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ABSTRACT Secure outsourced aggregation in the Internet of Things (IoT) can solve the problem that
sensing devices are limited in energy and bandwidth by outsourcing data aggregation task to a third-party
service provider. Location-based secure outsourced aggregation (LBOA), aggregating data whose location
satisfies user’s location strategy, is very important in some location-critical scenarios (e.g., smart homes,
intelligent transportation, and smart city). Recent work studied secure data aggregation to reduce transmis-
sion overhead and network bandwidth by optimizing topology of networks or adopting the cryptographic
approach. However, as far as we know, scarcely any work considers the location information of the data
source and the privacy protection of the data at the same time in the studies of secure outsourced aggregation.
In this paper, we first propose an LBOA scheme LBOAMax , which can return the maximum value of sensory
data whose location satisfies location strategy by applying one-way chain, order-preserving encryption, and
some other cryptographic operation. Then, we proposed scheme LBOATop−k and scheme LBOASum, which
can return the largest k values of data and the summation value of data based on location, respectively. The
security analysis results show that our schemes can satisfy the defined requirements and the experiment
results show that our schemes are feasible and efficient for each entity in practice.

INDEX TERMS Location-based, secure aggregation, cloud computation, privacy protection, one-way chain,
order-preserving encryption.

I. INTRODUCTION
With the continuous development and improvement of wire-
less network technology [1], IoT has been more and more
widely used in our life [2]. For example, in smart homes [3],
smart devices are connected to the external service through
the network of IoT, realizing interaction between external
service and smart devices. In the field of electronic medical
system [4], patients’ vital signs such as heart rate and blood
pressure can be monitored by wearable devices. IoT is also
widely used in intelligent transportation, environmental mon-
itoring, military and many other fields.

However, sensing devices in IoT are usually limited
in energy and bandwidth [5], and their computation and
storage power are limited. What’s more, in general, data
requester cannot interact with sensing devices directly in IoT.
Outsourcing [6]–[8] data aggregation task to a third service
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provider such as aggregator in cloud [9], [10] is an effective
way to solve the above problems.

Unfortunately, aggregator is usually untrusted, it may have
malicious behaviors. On one hand, aggregator may filch
sensory data. In some fields such as electronic medical,
the confidentiality of sensory data is very important [11].
Sensing devices do not want aggregator to learn any knowl-
edge about the data while outsourcing aggregation task to
aggregator. Thus, how to ensure the confidentiality of data
is a challenging question in outsourced aggregation. On the
other hand, aggregator may tamper the aggregation process
and report a wrong aggregated result to data requester. Thus,
the verifiability of the aggregated result is also essential in
outsourced aggregation.

Most of the existing work related to secure data aggrega-
tion has not considered the location of data source. However,
location-based secure outsourced aggregation, i.e. securely
aggregate data under location strategy, is very important in
some location-critical scenarios. In many IoT applications,
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the data collected by the sensing device is closely related to
the location information of the sensing device [12]. For exam-
ple, in intelligent transportation, the location-critical data
sensed by smart devices is one of themost important elements
for monitoring, analyzing and forecasting road conditions.
In smart homes, the location of data source plays an important
role. In applications such as geographic key distribution [13]
and geographic routing [14], the smart devices’ location also
plays a crucial role.

Therefore, a location-based secure outsourced aggregation
scheme is necessary in IoT to realize aggregating data based
on devices’ location. Due to the reason that Max, Top-k
and Sum are some of the most basic operations of data.
Thus, we try to construct location-based secure outsourced
aggregation schemes in which aggregator only aggregates
data whose location is at the specified position and return
the Max or Top-k or Sum value to data requester. However,
this work is very challenging. First, it is a challenging task to
achieve location-based in IoT because the traditional methods
to determine location is not efficient and not suitable to IoT.
Second, it is difficult to protect data confidentiality against
outside attacker and untrusted aggregator while aggregator
needs to aggregate data and return the aggregated result to
data requester. Third, it is hard to ensure that aggregator does
not have malicious behaviors and guarantee that the user
could verify the validity of aggregated result because user
cannot get all the raw sensory data in the whole process of
aggregation. What’s more, the privacy of devices’ location
and the confidentiality of user’s location strategy should also
be protected.

Our contributions. We put emphasis on realization of
secure outsourced aggregation based on location in this study.
First, in order to determine whether the sensing device’s
location satisfies location strategy or not, we adopt vector
operation, which using the geometric relationship of the
spatial data’s location. Second, in order to protect the con-
fidentiality of data, we adopt order-preserving encryption
scheme [15] to realize comparing directly on ciphertexts.
Third, in order to ensure the verifiability of the aggregation
process, we adopt one-way chain [16], which consists of a
series of one-way functions. At the same time, we utilize pub-
lic key encryption algorithm to achieve protecting the privacy
of data’s location and the confidentiality of user’s location
strategy.

Our contributions in this study are fourfold.
1) We design the system model of location-based secure

outsourced aggregation in IoT. Then we propose the
threat model. Next we propose our design goal. The
systemmodel of LBOA defines the participants includ-
ing location-sensitive devices, user and cloud service
provider. The system model also defines the partici-
pants’ task. The threat model in this study describes
the adversarial behaviors including data tampering,
cheating, data deleting and so on. The design goal of
LBOA in this study presents the requirements such as
providing service based on location, achieving location

privacy protection, data confidentiality protection and
location strategy confidentiality protection.

2) We propose a novel location-based secure outsourced
aggregation scheme LBOAMax which can return the
maximum value under user’s location strategy. Then
we propose scheme LBOATop−k and scheme LBOASum
which can return the largest k values and the summa-
tion value under user’s location strategy respectively.
Our schemes could aggregate data whose location is at
specified location correctly. They could also protect the
confidentiality of data and the privacy of the location
strategy.

3) We theoretically analyze the security of LBOA. The
analysis results show that our schemes satisfy our
design goal. At the same time, our schemes support
much more data aggregation query operations and are
much more secure than existing schemes.

4) We report experimental evaluations of LBOA. The
evaluation results show that our schemes are efficient
and feasible in practice.

