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ABSTRACT Computed tomography (CT) has an excellent performance in detecting dense structure, such
as bones and implants, while magnetic resonance (MR) provides high-resolution information for soft issues.
To obtain sufficient and accurate information for diagnosis, we propose a CT and MR image fusion method
via adaptive structure decomposition to combine the complementary information. First, on the basis of
different scales of issues, we adaptively decompose the source images into sub-bands (bands of small, middle,
and large issues) by a spectral total variation method. Second, based on the interpretability of sub-bands, for
the small scale and middle scale of issues, we extract the edge information from the sub-bands and design
the fusion weight by the local edge energy. And for the large scale of issues, we design the fusion weight by
the local intensity energy. Third, we reconstruct the fused image. The experimental results demonstrate the
superiority of the proposed method on both subjective and objective assessments.

INDEX TERMS CT and MR image fusion, spectral TV, adaptive structure decomposition.

I. INTRODUCTION
Medical imaging has drawn multiple attention because it is
performing a critical role in clinical applicability such as
diagnosis of diseases and the planning of treatment. Due
to the different mechanical principles of medical imaging
instruments, the produced medical images focus on restricted
parts of issues/organs. Therefore, the limited information is
provided respectively. The computed tomography (CT) has
an excellent performance on detecting dense structure such as
bones and implants and, magnetic resonance (MR) provides
high-resolution information for soft issues [1]–[4]. To obtain
sufficient and accurate information, physicians have to ana-
lyze CT and MR images respectively, which leads to incon-
venience. Under this circumstance, CT and MR image fusion
provides an easier access for physicians to assess patient’s
body condition by combining complementary information
provided by multimodality medical images [5]–[7].

A diversity of medical image fusion methods has been
proposed in recent decades. Among them, there is a typ-
ical type of methods based on the multiscale transform
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(MST) framework [8]–[17]. Generally, there are three basic
steps in an MST based fusion method. Firstly, the source
images are decomposed into a series of sub-bands with some
strategy. Then, some designed fusion strategies are used
to merge transformed coefficients. Finally, the fused image
is reconstructed. For instance, Yin et al. [18] proposes a
medical image fusion method which is based on nonsub-
sampled shearlet transform (NSST) for decomposition of
source images. A parameter-adaptive pulse-coupled neural
network (PA-PCNN) model is applied for the fusion of high-
frequency bands. Du et al. [19] presents a local Laplacian
filtering (LLF)-based fusion technique. The source images
are transformed with LLF and uses a local energy max-
imum (LEM) scheme for fusion. Yang et al. [20] imple-
ments a nonsubsampled contourlet transform (NSCT)-based
method. The NCST is performed on preregistered source
images to obtain sub-bands with high- and low-frequency.
And then the local type-2 fuzzy entropy is introduced for
fusion of high-frequency sub-bands and a local energy algo-
rithm is used for low-frequency sub-bandsa̧ŕ fusion. Zhu
et al. [21] proposes an image fusion approach based on
image cartoon-texture decomposition. They first decompose
the source images into cartoon and texture components. And

44002
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2230-303X
https://orcid.org/0000-0002-7463-6103


F. Zhao et al.: CT and MR Image Fusion Based on Adaptive Structure Decomposition

a spatial-based fusion method is used for cartoon components
and a sparse-representation based fusion method is used for
texture components.

In these approaches, the interpretability of the sub-bands
is weak. In other words, the information included in the
sub-bands are hard to explain directly, which leads to
the fact that it is difficult to design a fusion strategy.
In this paper, to enhance interpretability of the sub-bands
and therefore propose a fusion strategy with better results,
a medical image fusion method based on spectral total
variation (STV) is proposed. The main contributions of
our proposed medical image fusion method are outlined as
follows:

1) We introduce a STV [22] method into the medical
image fusion field. In previous studies, it has been
proved that spectral TV helps to extract features in
different scale [23]. Therefore, we decide to take advan-
tage of STV to enhance the interpretability of our sub-
bands so that we design a new fusion strategywithmore
effective fusion results.

2) A novel adaptive fusion strategy is presented by
decomposing the source images into sub-bands which
contain the information of different scale of issues
based on spectrum. Because every sub-band contains
the issues information of one scale range, the clear
meaning of scale information is concluded in sub-
bands. Obviously, it enhances the interpretability of
sub-images because the sub-images have some visible
meanings (the different sizes of the presented issue
information). With the clearly visible meanings of
the sub-bands, we design a state-of-art image fusion
strategy.

