmk , (1b)

pNLOS(dmk ) = 1− pout(dmk )− pLOS(dmk ), (1c)

respectively, where dmk is the distance (in meters) between
the AP and the MS, and, according to [14, Table 1], 1/aout =
30 m, bout = 5.2, and 1/aLOS = 67.1 m. Those links that
are in outage will be characterized with infinite propagation
losses, while for the links that are not in outage, the propaga-
tion losses will be characterized using a standard linear model

2Note that channel reciprocity can be exploited in TDD systems and
therefore only UL pilots need to be transmitted.

with shadowing as

PL(dmk )[dB] = α + 10β log10(dmk )+ χmk , (2)

whereα andβ are the least square fits of floating intercept and
slope and depend on the carrier frequency and on whether the
link is in LOS or NLOS (see [14, Table 1]), and χmk denotes
the large-scale shadow fading component, which is modelled
as a zero mean spatially correlated normal random variable
with standard deviation σχ (again, see [14, Table 1] to obtain
the typical values of σχ for LOS and NLOS links) whose
spatial correlation model is described in [11, (54)-(55)].

The UL channel vector hmk ∈ CN×1 between MS k and
APmwill be modelled as the sum of the contributions of Cmk
scattering clusters, each contributing Pmk propagation paths
as

hmk =
Cmk∑
c=1

Pmk∑
p=1

αmk,cpa
(
θmk,cp, φmk,cp

)
, (3)

where αmk,cp is the complex small-scale fading gain on the
pth path of cluster c, and a

(
θmk,cp, φmk,cp

)
represents the

AP normalized array response vector at the azimuth and
elevation angles θmk,cp and φmk,cp, respectively. These angles,
as stated by Akdeniz et al. in [14, Section III.E] can be
generated as wrapped Gaussians around the cluster central
angles with standard deviation given by the root mean square
(rms) angular spreads for the cluster. The azimuth cluster
central angles are uniformly distributed in the range [−π, π]
and the elevation cluster central angles are set to the LOS
elevation angle. Moreover, the cluster rms angular spreads
are exponentially distributed with a mean equal to 1/λrms
that depends on the carrier frequency and on whether we
are considering the azimuth or elevation directions (see [14,
Table 1]). The number of clusters is distributed as a random
variable of the form

Cmk ∼ max {Poisson(σC ), 1} , (4)

where σC is set to the empirical mean ofCmk . The small-scale
fading gains are distributed as

αmk,cp ∼ CN
(
0, γmk,c10−PL(dmk )/10

)
, (5)

where the cluster c is assumed to contribute with a fraction of
power given by

γmk,c =
Nγ ′mk,c

Pmk
∑Cmk

j=1 γ
′
mk,j

, (6)

with

γ ′mk,j = U rτ−1
mk,j 10

Zmk,j/10, (7)

Umk,j ∼ U[0, 1], Zmk,j ∼ N (0, ζ 2), and the constants rτ and
ζ 2 being treated as model parameters (see [14, Table 1]).

Although the small-scale fading gains αmk,cp are assumed
to be static throughout the coherence interval and then change
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independently (i.e., block fading), the spatial covariance
matrices

Rmk = E
{
hmkhHmk

}
= 10−PL(dmk )/10

Cmk∑
c=1

γmk,c

×

Pmk∑
p=1

a
(
θmk,cp, φmk,cp

)
aH
(
θmk,cp, φmk,cp

)
, (8)

are assumed to vary at a much smaller pace (i.e., τLc � τc).

B. LARGE-SCALE TRAINING PHASE: RF
PRECODER/COMBINER DESIGN
In order to exploit the UL/DL channel reciprocity using the
TDD frame structure shown in Fig. 1, it is assumed in this
paper that the N × LA RF matrixWRF

m , describing the effects
of the active analog phase shifters at themth AP, is common to
the DL (RF precoding phase) and UL (RF combining phase).
Furthermore, denoting by Km =

{
κm1, . . . , κmLA

}
the set of

LA MSs beamformed by the mth AP, it is assumed thatWRF
m

is a function of only the spatial channel covariance matrices
{Rmk}k∈Km , known at the mth AP through spatial channel
covariance estimation for hybrid analog-digital MIMO pre-
coding architectures (see e.g. [30]–[33]).

Using eigen-decomposition, the covariance matrix of
the propagation channel linking MS k and AP m can
be expressed as Rmk = Umk3mkUH

mk , where 3mk =

diag
([
λmk,1 . . . λmk,rmk

])
contains the rmk non-null eigenval-

ues of Rmk , andUmk is the N × rmk matrix of the correspond-
ing eigenvectors. Hence, assuming the use of (constrained)
statistical eigen beamforming [34], [35], the analog RF pre-
coder/combiner can be designed as

WRF
m =

[
wRF
mκm1 . . . w

RF
mκmLA

]
=

[
e−j
6 umκm1,max . . . e

−j 6 umκmLA ,max
]
, (9)

where umk,max is the dominant eigenvector of Rmk associ-
ated to the maximum eigenvalue λmk,max, and the function
6 x returns the phase angles, in radians, for each element
of the complex vector x. Note that using the RF precod-
ing/combining matrix, the equivalent channel vector between
MS k andAPm, including the RF precoding/decodingmatrix,
is defined as

gmk = WRF
m

T
hmk ∈ CLA×1, (10)

whose dimension is much less than the number of antennas
of the massive MIMO array used at the mth AP, thus largely
simplifying the small-scale training phase.

C. LARGE-SCALE TRAINING PHASE: SELECTION OF MSs
TO BEAM FORM FROM EACH AP
As previously stated, in those highly probable cases in which
the number of active MSs in the network is greater than the
number of available RF chains at each AP (i.e., K > L),

the mth AP, with m ∈ {1, . . . ,M}, can only beamform
to a group of L out of the K MSs in the network, which
are indexed by the set Km = {κm1, . . . , κmL}. As the RF
beamforming matrices at the APs are a function of only
the large-scale spatial channel covariance matrices and are
common to both the UL and the DL, the selection of the sets
of MSs to beamform from each AP must also be based only
on the available large-scale CSI. Inspired by the Frobenius
norm-based suboptimal user selection algorithm proposed by
Shen et al. in [36], a selection algorithm is proposed that aims
at maximizing the sum of the average energy (i.e., average
Frobenius norm) of the equivalent channels (including the
corresponding beamformer) between the M APs and the K
MSs with the constraints that, first, the minimum average
energy of the equivalent channel between theM APs and any
of the active MSs must be maximized and, second, that each
AP can only beamform to L MSs. Note that this optimization
problem, which tends to provide some degree of (average)
max-min fairness among MSs, can be efficiently solved by
using an iterative reverse-delete algorithm (similar to that
used in graph theory to obtain a minimum spanning tree
from a given connected, edge-weighted graph). In particular,
at the beginning of the ith iteration of the algorithm the cell-
free network is represented by a very simple edge-weighted
directed graph withM source nodes and K sink nodes, where
the mth source node, representing the mth AP, is connected
to a group K(i)

m of sink nodes, representing the active MSs
beamformed by the mth AP. The connection (edge) between
the mth source node and the lth sink node in K(i)

m is weighted
by the average Frobenius norm of the equivalent channel
linking the mth AP and MS l ∈ K(i)

m , that can be obtained
as

ξml = E
{∥∥∥wRF

ml
T
hml

∥∥∥2
F

}
= wRF

ml
T
RmlwRF

ml . (11)