II. RELATED WORK
A. AGGREGATION
Tan and Körpeoglu [17] proposed a power efficient data gath-
ering and aggregation scheme in wireless sensor networks.
Rajagopalan and Varshney [18] introduced data aggregation
techniques in sensor networks. Chen et al. [19] presented a
data aggregation scheme with distributed randomized algo-
rithms. Hekmat and VanMieghem [20] constructed the short-
est path aggregation tree that maximizes network lifetime.
Chang and Yen [21] constructed a spanning tree based aggre-
gate routing algorithm, selecting the node that performs
the data aggregation operation through the coding tree.
Lee et al. [22] presented a construct which use geographical
route to balance network traffic, and optimize network life-
time and aggregate data rate through optimization methods.
However, these data aggregation schemes are mainly con-
cernedwith the issue of energy conservation without focusing
on the security of data aggregation.

The security problem of data aggregation [23] began to
be studied at home and abroad in recent years, but they
mainly focus on safe energy conservation and safe routing
at early period. Some work focus on the security of data
later. Work in [24], [25] introduced privacy homomorphism
technology and proposed data aggregation schemes based on
privacy homomorphism. These schemes aggregate encrypted
data directly without decryption in order to protect end-to-end
privacy of data. Zhu et al. [26] proposed a secure data aggre-
gation scheme based on commitment-proof and back testing
in order to protect the integrality of data. Chen et al. [27]
combined homomorphic encryption with bilinear-based sig-
nature, and proposed a recoverable data aggregation scheme
to ensure data privacy and integrity. Li et al. [28] proposed a
privacy preserving data aggregation scheme for mobile edge
computing assisted IoT application. However, all of these
work only focus on protecting data privacy and integrity
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but not pay attention to the basic data aggregation query
operations such as max, min, count, top-k and so on.

Later, some work focus on the basic query operations
in secure aggregation. Chan et al. proposed a secure data
aggregation scheme (SIA) [29]. However, this scheme only
supports one aggregator, and it is not applicable to large
amounts of data. Then they extended SIA and proposed a
secure hierarchical aggregation scheme (SHIA) [30] that sup-
ports multiple aggregators. This work only supports limited
sets of aggregation functions but not supports aggregation
functions such as max and top-k. Nath et al. [16] proposed
a secure outsourced aggregation scheme which uses one-way
chain and related cryptography operations to ensure the secu-
rity of aggregation. This work supports several aggregation
functions such as max, count and top-k, but it doesn’t protect
the privacy of data.

In summary, none of the above data aggregation schemes
consider the location of data source.

B. LOCATION VERIFICATION
Vora and Nesterenko [31] proposed a location verifica-
tion scheme that can achieve verifying location in-region
of provers. Sastry et al. [32] proposed a location verifi-
cation scheme which can realize verification in a small
circular region. Čapkun et al. [33] proposed a scheme
which can verify the location through mobile base stations.
Sciancalepore et al. [34] proposed a scheme which real-
ize secure location verification by the help of meteor burst
communication.

Chandran et al. [35] proposed location-based cryptogra-
phy in 2009, using user’s geographic location information as
the user’s unique credential. Under BRM model, they pro-
posed secure positioning (SP) protocol which can be proven
secure. SP protocol can be used to verify whether the user’s
location is at the specified location or not. However, SP pro-
tocol requires multiple verifiers work together to verify the
legitimacy of the location.

Zhang et al. [12] proposed a universally composable
secure positioning scheme in the bounded retrieval model.
It realized secure location verification. Zhang et al. [36]
investigated a scheme which can achieve secure geographi-
cal area verification without pre-shared secret. This work is
propitious to massive location-critical devices in IoT.

All of work above need verifiers to realize location veri-
fication. They also require precise time synchronization, and
are not robust to computation delay.

C. LOCATION-BASED SOLUTION
Kwon et al. [13] proposed a scheme of location-based
pairwise key distribution for wireless sensor networks
which can achieve perfect resilience and higher connec-
tivities with less resources. Li et al. [14] proposed an
energy efficent cooperative geographic routing scheme in
wireless sensor networks which based on sensor nodes’
location information. Zhang et al. [37] proposed a posi-
tion based key exchange scheme which can achieve both

security and performance perspectives. Ji et al. [38] proposed
a blockchain-based multi-level privacy-preserving location
sharing scheme which can achieve security and flexibility
of location privacy protection. Gao et al. [39] proposed a
logistics information privacy protection scheme with posi-
tion and attribute-based access control which can achieve
privacy protection of both logistics information and personal
information.

Wang et al. [40] combined data’s location with searchable
encryption and proposed a secure geometric search scheme
on encrypted spatial data. This scheme determined whether
the data’s location is at specified location or not by execut-
ing vector operation which the geometric relationship of the
spatial data’s location is used. This method of verifying the
location of data is very efficient and is suitable to IoT.

III. PRELIMINARIES
A. VECTOR OPERATION BASED ON
GEOMETRIC RELATIONSHIP
The essence of vector operation based on geometric relation-
ship is based on circular geometry [40].

Given a random point (x, y) and a circle which (xc, yc) is
the circle center and R is the radius. If the point (x, y) is on
the boundary of the given circle, we have:

(x−xc)2 + (y−yc)2−R2

= x2 + y2−2x · xc−2y · yc + x2c + y
2
c−R

2

= (x2 + y2) · 1+ (−2x) · xc + (−2y) · yc + 1 · (x2c + y
2
c−R

2)

= < Eu= (x2+y2,−2x,−2y, 1), Ev= (1, xc, yc, x2c+y
2
c−R

2)>

= 0.

B. ORDER-PRESERVING ENCRYPTION
Order-preserving encryption (OPE) [15] is a special sym-
metric encryption scheme which guarantees the orders of
ciphertexts are the same as the orders of plaintexts.

An OPE scheme generally contains KeyGen, Enc and Dec.
Specifically,
• KeyGen(1λ)→ k: input a security parameter λ, output a

secret key k .
• Enc(k,m) → Cm: input a secret key k and plaintext m,

output ciphertext Cm.
•Dec(k,Cm)→ m: input a secret key k and ciphertextCm,

output plaintext m.
OPE has the property that:

m1 < m2 ⇔ EncOPE (k,m1) < EncOPE (k,m2).

C. ONE-WAY FUNCTION AND ONE-WAY CHAIN
A function f : {0, 1}∗ → {0, 1}∗ is a one-way function [41]
if f (x) can be calculated by a polynomial time algorithm
which takes input x, but the possibility that any adversary
attempt to compute a pseudo-inverse for f successfully can
be negligible. That is, for every PPT adversary A there is a
negligible function vA such that for a sufficiently large k ,

Pr[z← A(1k , y) : x
R
−→ {0, 1}k ;

y← f (x); f (z) = y] ≤ vA(k).
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FIGURE 1. System model.