3) Experiments have been conducted to analyze the effec-
tiveness of our proposed image fusion method on CT
and MR fusion problems. It is demonstrated that our
proposedmethod achieves state-of-art performances on
both the subjective and objective evaluation.

The remainder of this paper is organized as follows:
In Section II, the technique of STV is briefly introduced.
The proposed CT and MR image fusion method via adap-
tive structure decomposition is presented in Section III.
Section IV gives the experimental results and discussion.
Finally, Section V concludes the paper.

II. BACKGROUNGS
In this section, we briefly introduce the fundamental theories
about the spectral total variation (STV) method.

We aim on decomposing the source images into sub-
bands including different scale of issues and organs. And
in [22] and [23], it has been proved that spectral TV helps to
extract more features in different scale. Motivated by them,
we adopt STV to enhance the interpretability of our sub-
bands, including clear meaning of scale information, so that
we design a new fusion strategy with more effective fusion
results. The spectral TVmethod is based on the total variation
(TV) functional, in which the regularizing functional R(u) is

defined as

R(u) =
∫
�

|Ou|dx, (1)

where the image domain is defined as �, and O means the
distributional gradient. The corresponding gradient descent
evolution, known as TV flow, is written as

∂u
∂t
= div(

Ou
|Ou|

), in(0,∞)×�

∂u
∂n
= 0, on(0,∞)× ∂�

u(0; x) = f (x), inx ∈ � (2)

where f (x) denotes the input image. The scale-space
approach is defined as

ut (t, x) = −p(t, x),

p(t, x) ∈ ∂uR(u), (3)

where t is defined as time or scale parameter and ut (t, x) is
a set of solutions and ∂uR(u) is the sub-differential of some
regularizing functional. Then, the spectral TV transform is
defined by:

γ (t, x) = utt (t, x)t. (4)

We refer γ (t, x) as the spectral component or band at scale t .
And utt is the second derivative of its solution u. Finally,
the reconstruction formula is:

ζ (x) =
∫
∞

0
γ (t, x)dt + f , (5)

where f is the mean value of the initial condition. The spec-
trum Sf (t) is defined as

Sf (t) = ‖γ (t, x)‖L1 =
∫
�

γ (t, x)dx. (6)

It can be seen as the L1 amplitude of the response at each scale
t ∈ [0,∞].
In previous studies, STV has been used for its outstanding

effect. In [24], a STV based method is used to obtain saliency
map and inject the map into another image. In [23], Zhao
et al. take advantage of the STV to decompose the source
images into many sub-bands, and adopt statistical distribution
to construct weight. In comparison, our method has two
unique characteristics. Firstly, we obtain our sub-bands in a
adaptive way on condition of spectrum, and the sub-bands
have strong interpretability so that the meaning including is
easy to tell. Secondly, we obtain the local edge energy and the
local intensity energy of sub-bands to decide the weight.

III. PROPOSED METHOD
Figure 1 shows the schematic of the proposed CT and MR
image fusion via adaptive structure decomposition (ASD).
There are three key steps in our method. First, based on
the different scales of issues, we self-adaptively decompose
source images into corresponding sub-bands with STV tech-
nique. In this way, we get the sub-bands with strong inter-
pretability so that we can design an effective fusion method.
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FIGURE 1. Schematic diagram of our proposed image fusion method.

Second, based on the interpretability of sub-bands, for the
small scale and middle scale of issues, we extract the edge
information from the sub-bands and design the weight of
fusion by the local edge energy. And for the large scale of
issues, we design the weight of fusion by the local inten-
sity energy. Third, we reconstruct the fused image. Detailed
instruction is presented below.

A. ADAPTIVE DECOMPOSITION METHOD
With the support of STV, we obtain N feature layers of
different scale issues {Di, i = 1, 2, ...,N } and the rest layer B,

{Di,B} = S(I ), (7)

where S(I ) means STV operation for image I . Due to the
advantages of STV, each layer presents a different scale of
features. However, to get sub-bands which involve a range of
scales of issues, we need to divide the N + 1 layers into three
sub-bands which respectively consist small, middle and large
scale of issues.