The average sum energy of the equivalent channels between
the M APs and MS k at the beginning of the ith iteration is

E (i)
k =

∑
m∈M(i)

k

ξmk , (12)

where M(i)
k is the set of APs beamforming to MS k at

the beginning of the ith iteration. During this iteration,
the reverse-delete algorithm removes the edge (i.e., the RF
chain and associated beamformer) that, first, goes out of one
of those APs still beamforming to more than L MSs and,
second, has the minimum weight maximizing the minimum
average sum energy after removal. The algorithm begins with
a fully connected graph and stops when all APs beamform
to exactly L MSs. Hence, note that M (K − L) iterations are
needed to select the sets Km for m ∈ {1, . . . ,M}.

D. SMALL-SCALE TRAINING PHASE
Communication in any coherence interval of a TDD-based
massiveMIMO system invariably starts with theMSs sending
the pilot sequences to allow the channel to be estimated at the
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APs. Let τp denote the UL training phase duration (measured
in samples on a time-frequency grid) per coherence interval.
During the UL training phase, all K MSs simultaneously
transmit pilot sequences of τp samples to the APs and thus,
the LA × τp received UL signal matrix at the mth AP is given
by

Ypm =
√
τpPp

K∑
k ′=1

gmk ′ϕ
T
k ′ + Npm, (13)

where Pp is the transmit power of each pilot symbol, ϕk
denotes the τp × 1 training sequence assigned to MS k ,
with ‖ϕk‖

2
F = 1, and Npm is an LA × τp matrix of

i.i.d. additive noise samples with each entry distributed as3

CN (0, σ 2
u (N )). Ideally, training sequences should be chosen

to be mutually orthogonal, however, since in most practical
scenarios it holds that K > τp, a given training sequence
is assigned to more than one MS, thus resulting in the so-
called pilot contamination, a widely studied phenomenon in
the context of collocated massive MIMO systems. For addi-
tional details on the relation between channel estimation, pilot
signals length and pilot contamination error, please refer to
[3], [5], [10], [11], [37].

E. CHANNEL ESTIMATION
Channel estimation is known to play a central role in the
performance of massive MIMO schemes [38] and also in the
specific context of cell-free architectures [11]. The minimum
mean square error (MMSE) estimation filter for the channel
between the kth active MS and the mth AP can be calculated
as

Dmk = argmin
D

E
{∥∥gmk − DYpmϕ∗k∥∥2}

=
√
τpPpRRF

mkQ
−1
mk , (14)

where

RRF
mk = E

{
gmkg

H
mk

}
= WRF

m
T
RmkWRF

m
∗
, (15)

and

Qmk = τpPp
K∑

k ′=1

RRF
mk ′

∣∣∣ϕTk ′ϕ∗k ∣∣∣2 + σ 2
u (N )ILA . (16)

Hence, the corresponding estimated channel vector can be
expressed as

ĝmk = DmkYpmϕ
∗
k =

√
τpPpRRF

mkQ
−1
mkYpmϕ

∗
k . (17)

3Note that in theUL of a fully-connected hybrid beamforming architecture
each reception chain is composed of N antenna elements, each connected
to a low-noise amplifier (LNA) characterized by a power gain GLNA and
a noise temperature TLNA. Each of the N LNAs feeds an analog passive
phase shifter characterized by an insertion loss LPS. The outputs of the N
phase shifters are introduced to a power combiner whose insertion losses
are typically proportional to the number of inputs, that is, LPC = NLPCin .
Finally, the output of the power combiner is introduced to an RF chain
characterized by a power gain GRF and a noise temperature TRF. Thus,
the equivalent noise temperature of each receive chain can be obtained as

Tu = N
(
T0 + TLNA +

T0(LPSLPCin−1)
GLNA

+
TRFLPSLPCin

GLNA

)
.

FIGURE 3. System block diagram during the DL payload transmission
phase.

The MMSE channel vector estimates can be shown to be
distributed as ĝmk ∼ CN

(
0, R̂

RF
mk

)
, where

R̂
RF
mk , τpPpR

RF
mkQ

−1
mkR

RF
mk

H
. (18)

Furthermore, the channel vector gmk can be decomposed as
gmk = ĝmk+g̃mk , where g̃mk is theMMSE channel estimation
error, which is statistically independent of both gmk and ĝmk .

F. DOWNLINK PAYLOAD DATA TRANSMISSION
Let us define sd = [sd 1 . . . sdK ]T as the K × 1 vector of
symbols jointly (cooperatively) transmitted from the APs to
the MSs, such that E

{
sd sHd

}
= IK . Let us also define xm =

Pm (sd ) as the N × 1 vector of signals transmitted from the
mth AP, where Pm (sd ) is used to denote the mathematical
operations (linear and/or non-linear) used to obtain xm from
sd . Note that this vector must comply with a power constraint
E
{
‖xm‖2F

}
≤ Pm, where Pm is the maximum average trans-

mit power available at AP m. Using this notation, the signal
received by MS k can be expressed as

yd k =
M∑
m=1

hTmkxm + nd k , (19)

where nd k ∼ CN (0, σ 2
d ) is the Gaussian noise sample at

MS k . The vector yd =
[
yd 1 . . . ydK

]T containing the signals
received by the K scheduled MSs in the network can then be
expressed as

yd =
M∑
m=1

HT
mxm + nd , (20)

where Hm = [hm1 . . . hmK ] and nd = [nd 1 . . . ndK ]T .
As schematically represented in Fig. 3, the mathematical

operations that symbol vector sd undergoes before being
transmitted, generically represented as xm = Pm(sd ), for all
m ∈ {1, . . . ,M}, include, first, a power allocation process and
a baseband precoding task at the CPU, second, a quantization
process of all or part of the data that must be sent from
the CPU to the APs through the fronthaul links and, third,
an unquantization process and anRF precoding task at each of
the APs. Let us denote byQdm(x) andQd

−1
m (x) the quantiza-

tion and unquantization mathematical operations performed
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by the compress-after-precoding (CAP)-based CPU-AP func-
tional split on a vector of signal samples x to be transmitted
by the mth AP. Due to the distortion introduced by the quan-
tization/unquantization processes, we have that [39], [40]

Q̂dm(x) , Qd
−1
m (Qdm(x)) = x+ qdm, (21)

where qdm is the quantization noise vector, which is assumed

to be statistically distributed as qdm ∼ CN
(
0, σ 2

qdmI
)
.