One-way chain [42] is based on secure one-way function
and random seed s. One-way chain recurs applying one-way
function for multiple times. We use Fx(s) to denote recur-
sively applying one-way functionF for x times. The chain has
the value F1(s),F2(s),F3(s),F4(s), . . . sequentially. Due to
the property of one-way function, given the value of Fx(s),
we can calculate Fx

′

(s) if x ′ > x, however, if x ′ < x,
the probability to get Fx

′

(s) can be negligible. In other words,
one-way chain can only be rolled forward, it is infeasible to
be rolled backward.

IV. PROBLEM FORMULATIONS
A. SYSTEM MODEL
The systemmodel of location-based secure outsourced aggre-
gation (LBOA) is shown in Figure 1. It contains of three
entities: user (User), cloud service provider (CSP) and
location-sensitive device (LSD).

If a user, which can also be called a data requester, wants to
obtain some values (such as the maximum value, the largest
k values, the summation value and so on) of LSD’s sensory
data, he (or she) will send request to the CSP. CSP asks for
LSD’s data after receiving the request, then LSD submits
data to CSP. CSP does aggregation operation after receiving
all the data and then returns aggregated result to the user.
User verifies aggregated result after receiving the aggregated
result. More specifically, we describe as follows.

User. User acts as data requester. User determines the
location strategy and operation function. He (or she) would
like to get LSD’s data that satisfying the location strategy
and the operation function. However, user cannot interact
with LSD directly. Thus, user sends requests to CSP, then

CSP aggregates LSD’s data and returns aggregated result to
user. User will verify the correctness and completeness of
the aggregated result after receiving the aggregated result
from CSP.

CSP. CSP acts as a connection between location sensitive
devices and user. There may be one or multiple aggregators
in CSP to do aggregation task. CSP has the ability to do
calculation operation and aggregation operation. He (or she)
receives data from LSDs and aggregates the data to get an
aggregated result, and then sends the aggregated result to user.

LSD. LSD acts as data collector. There are multiple loca-
tion sensitive devices. Each LSD has a location coordinate.
LSD can interact with CSP. LSD may collect sensory data
and then outsource data aggregation task to CSP.

B. THREAT MODEL
We considered four participants in threat model.

1) User.We assume the user is totally trusted.
2) CSP. The cloud service provider may have three types

of malicious behaviors. First, CSP may tamper the
aggregation process and trick user with wrong aggre-
gated result. Second, CSP may ignore or delete some
location-sensitive devices’ data. Third, CSP may add
an illegal LSD into the aggregation process.

3) LSD. The location-sensitive devices are honest-but-
curious. They will not transmit faked data, they will
not misreport their location, but they will try to pry the
location of other location-sensitive devices.

4) Outside Attacker. Outside attacker also may cause
attacks. Outside attacker refers to the adversary
who obtains some knowledge about the legitimate
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location-sensitive device’s data or user’s location strat-
egy via public channels. An outside attacker may inter-
cept the data sensed by LSD and may intercept user’s
location strategy.

C. DESIGN GOAL
Accoring to the requirements and the threat model of
location-based secure outsourced aggregation, the proposed
schemes should satisfy the following design goal:

1) Achieve secure aggregation based on sensing devices’
location (LB). Our schemes should realize aggregation
based on location. CSP should aggregate data whose
location satisfies user’s location strategy.

2) Support some basic query operations in aggregation
such as Max, Top-k and Sum. Our schemes should
achieve returning the Max (Top-k/Sum) value of data
under user’s location strategy correctly.

3) Guarantee the verifiability of aggregation (AV). Our
schemes should guarantee CSP does not tamper the
aggregation process. Our schemes should also ensure
that the correctness and completeness of the aggregated
result reported by CSP can be verified by user.

4) Guarantee the privacy of the LSD’s location (LSDP).
Our schemes should ensure any entity except the
location-sensitive device itself and the totally trusted
user could not learn any location information about the
legitimate sensing devices.

5) Guarantee the confidentiality of the data (DC). Our
schemes should guarantee the data confidentiality
against outside attacker (DCO). As the CSP is
untrusted, our schemes should also guarantee the
data confidentiality against CSP (DCC). In other
words, our schemes should ensure the data sensed by
location-sensitive devices will not be intercepted by
outside attacker and CSP.

6) Guarantee the confidentiality of location strat-
egy (LSC). Our schemes should ensure the confiden-
tiality of user’s location strategy. Only the user itself
and location-sensitive devices can learn the location
strategy.

V. THE PROPOSED SCHEMES
Starting from this section, we present our LBOA schemes.
The notations used in this study are listed in Table 1.
Section 5.A explains scheme LBOAMax which user requests
the maximum value of data whose location satisfies user’s
location strategy. Section 5.B explains scheme LBOATop−k
which user requests the largest k values of data whose loca-
tion satisfies user’s location strategy. Section 5.C explains
scheme LBOASum which user requests the summation value
of data whose location satisfies the location strategy.

A. LBOAMAX
The overview of LBOAMax is shown in Figure 2.
Scheme LBOAMax consists of the following five phases: the

TABLE 1. Notations.

initialization phase, the request phase, the collection phase,
the aggregation phase and the verification phase. Initializa-
tion phase generates parameters which are required later.
During the request phase, user formulates location strategy
and operation function, then sends request messages to CSP.
CSP transmits request messages to LSD and requests LSD
to submit the value of sensory data. During the collection
phase, location-sensitive devices judge whether the location
of data meet user’s location strategy or not, and then submit
the response to CSP. During the aggregation phase, CSP does
aggregation task, and then sends the aggregated result to user.
During the verification phase, user verifies the aggregated
result reported by the CSP.

1) INITIALIZATION
During the initialization phase, each Si (1 ≤ i ≤ n) with an
IDi registers a public/private key pair (PKi, SKi). User also
has a certified public/private key pair (PKU , SKU ). Each Si
consults a symmetric key Ki with user. And then user main-
tains a group key GK with all LSDs.

2) REQUEST
The specific steps of this phase are described below.