As we mentioned before, the computed tomography (CT)
has an excellent performance on detecting dense struc-
ture such as bones and implants and magnetic resonance
(MR) provides high-resolution information for soft issues.
To enhance the interpretability of sub-bands and therefore
design an effective fusion strategy, we decompose the source
images according to the different scales of issues. The max-
ima values of TV spectrum often stand for the main scale
feature components (see Figure 2). Therefore, on the basis
of maxima values, we manage to design a adaptive decom-
position to ensure every sub-band contains one of the two
maximum values, which enhance the interpretability of the
sub-bands.

To fuse corresponding sub-bands of two source images
(I1 and I2), we need to decide a uniform dividing rule of
sub-bands for two source images. The rest layer of BI1 and
BI2 include the large scale of issues so we take them as the
first sub-bands sI1 and sI2 (the sub-band with large issues)
straightforward.

sI1 = BI1 , (8)

sI2 = BI2 . (9)

Due to the dense sampling and tiny features, each feature
layer cannot express the overall characteristic clearly. Thus,
we decide to divide the N feature layers into 2 sub-bands,
which consists of the second sub-band (sub-band with middle
scale of issues) and the third sub-band (sub-band with small
scale of issues) to express the features of different scales more
clearly. Firstly we pick up 2 maximum values of each source
image feature layers. As shown in Figure 3, the corresponding
layers with the 2 maximum spectrum values are l1I1 , l

2
I1
, l1I2

and l2I2 which are shown as green triangle in Figure 3(b).
In Figures 3(c)–(e) are the first, the second, and the third
sub-band. Then, to ensure every sub-band include one feature
layer with maxima value spectrum, we obtain the boundary
of sub-band dividing by:

b =
max(l1I1 , l

1
I2
)+ min(l2I1 , l

2
I2
)

2
, (10)

where b stands for the boundary. Therefore, the second sub-
band (the sub-band with middle scale of issues) of I1 includes
{Di, i = 1, 2, ..., b}. The third sub-band (the sub-band with
small scale of issues) of I1 includes {Di, i = b + 1, b +
2, ...,N }. It is in the same situation for I2. As shown in
Figure 3, the purple point means the boundary of sub-bands.
In this way, the sub-bands are divided adaptively.
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FIGURE 2. An example of the spectrum of main feature layers and the sub-bands divided. (a) Source image. (b) The spectrum of the N
decomposed layers. (c) The feature layer corresponding to the first maximum value marked by the first blue triangle. (d) The feature layer
corresponding to the second maximum value marked by the second blue triangle.

FIGURE 3. An example of a uniform dividing rule for a pair of source images. (a) A pair of source images. (b) The uniform dividing rule (the
green triangles mean the maximum values and the purple points mean the boundary). (c)–(e) The first, second, and third sub-band.

Therefore, the second and the third sub-band of image I1
generated by:

s2I1 =
1
b

b∑
i=1

DiI1 , (11)

s3I1 =
1

N − b− 1

N∑
i=b+1

DiI1 . (12)

It is the same situation for image I2.

B. FUSION STRATEGY
The first sub-band (sub-band with large scale of issues) con-
tains the intensity information of issues, so we fuse first sub-
bands of two source images with local intensity energy (LIE).
We take pi as the local energy of pixel xi:

pi =
1
K

K∑
i=1

Gn∗n(xi), (13)

where Gn∗n(·) means Gaussian filtering with a window of n∗
n. And the weight of pixel xi of image I1 is

w1
i =

p1i
p1i + p

2
i

. (14)

Therefore, the i-th pixel of the fusion result for the first sub-
band s1 is

x fi = w1
i × x

1
i + w

2
i × x

2
i . (15)

There are more details of texture in the second sub-band
and the third sub-band because the issues in them are in
smaller scales. Therefore, we extract the edge information
from the sub-bands and design the weight of fusion by the
local edge energy. To consider the edge information of the
issues and preserve more details in the second and the third
sub-band, we first extract the feature edge. And then we take
ei as the local edge energy (LEE) of pixel xi:

ei =
1
K

K∑
i=1

Gn∗n(E(xi)), (16)

where E(·) means the operation of extracting the edges:

E(ak,s) =| ak,s+1 − ak,s | + | ak+1,s − ak,s |, (17)

where ak,s stands for the pixel with the location (k, s) in
matrix. The weight of pixel xi of image I1 is

ŵ1
i =

e1i
e1i + e

2
i

. (18)
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FIGURE 4. Comparison of CT and MR image fusion results. (a1)–(f1) are CT source images; (a2)–(f2) are MR source images; (a3)–(f3) are fusion results of
GFF method; (a4)–(f4) are fusion results of LFF method; (a5)–(f5) are fusion results of DWT method; (a6)–(f6) are fusion results of NCST method;
(a7)–(f7) are fusion results of NSST method; (a8)–(f8) are fusion results of the proposed method.