As shown by Zamir et al. in [39], this assumption is supported
by the fact that large-block lattice quantization codes are able
to approximate a Gaussian quantization noise distribution.
Thus, the mathematical operations describing the CPU-AP
functional split considered in this paper can be summarized
as

xm = Pm(sd ) = WRF
m Q̂dm

(
WBB

d mϒ
1/2sd

)
= WRF

m

(
WBB

d mϒ
1/2sd + qdm

)
, (22)

where WBB
d =

[
WBB

d 1
T
. . . WBB

d M
T
]T
∈ CMLA×K , with

WBB
d m =

[
wBB
dm1 . . . w

BB
dmK

]
∈ CLA×K denoting the baseband

precoding matrix affecting the signal transmitted by the mth
AP, and ϒ = diag ([υ1 . . . υK ]) is a K × K diagonal matrix
containing the power control coefficients in its main diagonal,
which are chosen to satisfy the following necessary power
constraint at the mth AP

E
{
‖xm‖2F

}
=

K∑
k=1

υkθ
BB/RF
mk + σ 2

q dm

∥∥∥WRF
m

∥∥∥2
F

=

K∑
k=1

υkθ
BB/RF
mk + σ 2

q dm
LAN ≤ Pm, (23)

where we have used the definition

θBB/RFmk = E
{∥∥∥WRF

m wBB
dmk

∥∥∥2
F

}
. (24)

Using the proposed hybrid CAP approach, the signal
received by the K MSs can be rewritten as

yd =
M∑
m=1

HT
mW

RF
m WBB

d mϒ
1/2sd

+

M∑
m=1

HT
mW

RF
m qdm + nd

= GTWBB
d ϒ1/2sd + ηd , (25)

where G = [GT1 . . . G
T
M ]T , with Gm = WRF

m
T
Hm, repre-

senting the equivalent MIMO channel matrix between the K
MSs and the M APs, including the RF precoding/decoding
matrices, and

ηd = GT qd + nd , (26)

includes the thermal noise as well as the quantization noise
samples received from all the APs in the network. Now, using

the classical ZFMU-MIMObaseband precoder to harness the
spatial multiplexing, we have that

WBB
d = Ĝ

∗
(
Ĝ
T
Ĝ
∗
)−1

(27)

or, equivalently,

WBB
d m = Ĝ

∗

m

(
Ĝ
T
Ĝ
∗
)−1
∀m, (28)

where we have assumed that G = Ĝ + G̃ and Gm = Ĝm +
G̃m. Consequently, the signal received by the kth MS can be
expressed as

yd k = gTk Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

ϒ1/2sd + ηd k

=

(
ĝTk + g̃

T
k

)
Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

ϒ1/2sd + ηd k

=
√
υksd k + g̃

T
k Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

ϒ1/2sd + ηd k (29)

where ηd k = gTk qd + nd k . The first term denotes the useful
received signal, the second term contains the interference
terms due to the use of imperfect CSI (pilot contamination),
and the third term encompass both the quantification and
thermal noise samples.

G. UPLINK PAYLOAD DATA TRANSMISSION
In the UL, the vector of received signals at the output of the
LA RF chains (including the RF phase shifters) of the mth AP
is given by

rum =
√
Pu

K∑
k ′=1

gmk ′
√
ωk ′suk ′ + num

=

√
PuGm�1/2su + num, (30)

where Pu is the maximum average UL transmit power avail-
able at any of the active MSs, su = [su1 . . . suK ]T denotes
the vector of symbols transmitted by the K active MS,
� = diag([ω1 . . . ωK ]), with 0 ≤ ωk ≤ 1, is a matrix
containing the power control coefficients used at theMSs, and
num ∼ CN (0, σ 2

u (N )ILA ) is the vector of additive thermal
noise samples at the output of the LA RF chains of the mth
AP. The received vector of signals at each of the APs in
the network is quantized and forwarded to the CPU via the
UL fronthaul links, where they are unquantized and jointly
processed using a set of baseband combining vectors. Using
a similar approach to that employed to model the DL trans-
mission, the received vector of (unquantized) samples from
the mth AP can be expressed as4

zum = Q̂um (rum) = rum + qum, (31)

where qum is the quantization noise vector, which is assumed

to be statistically distributed as qum ∼ CN
(
0, σ 2

qumILA
)
.

4Note that the schematic block diagram describing the UL payload data
transmission phase is similar to the one shown in Fig. 3, however, the pro-
cessing flux is reversed, the power allocation is performed at the MSs,
the quantization and unquantization tasks are performed at the APs and CPU,
respectively, and the fronthaul capacity is equal to CF u.
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Now, assuming the use of ZF MIMO detection, the CPU uses
the detection matrix

WBB
u =

(
Ĝ
H
Ĝ
)−1

Ĝ
H
= WBB

d
T

(32)

or, equivalently

WBB
um =

(
Ĝ
H
Ĝ
)−1

Ĝ
H
m = WBB

dm
T
, ∀m, (33)

to jointly process the vector zu =
[
zuT1 . . . zu

T
M

]T and obtain
the vector of detected samples

yu = WBB
u zu =

√
PuWBB

u G�1/2su + ηu
=

√
Pu�1/2su +

√
PuWBB

u G̃�1/2su + ηu, (34)

where ηu = WBB
u
(
qu + nu

)
. Again, the first term denotes the

useful received signal, the second term contains the interfer-
ence terms due to the use of imperfect CSI, and the third term
includes both the quantification and thermal noise samples.
The detected sample corresponding to the symbol transmitted
by the kth MS can then be obtained as

yuk =
√
Puω

1/2
k suk +

√
Pu
[
WBB

u G̃�1/2su
]
k
+ ηuk , (35)

where [x]k denotes the kth entry of vector x.