(1) The user picks a random a ∈ Zp, assuming that the
range of di is di ∈ [lowest, largest], so the range of a is a ∈
[2− lowest,∞]. In other words, the random integer a meets
the condition that for any di, di + a ≥ 2 is satisfied.
(2) The user decides the operation function f . In this

LBOAMax scheme, f = Max.
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FIGURE 2. Overview of LBOAMax .

(3) The user presets the location strategy P = {P1,
P2, . . . ,Pn}, each Pi contains of m vectors Evi (1 ≤ m ≤ 2),
where Evi = (1, xic, yic, x2ic + y

2
ic − r

2
i ).

(4) The user utilizes group key GK to encrypt a, P and the
symmetric key KOPE , i.e.,

Enc(GK , a‖P‖KOPE‖epoch#)→ CRequest ,

where epoch# denotes timestamp of the current time.
(5) User sends {f = Max‖CRequest } to CSP.
(6) CSP preserves the operation function f = Max after

receiving all the messages send by the user, at the same
time, CSP transmits {f = Max‖CRequest } to location-sensitive
devices, and requests to collect LSD’s sensory data.

3) COLLECTION
After receiving the messages from CSP, location-sensitive
devices submit their sensory data. The details of this phase
are illustrated as follows.

(1) Each Si decrypts the broadcast message to get the
plaintexts of a, P and KOPE , i.e.,

Dec(Ki,CRequest )→ a‖P‖KOPE‖epoch#.

FIGURE 3. Coordinate discretization.

(2) As shown in Figure 3, each LSD discretizes its position
coordinate (x ′i , y

′
i) to get integer coordinate (xi, yi). If the error

tolerance is no more than L. For any noninteger point, we can
approximate it as a nearest integer point which the distance
between them is no more than L. The detail of coordinate

discretization is described in Algorithm 1. Each Si utilizes its
integer location coordinate (xi, yi) to generates a vector Eui =
(x2i + y

2
i ,−2xi,−2yi, 1). Signing Eui with S

′
is secret key SKi,

and then encrypt Eui with user’s public key PKu, i.e.,

Enc(PKU , Sig(SKi, Eui))→ Cui .

Algorithm 1 Coordinate Discretization
Require:

Point location coordinate (x ′, y′); ouput space S; Error
tolerance L =

√
2
2 h

Ensure:
Integer coordinate (x, y)

1: LSD executes:
2: (bx ′c, dx ′e)← x ′;
3: if bx ′c ≤ x ′<bx ′c+ 1

2 then
4: x = bx ′c;
5: else if bx ′c+ 1

2≤ x
′
≤ dx ′e then

6: x = dx ′e;
7: end if
8: (by′c, dy′e)← y′;
9: if by′c ≤ y′<by′c+ 1

2 then
10: y =by′c;
11: else if by′c + 1

2 ≤ y
′
≤ dy′e then

12: y = dy′e;
13: end if
14: return integer coordinate(x, y)

(3) Each Si calculates the value of< Eui, Evk > (1 ≤ k ≤ m)
respectively, if ∃Pi∀ Evk ((Pi ∈ P)

∧
( Evk ∈ Pi) → (5m

k=1 <

Eui, Evk >= 0)), Si sets Di = di + a (di denotes the raw value
of Si’s sensory data), else, sets Di = 1.
(4) Each location-sensitive device Si encrypts Di by

order-preserving encryption, i.e.,

EncOPE (KOPE ,Di)→ CDi .

(5) Each location-sensitive device Si generates:

S+i = {IDi,Cui ,MACKi (CDi ||Cui ||epoch#)},

S−i = {MACKi (epoch#)},

where epoch# denotes timestamp of the current time.

43874 VOLUME 7, 2019



J. Zhang et al.: LBOA in IoT

(6) Each location-sensitive device Si calculates FCDi (S
−

i ).
We use RSA as the one-way function F in this study.

4) AGGREGATION
During the phase of aggregation, the following steps are
executed in sequence.

(1) Each Si sends (CDi , S
+

i ,F
CDi (S−i )) to CSP.

(2) CSP compares the value of CDi after receiving all the
message from LSDs. Assuming that the value of Sm’s data is
the maximum value, which is known by the CSP.We use CDm
to represent the encrypted maximum value.

(3) CSP computes the aggregated result

(CDm , S
+
m ,�iF

CDm (S−i )),

where�iFCDm (S
−

i ) =
∏n

i=1(F
CDm (S−i ))mod(pq), p and q are

two large prime number used in one-way function (RSA).
(4) CSP sends the aggregated result

(CDm , S
+
m ,�iF

CDm (S−i ))

to the user.

5) VERIFICATION
User verifies the correctness of the aggregated result reported
by CSP in this phase. The specific steps of this phase are
described below.

(1) User verifies the validity of IDm andMACKm first after
receiving

S+m = {IDm,Cum ,MACKm (CDm ||Cum ||epoch#))}

from CSP.
(2) User computes all individual S−i , for each S

−

i , computes
FCDm (S−i ), and then computes �i−userFCDm (S

−

i ), where

�i−userFCDm (S
−

i ) =
n∏
i=1

(FCDm (S−i ))mod(pq).

(3) If the �i−userFCDm (S
−

i ) computed by user is the same
as the�iFCDm (S

−

i ) in the aggregated result reported by CSP,
user accepts the aggregated result.

(4) User decrypts CDm to get the plaintext of the maxi-
mum value at the specified location. The maximum value
of location-sensitive devices’ sensory data that meets the
location strategy is dm. At the same time, user decrypts Cum
in S+m to get the location (xm, ym) from Eum, i.e.,

DecOPE (KOPE ,CDm )→ Dm,

dm = Dm − a,

Dec(PKm,Dec(SKU ,Cum ))→ Eum,

Eum = (x2m + y
2
m,−2xm,−2ym, 1).

The flow diagram of protocol LBOAMax is shown
in Figure 4.