And similarly the i-th pixel of the fusion result of the second
and the third sub-band s2 and s3:

x fi = ŵ1
i × x

1
i + ŵ

2
i × x

2
i . (19)

C. RECONSTRUCTING FUSED IMAGE
Finally, we reconstruct the fused image with

If = s1f + s
2
f + s

3
f , (20)

where sif means the i-th sub-band of fusion result and If stands
for the fused image.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In this section, we introduce experimental images and algo-
rithm parameter configuration.

1) SOURCE IMAGES
Six pairs of images are used in our experiments to verify the
effectiveness of our proposed method. All of these images
are collected from the Internet and have been widely used in
previous publications related to medical image fusion. The
resolution is 256× 256 pixels.

2) ALGORITHM PARAMETERS
In our method, the number of feature layers with different
scale issues N is taken to 20. And in Eq. (13) and (16), n
represents the size of the window of Gaussian filter, which
is set n = 5, and the variance of the Gaussian filter is taken
to 2. The window size for local energy calculation is taken to
K = 25.
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TABLE 1. Quality metrics of different image fusion methods on six image pairs. The best three results are shown in red, blue and green fonts.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, we compare our method with other meth-
ods on two aspects: qualitative evaluation and quantitative
evaluation.

1) QUALITATIVE EVALUATION
Five methods are compared to our proposed fusion method
which are the guided filtering fusion (GFF) method [16],
the local Laplacian filtering (LLF)-based fusion method [19],
the a medical image fusionmethod which is based on nonsub-
sampled shearlet transform (NSST) method [18], the nonsub-
sampled contourlet transform (NSCT) method [20] and the

discrete wavelet transform (DWT) method [17]. Experiments
are performed mainly on six pairs of images to verify our
proposed algorithm. All of these methods are available on the
Internet.

Figure 4 shows the result of the experiments on six pairs
of CT and MR source images. It can be clearly seen that
GFF, DWT and NCST methods lose a large amount of
energy. And it leads to the decrease of some important infor-
mation [see Figures 4(a3)–(f3),(a5)–(f5),(a6)–(f6)]. On the
other hand, the LLF method suffers from noise problem [see
Figures 4(a4)–(f4)]. In addition, the NSST performs better
than them, however, in some regions, detail loss also happens
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[see Figures 4(a7)–(f7)]. Our proposed method performs well
on both energy preservation and detail extraction.

2) QUANTITATIVE EVALUATION
In order to assess the performances of the fusion results of the
methods quantitatively, three widely recognized fusion qual-
ity metrics are applied in our experiment, which are entropy
(EN), localized mutual information (LMI) [25] and Gradient-
Based Index (QG) [26]. For the no-reference images, EN
is used as a fusion image metric. And EN can reflects the
information included in an image. Therefore, a larger EN
metric means an approach with better performance. LMI
is a local variation of traditional mutual information (MI)
index based on quadtree decomposition. And it can overcome
some shortcomings of MI in evaluating fusion performance.
In addition, the metric QG is used for the no-reference image
fusion quality measure. A higher value of QG indicates a
better fusion performance.

Table 1 shows the objective assessment of different meth-
ods. In this table, the red data mean the best objective assess-
ment, the blue ones are second best ones and the green ones
are the third ones. Our proposed method obviously achieves
the best performance in every analyze metric for every pair of
images. Especially, for the average metric, our method shows
its outstanding and stable performance. Compared to other
five fusion methods, our method has obvious advantage on
every metric.

V. CONCLUSION
In this paper, an effective CT and MR image fusion method
via adaptive structure decomposition is presented. We intro-
duce STV into medical image fusion which can extract fea-
tures in different scale thereby enhancing the interpretability
of the sub-bands. We adaptively decompose the images into
three sub-bands: sub-bands with small, middle and large scale
of issues. Experiments are performed on representative CT
and MR images to validate the effectiveness of our fusion
method on both subjective and objective assessment.
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