III. ACHIEVABLE RATES
Analysis techniques similar to those applied, for instance,
in [3], [11], [18], [41]–[43], are used in this section to derive
DL and UL achievable rates. In particular, the sum of the sec-
ond and third terms on the right hand side (RHS) of (29), for
the DL case, and (35), for the UL case, are treated as effec-
tive noise. The additive terms constituting the effective noise
are, in both DL and UL cases, mutually uncorrelated, and
uncorrelated with sd k and suk , respectively. Therefore, both
the desired signal and the so-called effective noise are uncor-
related. Now, recalling the fact that uncorrelated Gaussian
noise represents the worst case, from a capacity point of view,
and that the complex-valued fast fading random variables
characterizing the propagation channels between different
pairs of AP-MS connections are independent, the DL and UL
achievable rates (measured in bits per second per Hertz) for
MS k can be obtained as stated in the following theorems:
Theorem 1 (Downlink achievable rate): An achievable

rate of MS k using the analog precoders WRF
m , for all

m ∈ {1, . . . ,M}, and the ZF baseband precoder WBB
d =

Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

is Rd k = log2 (1+ SINRd k), with

SINRd k =
υk∑K

k ′=1 υk ′$kk ′ + σ
2
ηdk

, (36)

where

σ 2
ηdk
=

M∑
m=1

σ 2
q dm

tr
(
RRF
mk

)
+ σ 2

d , (37)

and

$kk ′ =

[
diag

(
E
{
WBB

d
H
g̃∗k g̃

T
kW

BB
d

})]
k ′
. (38)

Proof: See Appendix A. �
Theorem 2 (Uplink achievable rate): An achievable UL

rate for the kth MS in the Cell-Free Massive MIMO sys-
tem with limited capacity fronthaul links and using ZF
MIMO detection, for any M , N and K , is given by Ruk =
log2 (1+ SINRuk), with

SINRuk =
Puωk

Pu
∑K

k ′=1 ωk ′δkk ′ + σ
2
ηuk

, (39)

where

δkk ′ =
[
diag

(
E
{
G̃
H
wBB
uk

H
wBB
uk G̃

})]
k ′

(40)

with wBB
uk denoting the kth row ofWBB

u , or, equivalently,

δkk ′ =
[
diag

(
E
{
WBB

u g̃k ′ g̃
H
k ′W

BB
u

H
})]

k
, (41)

and

σ 2
ηuk
=

M∑
m=1

(
σ 2
q um
+ σ 2

u (N )
)
νumk , (42)

with

νumk =
[
diag

(
E
{
WBB

umW
BB
um

H
})]

k
. (43)

Proof: See Appendix B. �
Note that [18], as well as this paper, are based on the use

of ZF precoding, consequently, the corresponding signal-to-
interference-plus-noise ratio (SINR) equations must unavoid-
ably bear some resemblance. Nevertheless, as it has been
stressed in the text, the conceptual backgrounds used to obtain
these analytical expressions are markedly different in the
sense that our approach incorporates the influence of the
mmWave-based RF signal processing and constraints, while
taking into account the quantization/unquantization effects
associated to the use of capacity-constrained fronthaul links.

IV. FRONTHAUL CAPACITY CONSUMPTION
The DL quantization process performed at themth AP can be
expressed as

Q̂dm

(
WBB

d mϒ
1/2sd

)
= WBB

d mϒ
1/2sd + qdm. (44)

From standard random coding arguments [44], vec-
tor sd can be safely assumed to be distributed as
sd ∼ CN (0, IK ) and thus, the quantized vector
Q̂dm

(
WBB

d mϒ
1/2sd

)
is distributed as Q̂dm

(
WBB

d mϒ
1/2sd

)
∼

CN
(
0,WBB

d mϒW
BB
d m

H
+ σ 2

q dm
ILA
)
. Furthermore, as the dif-

ferential entropy of a vector x ∼ CN (ω,2) is given by
H(x) = log det(πe2) [44], the required average rate to
transfer the quantized vector Q̂dm

(
WBB

d mϒ
1/2sd

)
on the cor-

responding DL fronthaul link can be obtained as (in bps/Hz)

Ĉdm = E
{
I
(
Q̂dm

(
WBB

d mϒ
1/2sd

)
;WBB

d mϒ
1/2sd

)}
= E

{
H
(
Q̂dm

(
WBB

d mϒ
1/2sd

))}
−E

{
H
(
Q̂dm

(
WBB

d mϒ
1/2sd

)∣∣WBB
d mϒ

1/2sd
)}

= E

{
log2 det

(
1

σ 2
q dm

WBB
d mϒW

BB
d m

H
+ ILA

)}
, (45)
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where I (x̂; x) is used to denote the mutual information
between vectors x̂ and x, andH(x̂|x) is the differential entropy
of x̂ conditioned on x. Since the determinant is a log-concave
function on the set of positive semidefinite matrices, it fol-
lows from Jensen’s inequality that

Ĉdm ≤ log2 det

(
1

σ 2
q dm

E
{
WBB

d mϒW
BB
d m

H
}
+ILA

)

= log2 det

(
1

σ 2
q dm

K∑
k=1

υkE
{
wBB
mkw

BB
mk

H
}
+ILA

)
. (46)

Analogously, the UL quantization process performed at the
mth AP is given by Q̂um (rum) = rum + qum. Thus, using
arguments similar to those used in the DL case, the required
average rate to transfer the quantized vector Q̂um (rum) on the
corresponding UL fronthaul link can be upper bounded as (in
bps/Hz)

Ĉum = E
{
I
(
Q̂um (rum) ; rum

)}
= E

{
H
(
Q̂um (rum)

)}
− E

{
H
(
Q̂um (rum)

∣∣rum)}
≤ log2 det

(
Pu
σ 2
q um

K∑
k=1

ωkRRF
mk +

(
σ 2
u (N )
σ 2
q um

+ 1

)
ILA

)
.

(47)

V. PILOT ASSIGNMENT
To warrant an appropriate system performance, the radio
resource management (RRM) unit must efficiently manage
both the pilot assignment and the UL and DL power control.
As the pilots are not power controlled, pilot assignment and
power control can be conducted independently. Since the
length of the pilot sequences is limited to τp, there only exist
τp orthogonal pilot sequences. In a network with K ≤ τp
MSs, an optimal pilot assignment strategy simply allocates
K orthogonal pilots to the K MSs. The real pilot assignment
problem arises when K > τp. In this case, fully orthogonal
pilot assignment is no longer possible and hence, other pilot
assignment strategies must be devised.

On the one hand, designing an optimal pilot assignment
strategy aiming at maximizing the minimum rate allocated
to the active MSs in the network is a very difficult com-
binatorial problem, computationally unmanageable in most
network setups of practical interest [11]. On the other hand,
using straightforward strategies such as, for instance, the pure
random pilot assignment (RPA) scheme [45], where each
MS is randomly assigned one pilot sequence out of the set
of τp orthogonal pilot sequences, or the balanced random
pilot assignment (BRPA) scheme, where eachMS is allocated
a pilot sequence that is sequentially and cyclically selected
from the ordered set of available orthogonal pilots, provides
poor performance results. In order to avoid the computa-
tional complexity of the optimal strategies while improving
the performance of the baseline RPA or BRPA approaches,
a suboptimal solution is proposed in this paper that is based
on the idea of clustering by dissimilarity. This suboptimal

approach, that will be termed as the dissimilarity cluster-
based pilot assignment (DCPA) strategy, is motivated by the
following key observation:

Key observation: In those scenarios where K > τp,
cell-free communication is severely impaired whenever MSs
showing very similar large-scale propagation patterns to
the set of APs (that is, MSs typically located nearby) are
allocated the same pilot sequence. In this case, the inter-MS
interference leads to very poor channel estimates at all APs
and, eventually, to low SINRs.