In order to help reader to understand scheme LBOAMax
better, we take a simple example. As shown in Figure 5,
the user specifies the location strategy P which is Ev =
(1, 1, 1, 1). There are nine LSDs. S2, S4, S6 and S8 satisfy

the location strategy while S1, S3, S5, S7, S9 do not satisfy
the location strategy. If Si satisfies user’s location strategy,
i.e. < Eui, Ev >= 0, sets Di = di + a, else, sets Di = 1.
We assume a = 3 in this example. During the phase of
collection, each Si encrypts Di by order-preserving encryp-
tion to obtain the encrypted ciphertext CDi . And then each Si
calculates FCDi (S−i ). Due to the property of OPE, because
D2 = 8 is the largest value among Di. Thus CD2 is still
the largest value among the ciphertext CDi . We use C8 to
represent CD2 in this example. Next, at the phase of aggrega-
tion, for each FCDi (S−i ), CSP computes the value of FC8 (S−i )
through one-way chain. Then CSP computes the aggregated
result (C8, S

+

2 ,�iF
C8 (S−i )) and sends the aggregated result

to user. User verifies the correctness of the aggregated result
reported by CSP and decryptsC8 to obtain the plaintext of the
maximum value at the specified location.

6) DISCUSSION OF LBOAMAX
a: STATIC VS. DYNAMIC
In our scheme LBOAMax , location-sensitive devices may be
static or dynamic. If the location-sensitive devices are static,
in other words, if the location of location-sensitive devices
will not change after deploying, each Si will only need to reg-
ister once. If the location-sensitive devices are dynamic, at the
beginning of each different process of LBOAMax , the newly
added LSDs should be registered and have certified ID.
At the same time, the LSDs which are outdated should be
logged out.

b: LOCATION STRATEGY
As shown in Figure 6(a), if we want to determine whether a
point (x, y) is on the boundary of a circle C , we could split
point (x, y) into a vector Eu, then we distribute the circle into
a vector Ev, and then compute the inner product < Eu, Ev >.
If < Eu, Ev >= 0 ⇒ (x, y) ∈ C . As shown in Figure 6(b),
in a two-dimensional space, a particular point (x, y) can be
uniquely determined by two tangent circles, if < Eu, Ev1 >= 0
and < Eu, Ev2 >= 0 are met at the same time, the point (x, y)
is at the specified location.

c: ONE-WAY CHAIN
One-way chain is constructed by a series of one-way func-
tions. There may be multiple aggregators in CSP executing
aggregation process at the same time. Thus, the one-way
function we adopted should have the property of homo-
morphism. Due to the reason that RSA has the property of
homomorphism, we use RSA as the one-way function F in
this study.

If the one-way function used in one-way chain is RSA,
multiple values of one-way chain based on the same encryp-
tion key can be folded together by using modulo multipli-
cation operation. We use symbol � to denote the folding
operation in this article. The folded value can be used
to make more efficient communication and do verification
efficiently.
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FIGURE 4. Scheme LBOAMax .

FIGURE 5. An example of LBOAMax .

B. LBOATOP−K
In this section, we do some extension to propose scheme
LBOATop−k .
User requests to obtain the largest k values of data under

location strategy in LBOATop−k scheme. It is obvious that we

can achieve this by executing LBOAMax scheme repeatedly
for k times.
The first invocation of LBOAMax scheme will return the

aggregated result (CDm , S
+
m ,�iF

CDm (S−i )) to user. The user
could learn the maximum value dm and the location of Sm
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FIGURE 6. (a) Circle area. (b) Specified location.

who reporting the maximum value of sensory data. Then exe-
cuting the second invocation of LBOAMax scheme again after
excluding the location-sensitive device Sm. The second invo-
cation will return the second largest value of data. And then,
executing the third invocation of LBOAMax scheme again after
excluding the location-sensitive device who reports the sec-
ond largest value of data. In a similar fashion, the user can get
top-k values of data whose location satisfy the location strat-
egy after executing LBOAMax scheme repeatedly for k times.

C. LBOASUM
LBOASum scheme requests to obtain the summation value of
data under user’s location strategy. Similar to LBOAMax and
LBOATop−k , scheme LBOASum also contains of five phases.
The initialization phase is completely identical to

5.A.1 with an additional initialization step: CSP has
a certified public/private key pair that we represent as
(PKCSP, SKCSP).
The request phase is identical to 5.A.2 except the operation

function f in step (2) is f = Sum, and the step (4) is
user utilizes group key GK to encryption a and the location
strategy P, i.e.,

Enc(GK , a‖P‖epoch#)→ CRequest .

In the phase of collection, Each Si decrypts the broadcast
message from the CSP to get the plaintexts of a and P, i.e.,

Dec(Ki,CRequest )→ a‖P‖epoch#.

The second and the third steps are identical to 5.A.3(2)
and 5.A.3(3). Then each Si utlizes CSP’s public key to
encrypt Di, i.e.,

Enc(PKCSP,Di)→ CDi .

Next each location-sensitive device Si generates:

S+i = {IDi,Cui ,MACKi (CDi ||Cui ||epoch#)},

S−i = {MACKi (epoch#)}.

Finally, Each Si calculates FDi (S
−

i ).
During the phase of aggregation, the following steps are

executed in sequence.
(1) Each Si sends (CDi , S

+

i ,F
Di (S−i )) to CSP.

(2) CSP decrypts CDi to get the plaintext Di, i.e.,

Dec(SKCSP,CDi )→ Di.

(3) CSP counts the number of Di = 1, and use h to denote
the total quantity.

(4) CSP compares the value ofDi to get themaximumvalue
of Di. Assuming the maximum value is Dm.
(5) CSP computes the summation of data whose location

satisfies the location strategy, i.e.,

SumCSP = 6n
i=1Di − h.

(6) CSP computes the value of Top − (n − h) and
Top− (n− h+ 1).

(7) CSP computes FDm (S−i ) for each Si, and then CSP
computes �iFDm (S

−

i ), where

�iFDm (S
−

i ) =
n∏
i=1

(FDm (S−i ))mod(pq).

(8) CSP sends the aggregated result (h,Dm,Top −
(n− h),Top− (n− h+ 1), SumCSP,�iFDm (S

−

i )) to the user.
After receiving the aggregated result sent by CSP, the user

verifies the correctness of aggregated result. The specific
steps of this phase are described as follows.

(1) User computes all individual S−i , computes FDm (S−i )
for each Si, and then computes �i−userFDm (S

−

i ), where

�i−userFDm (S
−

i ) =
n∏
i=1

(FDm (S−i ))mod(pq).

(2) If �i−userFDm (S
−

i ) computed by the user is the same
as�iFDm (S

−

i ) in the aggregated result reported by CSP, then
user verifies Top− (n− h) and Top− (n− h+ 1) reported in
the aggregated result.