The clustering algorithm proposed in this work basically
ensures that pilot sequences are only reused by MSs showing
dissimilar large-scale propagation patterns to the APs (that
is, MSs typically located sufficiently apart). Two key aspects
regarding the clustering operation are thus, on the one hand,
to decide which should be the large-scale propagation pattern
that ought to be used to represent a given MS and, on the
other hand, to decide what metric should be used to measure
similarity among the large-scale propagation patterns char-
acterizing different MSs. To this end, and resting upon the
premise that the CPU has perfect knowledge of the large-
scale gains, let ξ k = [ξ1k . . . ξMk ]T denote theM × 1 vector
containing the average Frobenius norms of the equivalent
channels linking the kth MS to allM APs in the cell-free net-
work. Vector ξ k can be considered as an effective fingerprint
characterizing the location of MS k . Now, although no single
definition of a similarity measure exists, the so-called cosine
similarity measure is one of the most commonly used simi-
larity metrics when dealing with real-valued vectors. Hence,
as the fingerprint vectors characterizing the different MSs
are non-negative real-valued, the cosine similarity measure
between two fingerprint vectors ξ k and ξ k ′ , defined as

fD
(
ξ k , ξ k ′

)
=

ξTk ξ k ′

‖ξ k‖2‖ξ k ′‖2
, (48)

will be used as a proper similarity metric in our work. The
resulting similarity values range from 0, meaning orthogonal-
ity (perfect dissimilarity), to 1, meaning exact match (perfect
similarity).

The proposed DCPA algorithm proceeds as follows. In a
first step, it calculates the fingerprint of an imaginary MS
centroid, defined as

ξC =
1
K

K∑
k=1

ξ k . (49)

Then, it moves onward to the calculation of the cosine similar-
ity measures among the fingerprint vectors characterizing the
K MSs in the network and the fingerprint of the centroid, that
is, the algorithm proceeds to the calculation of fD

(
ξ k , ξC

)
, for

all k ∈ {1, . . . ,K }. The MSs are then sorted in descending
order of similarity with the centroid, that is, the algorithm
obtains the ordered set of subindices O = {o1, o2, . . . , oK },
such that fD

(
ξo1 , ξC

)
≤ fD

(
ξo2 , ξC

)
≤ · · · ≤ fD

(
ξoK , ξC

)
.

Once the MSs have been sorted, the algorithm constructs τp
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clusters of MSs, namely K1, . . . ,Kτp , with

Kt = O
(
t : τp : K

)
=
{
ot , ot+τp , ot+2τp , . . .

}
, ∀t ∈ {1, . . . , τp}, (50)

and all MSs in cluster Kt , which are located far from each
other, are allocated the same pilot code ϕt . Note that the
application of this algorithm ensures that, as far as it is
possible, twoMSs having similar large-scale propagation fin-
gerprints are allocated different pilot codes and, thus, they do
not interfere to each other during the UL channel estimation
process. In other words, it aims at minimizing the residual
interuser interference terms in both (29) and (35).

VI. MAX-MIN POWER ALLOCATION AND OPTIMAL
QUANTIZATION
A. DOWNLINK POWER CONTROL AND QUANTIZATION
In line with previous research works on cell-free architectures
[10], [11], [18], [21], our aim in this subsection is to find the
power control coefficients υk , for all k ∈ {1, . . . ,K }, and the
quantization noise variances σ 2

q dm
, for all m ∈ {1, . . . ,M},

that maximize the minimum of the achievable DL rates of
all MSs while satisfying the average transmit power and DL
fronthaul capacity constraints at each AP. As the logarithmic
function is a monotonic increasing function of its argument,
maximizing the minimum achievable DL rate is equivalent
to maximizing the minimum achievable SINR [3], [10], [11],
[18] thus, mathematically, this optimization problem can be
formulated as

max
ϒ�0
σ qd�0

min
k∈{1,...,K }

υk∑K
k ′=1 υk ′$kk ′ + σ

2
ηdk

s.t.
K∑
k=1

υkθ
BB/RF
mk ≤ Pm − σ 2

q dm
LAN , ∀m,

log2 det

(
K∑
k=1

υk

σ 2
q dm

RBB
mk + ILA

)
≤ CFd , ∀m,

(51)

where we have used the definition σ qd = [σqd1 . . . σqdM ]T .
Optimization problem (51) is characterized by continuous

objective and constraint functions of interdependent block
variables, namely, ϒ and σ qd . A widely used approach for
solving optimization problems of this class is the so-called
block coordinate descend (BCD) method [46], [47]. This
is an iterative optimization approach that, at each iteration
and in a cyclic order, optimizes one of the blocks while the
remaining variables are held fixed. As stated by the authors
of [46], [47], convergence of the BCD method is ensured
whenever each of the subproblems to be optimized in every
iteration can be exactly solved to its unique optimal solution.
In the following we show that each of the subproblems into
which (51) is decomposed can be solved to its unique optimal
solution and, thus, both a linear rate of convergence and
optimal performance of the BCD approach are ensured at an
affordable complexity [46], [47].

The first important fact to note is that, given a power
allocation matrix ϒ(i−1) obtained at the (i − 1)th iteration,
and as the achievable user rates monotonically increase with
the capacity of the fronthaul links between the APs and
the CPU, the optimal solution for the acceptable fronthaul
quantization noise in the ith iteration is achieved when the
fronthaul capacity constraints are satisfied with equality, that
is, when

det

(
K∑
k=1

υ
(i−1)
k

σ 2
q
(i)
dm

RBB
mk + ILA

)
= 2CF d , ∀m. (52)

Note that σ 2
q
(i)
dm

cannot be expressed in a closed-form alge-
braic expression as it only admits a solution in the form of a
transcendental function

σ 2
q
(i)
dm
= Fd

(
ϒ(i−1),

{
RBB
mk

}K
k=1

,CFd

)
(53)

that can be numerically solved by applying mathematical
software tools to (52).

Once the optimal block of variables σ q
(i)
d have been

obtained, the optimization problem in (51) can be rewritten
in terms of the power allocation matrix ϒ(i) as

max
ϒ(i)
�0

min
k∈{1,...,K }

υ
(i)
k

K∑
k ′=1

υ
(i)
k ′ γkk ′ +

M∑
m=1

σ 2
q
(i)
dm

tr
(
RRF
mk

)
+ σ 2

d

s.t.
K∑
k=1

υ
(i)
k θ

BB/RF
mk ≤ Pm − NLAσ 2

q
(i)
dm
, ∀m. (54)

Note that this is a convergent quasi-linear optimization prob-
lem that can be solved using conventional standard convex
optimization methods [11], [18].

B. UPLINK POWER CONTROL AND QUANTIZATION
In this subsection we aim at finding the power control coef-
ficients ωk , for all k ∈ {1, . . . ,K }, and quantization noise
variances σ 2

q um
, for all m ∈ {1, . . . ,M}, that maximize the

minimum of the achievable ulink rates of all MSs while
satisfying the power control coefficient constraints at each
MS and the UL fronthaul capacity constraints at each AP.
This optimization problem can be formulated as

max
ω�0
σ qu�0

min
k∈{1,...,K }

Puωk
Pu
∑K

k ′=1 ωk ′δkk ′ + σ
2
ηuk

s.t. 0 ≤ ωk ≤ 1, ∀ k,

det

(
Pu
σ 2
q um

K∑
k=1

ωkRRF
mk + ϑmILA

)
≤ 2CF u , ∀m,

(55)

where σ qu = [σqu1 . . . σquM ]T , and we have used the defi-
nition ϑm = 1 + σ 2

u (N )/σ 2
q um

. As for the DL case, problem
(55) admits the use of the block coordinate descend (BCD)
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method where, in each iteration, the nonconvex transcenden-
tal function σ 2

q um
= Fu

(
�,
{
RRF
mk

}K
k=1 ,Pu,CFu

)
is approx-

imated by a constant calculated using the power allocation
vector obtained in the previous iteration of the algorithm.
That is, in the ith iteration of the UL optimal power allocation
approach, the algorithm solves the optimization problem

max
�(i)
�0

min
k∈{1,...,K }

Puω
(i)
k

Pu
∑K

k ′=1 ω
(i)
k ′ δkk ′ + σ

2(i)
ηuk

,

s.t. 0 ≤ ωk ≤ 1, ∀ k, (56)

where σ 2
q
(i)
um
= Fu

(
�(i−1),

{
RRF
mk

}K
k=1 ,Pu,CFu

)
. Note that,

again, this is a convergent quasi-linear optimization problem
that can be solved using conventional convex optimization
methods [11], [18].

VII. NUMERICAL RESULTS
In this section, simulation results are obtained in order to
quantitatively study the performance of the proposed cell-
free mmWave massive MIMO network with constrained-
capacity fronthaul links. In particular, we demonstrate the
impact of using different pilot allocation strategies, the effects
of modifying the capacity of the fronthaul links and the RF
infrastructure at the APs, and the repercussion of changing
the density of APs per area unit. For simplicity of exposition,
and without loss of essential generality, a cell-free scenario
is considered where the M APs and K MSs are uniformly
distributed at random within a square coverage area of size
D × D m2. As described in subsection II-A, a modified ver-
sion of the discrete-time narrowband clustered channel model
proposed by Akdeniz et al. in [14] is used in the performance
evaluation. The parameters necessary to implement this chan-
nel model can be found in [14, Table 1]. Furthermore, similar
to what was done byNgo et al. in [11], a shadow fading spatial
correlation model with two components is also considered
(see [11, eqs. (54) and (55)]) where the decorrelation distance
is set to ddecorr = 50 m and the parameter δ is set to 0.5.
Default parameters used to set-up the simulation scenarios
under evaluation in the following subsections are summarized
in Table 1.

A. IMPACT OF THE PILOT ALLOCATION PROCESS
Our aim in this subsection is to benchmark the performance
of the proposed large-scale CSI-aware DCPA strategy against
both the pure RPA and the BRPA schemes. Accordingly,
the averagemax-min rate per user versus the number of active
MSs is presented in Fig. 4 for each of these pilot alloca-
tion strategies and for both the DL and the UL. All results
have been obtained assuming the default system parameters
described in Table 1, the use of L = 8 RF chains fully
connected to uniform linear antenna arrays with N = 64
antenna elements, and fronthaul links with a capacity of
CFd = CFu = 64 bit/s/Hz. The first important result to
note from Fig. 4 is that the pure RPA scheme is clearly
outperformed by both the BRPA and the DCPA strategies
irrespective of the of active MSs in the network. In fact,

TABLE 1. Summary of default simulation parameters.

FIGURE 4. Average max-min rate per user versus the number of active
MSs for different pilot allocation strategies (N = 64 antennas, L = 8 RF
chains, CF d = CF u = 64 bit/s/Hz).

the RPA scheme cannot guarantee neither the absence of
pilot reuse, even for those cases in which K ≤ τp (in this
setup, τp = 15 time/frequency samples), nor the possibility
of having pilots that are allocated to a high number of MSs
and/or to MSs exhibiting very similar large-scale propagation
patterns to theAPs. Therefore, the higher the number of active
MSs, the higher the probability of having one or more users
suffering from high levels of pilot contamination, with the
consequent reduction of the achievable max-min user rate.
If we turn our attention to results provided by the BRPA
and DCPA strategies, two disjoint operation regions can be
distinguished. In the first one, comprising the scenarios in
which K ≤ τp, both approaches allocate orthogonal pilots to
the users (absence of pilot contamination) and thus naturally
provide the same performance. In the second one, however,
comprising the scenarios in which K > τp, pilots have to
be reused and, as a consequence, pilot contamination appears
(note the rather abrupt performance drop when going from
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K ≤ τp to K > τp). In these scenarios, based on a smart
exploitation of the available large-scale CSI, the proposed
DCPA approach reduces the amount of pilot contamination
experienced by the worst users in the network and it clearly
improves the achievable max-min user rates provided by the
channel-unaware BRPA scheme. Note that, irrespective of the
scenario under evaluation, increasing the number of active
MSs in the system translates into a per-user performance
drop, despite the fact that the global network performance
increases due to the exploitation of the well-known multiuser
diversity effects.

Another result that is worth emphasizing, since it will
repeatedly appear in the following subsections, is that,
although in scenarios with high-capacity fronthaul links the
achievable max-min DL user rate is higher than that provided
in the UL, as the number of active users in the network
increases, the performance obtained in both the DL and the
UL tend to become increasingly similar. This behavior can be
easily deduced from the analysis of the SINR expressions in
(36) and (39). As the number of active MSs in the cell-free
network increases, provided that it is greater than τp, the term
in the denominator corresponding to the residual interuser
interference due to pilot contamination becomes increasingly
dominant in comparison to the quantification and thermal
noise terms, eventually reaching the point where they can be
considered virtually negligible. Under these conditions, and
since the pre-coding filters used on both links are identical,
the DL and the UL experience similar SINR values and,
therefore, tend to provide the same achievable max-min rate
per user, except for small differences that can be attributed
to, on the one and, the dissimilar amount of quantified infor-
mation that has to be conveyed through the corresponding
fronthaul links and, on the other hand, disparities among the
thermal noise powers experienced at both the APs and the
MSs.