(3) If the following three conditions are met at the same
time, user believes that the aggregated result reported by CSP
is correct. And then user computes Sum = SumCSP−a(n−h).
Sum denotes the summation value of data who meets user’s
location strategy.
• ∀Di(Di ∈ Top(n− h)→ Di ≥ 2).
• The values in Top−(n−h) is the same as the first (n−h)
values in Top− (n− h+ 1).

• The last value in Top− (n− h+ 1) is 1, in other words,
the minimum value in Top− (n− h+ 1) is 1.

VI. SECURITY ANALYSIS
In this section, we analyze that our schemes satisfy all the
security goal. We take LBOAMax as an example. The analysis
of LBOATop−k and LBOASum are similar to that of LBOAMax .

A. AGGREGATION VERIFIABILITY
Our scheme LBOAMax can guarantee the verifiability of
aggregation. In other words, our scheme can guarantee the
aggregation process not to be tampered by CSP. We analyze
it from the following two aspects.
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1. In this part, we don’t discuss the case that CSP mali-
ciously delete or increase the nodes participating in the aggre-
gation, we only consider that CSP false reports the aggregated
result.

Our scheme can guarantees CSP reports the true Max, put
another way, our scheme can prevent CSP reporting a value
smaller or larger than the true Max. Let Dm denotes the true
Max of reported values andD′m denotes the result reported by
the CSP. We use MACKi to generate S+i and S−i in the phase
of collection. Due to the properties of MAC, S+i and S−i only
can be generated by Si. Thus user can verify the validity of S

+

i
for a given epoch. Next, we analyze from the following two
aspects.

1© D′m > Dm. If D′m > Dm, the parameter S+m , which
S+m = {ID

′
m,C

′
um ,MACKi (C

′
Dm ||C

′
um ||epoch#)} must be gen-

erated by a location-sensitive device S ′m. So the adversary
must forge the MAC successfully, which is impossible.

2© D′m < Dm. We construct one-way chain whose seed
is S−i in the phase of collection. Each location-sensitive
device Si reports the value at position CDi , which we express
by FCDi (S−i ). The CSP rolls FCDi (S−i ) forward for several
times to obtain the value FCDm (S−i ) at position CDm for each
Si during the phase of aggregation. Then CSP computes
�iFDm (S

−

i ). By doing these, if D′m < Dm, it is impossible to
utilize FCDm (S−i ) to obtain FCD′m (S−i ) since F is an one-way
function and FDm (S−i ) is an one-way chain which can only
roll forward but cannot roll backward. So the probability to
calculate all the Si’s value of FCDm (S

−

i ) can be negligible.
Therefore, our scheme is secure since the CSP can’t abduct

the user to accept an incorrect aggregated result by tampering
with the aggregation process.

2. In this part, we mainly consider the case that CSP
discards the LSD that reads the largest value among all the
LSDs who satisfy the location strategy, or CSP adds an illegal
LSD that reads a value larger than the true largest reading of
legitimate LSDs in our scheme.

1© Our scheme can guarantee CSP cannot delete or
ignore the true largest value under location strategy.
In the initilization phase, each Si negotiates a symmet-
ric key Ki with user. After LSD sending aggregated result
(CDm , S

+
m ,�iF

CDm (S−i )) to the user, user computes all indi-
vidaual S−i = MACKi (epoch#) and folded all the FCDm (S−i )
together to get the�i−userFCDm (S

−

i ). And then user compares
�i−userFCDm (S

−

i ) with�iF
CDm (S−i ) reported by CSP. In this

way, if CSP ignores some legitimate value of LSD’s data,
�i−userFCDm (S

−

i ) computed by user will not equal to the
�iFCDm (S

−

i ) reported by CSP. What’s more, similar to our
analysis above, due to the characteristic of one-way chain,
if CSP discards the true largest value and regards a value
smaller than it as the largest one, the probability to calculate
all the Si’s value of FCDm (S

−

i ) can be negligible.
2© Our scheme can guarantee CSP will not add an illegal

LSD which reads a value D′m larger than the true largest
value Dm. Assuming that the vector of the illegal LSD’s
location is Eu′m. After user receiving the aggregated result
reported by the CSP, user will verify the validity of S+m firstly.

Similar to our analysis above, S+m must generated by a legit-
imate LSD. But there are no legitimate LSD has the value
of D′m, so the adversary must forge the MAC . However the
probability that adversary could forge the MAC successfully
can be negligible. What’s more, after user verifying the
correctness of aggregated result, user will get the location
(x ′m, y

′
m) from Eu′m. (x

′
m, y
′
m) is illegal, so it is impossible to pass

the verification of the user.

B. LOCATION PRIVACY
Location privacy means the location of LSD should only be
known by the LSD itself and the totally trusted user. Thus,
any other entity including other LSDs, the CSP and out-
side attacker cannot learn any knowledge about the location
of LSD.

In our scheme LBOAMax , we adopt a secure asymmetric
encryption algorithm and signature algorithm. At the phase
of collection, LSD utilizes Si’s secret key SKi to sign Eui,
then LSD utilizes user’s public key PKu to encrypt Eui,
i.e. Enc(PKU , Sig(SKi, Eui)) → Cui . Since the asymmetric
encryption algorithm is semantically secure, it can against
chosen ciphertext attack (CCA). The ciphertexts generated
by public key encryption algorithm are indistinguishable.
In other words, for any two given location plaintext Eu1
and Eu2, and their location ciphertext is Cu1 and Cu2
respectively, the probability that the adversary can dis-
tinguish Cu2 with Cu1 is Pr(Cu1 ← Enc(PKu, Eu1) :
Attacker(PKu,Enc(PKu, Eu2)) = Cu1 ) ≤ p(λ) , where p(λ)
is negligible. This means that only the user who has secret
key SKu could decrypt the ciphertextCui , any other third party
could not learn any knowledge about the location plaintext Eui.
Since the signature algorithm is semantically secure which
can against adaptive chosenmessage attack (CMA), signature
is unforgeable. The probability for adversary who does not
have the secret key SKi to forge a signature of Si correctly is
negligible.

Therefore, the privacy of location-sensitive devices’ loca-
tion can be achieved in our scheme.