B. MODIFYING THE CAPACITY OF THE FRONTHAUL LINKS
AND THE RF INFRASTRUCTURE AT THE APs
The max-min achievable rate per user is plotted in Fig. 5
against the number of active MSs in the network, assum-
ing the use of fronthaul links with different constraining
capacities equal to 16, 32, 64 and 256 bit/s/Hz (for the net-
work setups under consideration, using fronthaul links with
a capacity of 256 bit/s/Hz is virtually equivalent to using
infinite-capacity fronthauls). As expected, results show that
increasing the fronthaul capacity is always beneficial if the
main aim is to increase the achievable max-min user rate.
Nevertheless, it is worth stressing that, keeping all the other
parameters constant, the marginal increment of performance
produced by each new increment of the fronthaul capacity
suffers from the law of diminishing returns, especially for
network setups with a high number of active MSs. That is,
although the performance increase produced by doubling the
fronthaul capacity from 16 bit/s/Hz to 32 bit/s/Hz, or even
from 32 bit/s/Hz to 64 bit/s/Hz, can be justifiable, increasing
the fronthaul capacity beyond 64 bit/s/Hz does not seem to be

FIGURE 5. Average max-min rate per user versus the number of active
MSs for different values of the fronthaul capacities (N = 64 antennas,
L = 8 RF chains, DCPA).

FIGURE 6. Average max-min rate per user versus the number of active
MSs for different values of the number of antennas at the APs (L = 8 RF
chains, CF d = CF u = 64 bit/s/Hz, DCPA).

reasonable from the point of view of increasing the achievable
performance of the system under the considered network
setups. As observed in the previous subsection, in cell-free
mmWavemassiveMIMO networks using high-capacity fron-
thaul links, the achievable max-min DL user rate is always
slightly higher than that achieved in the UL irrespective of
the number of active MSs. In scenarios with low-capacity
fronthaul links and a large number of active MSs, however,
the quantization noise experienced in the DL is higher than
its UL counterpart and thus, the achievable per-user rate in
the UL is slightly higher that than supplied in the DL.

To understand how the RF infrastructure used at the
APs influences the performance of the proposed cell-free
mmWave massive MIMO system under constrained-capacity
fronthaul links, Figs. 6 and 7 show the achievable max-min
user rate against the number of active MSs assuming the
use of uniform linear antenna arrays with different number
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FIGURE 7. Average max-min rate per user versus the number of active
MSs for different values of the number of RF chains at the APs (N = 64
antennas, CF d = CF u = 64 bit/s/Hz, DCPA).

of elements and fully-connected analog RF precoders with
different number of RF chains, respectively. In particular,
results presented in Fig. 6 have been obtained assuming the
use of an analog precoder with L = 8 RF chains fully-
connected to a linear uniform antenna array with N = 8, 16,
32, 64 or 128 antenna elements, whereas results presented
in Fig. 7 have been obtained assuming the use of L = 2, 4,
8 or 16 RF chains fully-connected to a linear uniform antenna
array with N = 64 antenna elements. The first conclusion we
may draw when looking at the results presented in Fig. 6 is
that, irrespective of the number of active MSs in the cell-free
network, increasing the number of antenna elements at the
APs in scenarios with high capacity fronthaul links (CFd =
CFu = 64 bit/s/Hz), although moderate and subject to the
law of diminishing returns, always produces an increase in the
achievable max-min user rate. As shown in Fig. 7, in contrast,
the impact produced by an increase in the number of RF
chains at the APs depends on the number of active MSs in
the network. In particular, when the number of active users is
high, the interuser interference term due to pilot contamina-
tion (imperfect CSI) dominates the factors in the denominator
of the SINR (i.e., makes the quantization and thermal noises
negligible) and thus, increasing the number of RF chains is
always beneficial when trying to increase the achievablemax-
min user rate.When the number of active users in the network
is low, however, the quantization noise, which is an increasing
function of L, is not negligible anymore when compared to
the interuser interference term (recall that this term is null
when the number of active MSs is less than or equal to τp)
and thus, increasing the number of RF chains at the APs can
be clearly disadvantageous.

Results presented in Figs. 5, 6 and 7 were obtained assum-
ing high-capacity fronthaul links with CFd = CFu =
64 bit/s/Hz. However, the amount of quantized data that has
to be conveyed from (to) the CPU to (from) the APs in the
DL (UL) depends on the number of antennas and RF chains

FIGURE 8. Average max-min rate per user versus the number of
antennas at the APs for different values of the fronthaul capacities
(K = 20 users, L = 8 RF chains, DCPA).

FIGURE 9. Average max-min rate per user versus the number of RF
chains at the APs for different values of the fronthaul capacities
(K = 20 users, N = 64 antennas, DCPA).

at the APs (see Section IV). Thus, in order to deepen in the
study of the impact the RF infrastructure may have on the
achievable performance of the proposed cell-free mmWave
massive MIMO system under constrained-capacity fronthaul
links, the average max-min user rate is plotted in Figs. 8 and 9
against the number of antenna elements and RF chains,
respectively, for different values of the fronthaul capacities
and assuming a fixed number of K = 20 active MSs in the
network. In network setups using very high capacity fronthaul
links (i.e., CFd = CFu = 256 bit/s/Hz), increasing the
number of antenna elements N and/or the number of RF
chains L (up to L = K ) is always beneficial as, in this case,
the noise introduced by the quantization process is negligi-
ble and the system can take full advantage of the increased
RF resources. As the capacity of the fronthaul links decreases,
however, the amount of noise introduced by the quantization
process increases with both N and L and, therefore, a sit-
uation arises where the potential performance improvement
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FIGURE 10. CDF of the DL and UL achievable max-min rate per user for different values of the number of APs and active MSs in the cell-free
network (N = 64 antennas, L = 8 RF chains, CF d = CF u = 64 bit/s/Hz, DCPA).

provided by the increase ofN and/or L is compromised by the
performance reduction due to fronthaul capacity constraints.
On the one hand, it can be observed in Fig. 8 that, for fixed
numbers of users and RF chains, there is a certain fronthaul
capacity constraint value (near 24 bit/s/Hz in the setup used
in this experiment) under which increasing the number of
antenna elements at the array is counterproductive. On the
other hand, results presented in Fig. 9 show that, for fixed
numbers of users and antenna elements at the arrays, there
is always an optimal number of RF chains to be deployed
(or activated) at the APs that is dependent on the capacity
of the fronthaul links. In particular, for the network setups
under consideration, the optimal number of RF chains is equal
to L = 10, 4, and 1 when using fronthaul links with a
capacity of 64 bit/s/Hz, 32 bit/s/Hz and less than 24 bit/s/Hz,
respectively. Using a number of RF chains beyond this opti-
mal value leads to a clear performance degradation since the
potential benefits of having extra hardware resources does
not compensate for the effects produced by the increase in
quantization noise due to fronthaul-capacity constraints.

C. IMPACT OF THE DENSITY OF APs
With the aim of evaluating the impact the density of APs
per area unit may have on the performance of the proposed
cell-free mmWave massive MIMO system, Fig. 10 represents
the cumulative distribution function (CDF) of the DL and
UL achievable max-min user rate for different values of the
number of APs in the network. It has been assumed in these
experiments a fixed number of active MSs equal to either
K = 25 or K = 8 MSs, the use of L = 8 RF chains fully-
connected to a linear uniform antenna array with N = 64
antenna elements, and the use of DL and UL fronthaul links
with a capacity CFd = CFu = 64 bit/s/Hz. As expected,
cell-free massive MIMO scenarios with a high density of
APs per area unit significantly outperform those with a low
density of APs per area unit in both median and 95%-likely
achievable per-user rate performance. However, the achiev-
able max-min user rate increase due to increasing the number

of APs in the network is, again, subject to the law of dimin-
ishing returns. For instance, in scenarios with K = 25 MSs,
the 95%-likely achievable user rate is equal to 2.55, 4.33,
6.11 and 6.50 bit/s/Hz for cell-frre massive MIMO networks
with M = 25, 50, 100 and 200 APs, respectively. That is,
doubling the number of APs per area unit does not result in
doubling the 95%-likely achievable user rate. Similar conclu-
sions can be drawn when looking at either the median or the
average achievable user rates.

As was observed in results presented in previous subsec-
tions for high-capacity fronthaul setups, when the number of
active users in the system is low, the achievable max-min rate
values in the DL are slightly higher than those achievable in
the UL. Instead, when the number of active users increases,
the achievable max-min user rates are virtually identical in
both the DL and the UL. Also, note that the dispersion of
the achievable max-min user rates around the median tends
to diminish as the density of APs increases. That is, cell-
free massive MIMO networks with a high density of APs per
area unit tend to offer max-min achievable rates that suffer
little variations irrespective of the location of the APs (i.e,
irrespective of the scenario under evaluation).

VIII. CONCLUSION
A novel analytical framework for the performance analysis
of cell-free mmWave massive MIMO networks has been
introduced in this paper. The proposed framework consid-
ers the use of low-complexity hybrid precoders/decoders
where the RF high-dimensionality phase shifter-based pre-
coding/decoding stage is based on large-scale second-order
channel statistics, while the low-dimensionality baseband
multiuser MIMO precoding/decoding stage can be easily
implemented by standard ZF signal processing schemes using
small-scale estimated CSI. Furthermore, it also takes into
account the impact of using capacity-constrained fronthaul
links that assume the use of large-block lattice quantiza-
tion codes able to approximate a Gaussian quantization
noise distribution, which constitutes an upper bound to
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the performance attained under any practical quantization
scheme. Max-min power allocation and fronthaul quantiza-
tion optimization problems have been posed thanks to the
development ofmathematically tractable expressions for both
the per-user achievable rates and the fronthaul capacity con-
sumption. These optimization problems have been solved by
combining the use of block coordinate descent methods with
sequential linear optimization programs. Results have shown
that the proposed DCPA suboptimal pilot allocation strategy,
which is based on the idea of clustering by dissimilarity,
overcomes the computational burden of the optimal small-
scale CSI-based pilot allocation scheme while clearly out-
performing the pure random and balanced random schemes.
It has also been shown that, although increasing the fronthaul
capacity and/or the density of APs per area unit is always
beneficial from the point of view of the achievable max-min
user rate, the marginal increment of performance produced
by each new increment of these parameters suffers from the
law of diminishing returns, especially for network setups
with a high number of active MSs. Moreover, simulation
results indicate that, as the capacity of the fronthaul links
decreases, the potential performance improvement provided
by the increase of the number of antenna elements N and/or
the number of RF chains L is compromised by the perfor-
mance reduction due to the corresponding increase of the
fronthaul quantization noise. In particular, for fixed num-
bers of users and RF chains, there is a certain fronthaul
capacity constraint value (near 24 bit/s/Hz in the setups
under consideration) under which increasing the number of
antenna elements at the array is counterproductive. Simi-
larly, for fixed numbers of users and antenna elements at the
arrays, there is always an optimal number of RF chains to
be deployed (or activated) at the APs that is dependent on
the capacity of the fronthaul links. For future work, it would
be interesting to develop low-complexity pilot- and power-
allocation techniques specifically designed to maximize the
energy efficiency of cell-free mmWave massive MIMO net-
works considering both the fronthaul capacity constraints and
the fronthaul power consumption. It would also be inter-
esting to explore the use of partially-connected RF precod-
ing/decoding architectures, the implementation of baseband
MU-MIMO precoding/decoding other than the ZF scheme,
the development of new user selection algorithms, and the
investigation of the effects a non-uniform distribution of MSs
and/or APs may have on the performance of the proposed
system.

APPENDIX A
PROOF OF THEOREM 1
Following an approach similar to that proposed by
Nayebi et al. in [18], the signal received by the kth MS in (29)
can be rewritten as yd k = yd k 0+yd k 1+yd k 2+nd k , where the
useful, interuser interference, and quantization noise terms
can be expressed as yd k 0 =

√
υksd k , yd k 1 = g̃TkW

BB
d ϒ1/2sd ,

and yd k 2 = gTk qd =
∑M

m=1 g
T
kmqdm, respectively. Now,

considering that data symbols, quantization noise, thermal

noise, and channel-related coefficients are mutually inde-
pendent, the terms yd k 0, yd k 1, yd k 2 and nd k are mutually
uncorrelated and thus, based on the worst-case uncorrelated
additive noise [41], the achievable DL rate for user k is lower
bounded by Rd k = log2 (1+ SINRd k), with

SINRd k =
E
{∣∣yd k 0∣∣2}

E
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.

APPENDIX B
PROOF OF THEOREM 2
The detected signal at the CPU corresponding to the sym-
bol transmitted by the kth MS in (35) can be rewritten
as yuk = yuk 0 + yuk 1 + yuk 2 + yuk 3, where the use-
ful, interuser interference, quantization noise and thermal
noise terms can be expressed as yuk 0 =

√
Pu
√
ωksuk ,

yuk 1 =
√
Pu
[
WBB

u G̃�1/2su
]
k
, yuk 2 =

[
WBB

u qu
]
k , and

yuk 3 =
[
WBB

u nu
]
k , respectively. As in the DL, since data

symbols, quantization noise, thermal noise, and channel-
related coefficients are mutually independent, the terms yuk 0,
yuk 1, yd k 2 and yd k 3 are mutually uncorrelated and thus,
based on the worst-case uncorrelated additive noise [41],
the achievable UL rate for user k is lower bounded by
Ruk = log2 (1+ SINRuk), with

SINRuk =
E
{∣∣yd k 0∣∣2}

E
{∣∣yd k 1∣∣2}+ E

{∣∣yd k 2∣∣2}+ E
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where E
{∣∣yuk 0∣∣2} = Puωk ,

E
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with wBB
uk denoting the kth row ofWBB

u , or, equivalently,
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and, finally,
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and, analogously,
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