C. DATA CONFIDENTIALITY
Data confidentiality refers to the confidentiality of data di,
which is the raw value of LSD’s sensory data. Our schemes
can ensure the data sensed by LSD will not be intercepted by
external attacker. In LBOAMax , the scheme also can ensure
the data sensed by LSD will not be intercepted by CSP.
In our scheme LBOAMax , at the phase of collection, LSD
judges whether its location satisfies user’s location strategy
P = {P1,P2, . . . ,Pn} or not. If ∃Pi∀ Evk ((Pi ∈ P)

∧
( Evk ∈

Pi)→ (5m
k=1 < Eui, Evk >= 0)), in other words, if the location

of Si satisfies user’s location strategy P, Si sets Di = di + a,
else, Si sets Di = 1. Thus, the confidentiality of di can be
reduced to the confidentiality of Di.
In the phase of collection, each Si adopts order-preserving

encryption to encrypt Di, i.e. EncOPE (KOPE ,Di) → CDi .
Since order-preserving encryption is a secure symmetric
algorithm whose symmetric secret key KOPE is shared
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between user and LSD, only the totally trusted user and
the LSD itself know the key KOPE which is used in
order-preserving encryption, any other entity including out-
side attackers and CSP know nothing about the key KOPE .
Only the LSD itself has Di and the user could decrypt
CDi with the symmetric key KOPE to obtain plaintext Di,
i.e. DecOPE (KOPE ,CDi ) → Di. As for other entities,
the probability of obtaining Di is negligible even if they have
the ciphertext CDi .
What’s more, in our scheme, at the phase of request, user

picks a random a ∈ Zp, which meets the condition that for
any value of Si’s sensory data di, di + a ≥ 2 is satisfied. a is
used as an offset. For each different session, the selection of
a is random, that means for the same Si, Di is different in
different sessions. Due to the properties of order-preserving
encryption and offset, for the same plaintext di, different
sessions generate different ciphertexts CDi . Adversary cannot
distinguish the ciphertexts which are generated by the same
plaintext in different sessions. For example, there is a plain-
text value of data di, in one session, user picks a1 ∈ Zp, thus
Di1 = di+a1, EncOPE (KOPE ,Di1)→ CDi1 , the ciphertext of
data di in this session is CDi1 . While in another session, user
picks a2 ∈ Zp, a2 may not be equal to a1. Di2 = di + a2,
EncOPE (KOPE ,Di2)→ CDi2 , thus the ciphertext of data di in
this session is CDi2 . Adversary cannot guess the plaintext di
even he (or she) has the ciphertext CDi1 and CDi2 in different
sessions.

Consequently, the confidentiality of the data can be guar-
anteed in our scheme.

D. LOCATION STRATEGY CONFIDENTIALITY
Location strategy confidentiality refers to that the user’s loca-
tion strategy P = {P1,P2, . . . ,Pn} can only be learned by
legitimate LSDs and the user itself, any other entity including
the untrusted CSP and outside attackers could learn nothing
about user’s location privacy.

In our scheme, at the phase of initialization, each legit-
imate Si consults a symmetric key Ki with the user, user
maintains a group key GK . At the phase of request, user
adopts a secure asymmetric encryption algorithm, and utilizes
group key GK to encrypt the location strategy P of the
user, i.e., Enc(GK , a‖P‖KOPE‖epoch#) → CRequest . What’s
more, the location strategy P is encrypted by the group key
GK . That means for any legitimate Si who has consulted a
symmetric key Ki with the user, it can decrypt the ciphertext
CRequest to get location strategyP. However, for any other par-
ticipants, including CSP, the probability to decrypt CRequest
which is encrypted by user’s group keyGK to get the plaintext
of user’s location strategy P can be negligible.
Therefore, the privacy of location strategy could be pro-

tected in our scheme.

E. DISCUSSION
LBOATop−k: LBOATop−k is achieved by executing LBOAMax
repeatedly for k times. Thus, the security analysis of
LBOATop−k is similar to that of LBOAMax .

LBOASum: Due to the purpose of LBOASum is to get the
summation value of data, CSP will add all legal sensory data
together to get the summation. Thus, the scheme LBOASum
only prevents outside attacker but not CSP to get Di. In the
phase of collection, each Si adopts a secure asymmetric
encryption algorithm, Si utilizes CSP’s public key PKCSP
to encrypt Di. i.e. Enc(PKCSP,Di) → CDi . Only the CSP
who has secret key SKCSP could decrypt ciphertext to get Di.
Outside attacker cannot learn any knowledge about the Di.
Therefore, our scheme LBOASum can protect data confiden-
tiality against outside attacker.

VII. PERFORMANCE ANALYSIS
A. COMPARISON WITH RELATED WORK
In this section, we compare our schemes with some related
work including RCDA [27], SHIA [30], OA-WC [16] and
Geo-SE [40]. The comparison results are shown in Table 2.
‘‘
√
’’ means satisfied, ‘‘×’’ means dissatisfied and ‘‘-’’ means

uninvolved. LB means location-based, DCOmeans data con-
fidentiality against outside attacker, DCC means data confi-
dentiality against CSP, LSC means location strategy privacy,
LSDP means location-sensitive device privacy, AV means
aggregation verifiability.

TABLE 2. Comparison with related work.

From Table 2, it is obvious that RCDA [27] cannot support
data aggregation functions. SHIA [30] cannot support Max
and Top-k. It also cannot protect the confidentiality of data.
OA-WC [16] cannot support Sum and cannot protect the
confidentiality of data. Geo-SE [40] is location-based. It can
protect the privacy of LSD, the confidentiality of data and
location strategy. But this work does not focus on data aggre-
gation. Our scheme LBOAMax and LBOATop−k satisfy all the
properties in Table 2, LBOASum satisfies all the properties
except DCC.

B. COMPUTATION EVALUATION
In this section, we mainly focus on evaluation of computation
overhead of our schemes. The experiments are implemented
on a PC (CPU: Intel(R) Core(TM) i5-3470 CPU@ 3.20GHz
3.20GHz, RAM:8.00GB, OS: Windows 7), using jdk 1.8.0.

We take scheme LBOAMax as an example. The evaluation
of LBOATop−k is similar to LBOAMax because LBOATop−k
is achieved by executing LBOAMax repeatedly for k times.
We do not repeat the evaluation of LBOATop−k in this study.
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We evaluate the computation overhead of LSD, CSP and
user respectively. We adopt RSA-1024 and Hmac-MD5 in
our implementation. We adopt the algorithm in [15] to
realize order-preserving encryption. We assume there are
100 location-sensitive devices and the range of the value of
LSD’s sensory data is [0,100].

1) LSD
As shown in Figure 7, we evaluate the computation over-
head of LSD in the phase of collection. For LBOAMax and
LBOATop−k , we adopt two kinds of different ciphertext-space
of OPE respectively. In one case, the ciphertext-space of OPE
is 0 − 29. And in the other case, the ciphertext-space of
OPE is 0 − 210. It is obvious that the bigger value of LSD’s
sensory datawill lead to slightly higher computation cost. The
ciphertext-space of OPE also has effect on computation over-
head. When the ciphertext-space is larger, the computation
cost of LSD is higher. The computation overhead of LSD in
LBOATop−k is similar to that of LBOAMax . In brief, the pro-
cessing time is between 0.2-0.3 second. It is acceptable for
LSD whose calculation and storage power is limited. As for
LBOASum, the processing time is much less than 0.05 second.
The processing time in LBOASum is very short because we
does not adopt order-preserving encryption in it. In general,
the computation overhead of LSD is practical for LSD who
does not have very strong power.

FIGURE 7. Computation overhead of LSD.

2) CSP
As shown in Figure 8, we evaluate the computation overhead
of CSP in the phase of aggregation in protocol LBOAMax . The
CSP computes the folded value �iFCDm (S

−

i ) after receiving
FCDi (S−i ) from all the location-sensitive devices in the phase
of aggregation. The ciphertext-space of OPE is 0 − 29 in
this part. We take four kinds of different data distribution
strategy in our evaluation. Uniform denotes the values of
sensory data are distributed uniformly at the range of [0,100].
High denotes the values of sensory data are concentrated on
the range of [80,100]. Medium denotes the values of sensory
data are concentrated on the range of [40,60]. Low denotes the
values of sensory data are concentrated on the range of [0,20].

FIGURE 8. Computation overhead of CSP.

The algorithmic we adopted and the data distribution strategy
we set are listed detailedly in Table 3.

From Figure 8, it is obvious that the number of LSDs
satisfying location strategy influence the processing time.
The fewer number of LSDs satisfying the location strategy,
the higher computation cost of the CSP. The processing time
is only about 0.1s when all the LSDs’ location satisfy user’s
location strategy, while the processing time is 1.6s when
nearly no LSD’s location satisfies user’s location strategy.
The different distribution strategy also affect the computa-
tion overhead. It is obvious that the computation overhead
is the highest when the values of LSD’s sensory data are
distributed uniformly, while the computation overhead is the
lowest when the values of LSD’s sensory data concentrated
on low values. The processing time of high distribution is
a little longer than that of medium distribution. In general,
the processing time is within the scope of 0.1s and 1.5s, which
is acceptable for CSP in practice.

3) USER
As shown in Figure 9, we evaluate the computation overhead
of user in the phase of verification in protocol LBOAMax .
In the phase of verification, user computes each S−i and
FCDm (S−i ). Then, user folds all the F

CDm (S−i ) together to get
the folded value �i−userFCDm (S

−

i ). If the aggregated result
can be verified successfully, user decrypts CDm and Cum .

From Figure 9, the number of LSDs satisfying location
strategy has little effect on the computation overhead of user.
The distribution strategy of sensory data has much effect
on the computation overhead of user. The processing time
is about 1.5s, 2.2s, 2.5s and 2.5s when the data distribution
strategy is low, medium, high and uniform respectively. The
computation overhead is the highest when the data values are
uniform distribution or high distribution. The computation
overhead is the lowest when the data values are low distribu-
tion. When the data values are medium distribution, the com-
putation overhead is higher than that of low distribution.

4) COMPUTATION OVERHEAD UNDER DIFFERENT OPE
As shown in Figure 10, the ciphertext-space of OPE has
effect on the computation overhead. We adopt two kinds of
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TABLE 3. Description of evaluation.

FIGURE 9. Computation overhead of user.

FIGURE 10. Computation overhead under different OPE.

different ciphertext-space of OPE respectively. In one case,
the ciphertext-space of OPE is 0− 29. And in the other case,
the ciphertext-space of OPE is 0−210. For user and CSP, if the
ciphertext-space of OPE is larger, the computation overhead
is higer. For user, the processing time is about 2.6s when the
ciphertext-space of OPE is 0− 29, while the processing time
is around 4.2s when the ciphertext-space of OPE is 0 − 210.
For CSP, the processing time is within the scope of 0.6s -
1.5s when the ciphertext-space of OPE is 0 − 29, while the
processing time is within the scope of 1.3s - 3s when the
ciphertext-space of OPE is 0−210. For LSD, the computation
overhead under OPE (210) is slightly higher than OPE (29).
What’s more, the computation overhead of LSD is far less
than the computation overhead of CSP and user, which is

FIGURE 11. Computation overhead of aggregation in LBOASum.

FIGURE 12. Computation overhead of verification in LBOASum.

suitable in practice considering that LSD does not have strong
capacity for computation.

5) COMPUTATION OVERHEAD IN LBOASUM
The computation overhead of aggregation in scheme
LBOASum is shown in Figure 11. The computation overhead
of verification in scheme LBOASum is shown in Figure 12.
The computation overhead of LBOASum is much lower than
that of LBOAMax and LBOATop−k because Si utilizes public
key cryptography rather than order-preserving encryption to
encrypt Di in LBOASum. From Figure 11, it is obvious that
the processing time of CSP aggregation is less than 1s. From
Figure 12, the processing time of user verification is less
than 0.7s, which is acceptable in practice.
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VIII. CONCLUSIONS
In this study, we proposed three novel schemes that can
achieve secure outsourced aggregation based on data’s loca-
tion. We proposed LBOAMax to obtain the Max aggregated
data first, and then we proposed LBOATop−k and LBOASum
to obtain the Top-k and Sum aggregated data respectively.
Different from existing schemes, our schemes could realize
secure aggregation based on location and could achieve loca-
tion privacy protection, data confidentiality protection and
location strategy confidentiality protection. Next we analyze
the security of our schemes and the analysis results show
that our schemes satisfy all the defined requirements. Finally,
the experiment results show that our schemes are practical
and feasible in IoT.
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