
Received December 24, 2018, accepted January 14, 2019, date of publication April 1, 2019, date of current version April 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896293

Real-World ISAR Object Recognition and Relation
Discovery Using Deep Relation Graph Learning
BIN XUE , (Student Member, IEEE), AND NINGNING TONG
Air Force Engineering University, Xi’an 710051, China

Corresponding author: Bin Xue (xxbbxl@sina.com)

This work was supported in part by the National NSFC under Grant 61571459, Grant 61631019, and Grant 61701526.

ABSTRACT Real-world inverse synthetic aperture radar (ISAR) object recognition is the most critical and
challenging problem in computer vision tasks. In this paper, an efficient real-world ISAR object recognition
and relation discovery method are proposed, based on deep relation graph learning. It not only handles
the real-world object recognition problem efficiently, but also exploits the inter-modal relationships among
features, attributes, and classes with semantic knowledge. First, dilated deformable convolutional neural
network, including dilated deformable convolution and dilated deformable location-aware RoI pooling,
is introduced to greatly improve CNNs’ sampling and transformation ability, and increase the output
feature maps’ resolutions significantly. And a related multi-modal regions ranking strategy is proposed.
Second, deep graph attribute-association learning is proposed to jointly estimate a large number of multi-
heterogeneous attributes, and leverage features, attributes, and semantic knowledge to learn their relations.
Third, multi-scale relational-regularized convolutional sparse learning is proposed to further improve the
accuracy and speed of the whole system. The extensive experiments are performed on two real-world ISAR
datasets, showing our proposed method outperforms the state-of-the-art methods.

INDEX TERMS Deep relation graph learning, dilated deformable, multi-scale relational-regularized
convolutional sparse learning, inverse-synthetic-aperture-radar, real-world object recognition.

I. INTRODUCTION
Complex object recognition has been recognized as a most
critical and challenging problem in computer vision tasks,
and has attracted a great deal of interest [1], [2]. Particularly,
real-world inverse synthetic aperture radar (ISAR) object
(such as the moving helicopters, airplanes, naval vessels,
cars) recognition [3], is more difficult than object recognition
within natural and infrared image.

Because there are some serious obstacles to achieve an
excellent ISAR object recognition system: (1) the challenging
multi-modal problem, such as numberous different view-
points, scales, poses, deformations, occlusions, blurs, low
resolutions, polarizations and extreme off angle within ISAR
images; (2) because of the special coherence tomography
style and imaging environment, ISAR images are randomly
covered with kinds of complex noises, the structure and
scattering characteristics of ISAR objects are seriously weak-
ened; (3) ISAR image objects are generally smaller than
natural image objects. Fig. 1 shows the illustrations of the
same real-world ISAR object, showing objects within ISAR
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FIGURE 1. The illustrations of the same real-world ISAR object.

images are more complex than the ones within natural and
infrared images.

In general, there are some methods aimed to solve multi-
modal problem, such as affine transformation [4] and scale
invariant feature transform (SIFT) [5], but they only can
handle a few fixed and known deformation styles with much
expensive cost and insufficient deformable samples, which
cannot solve the multi-modal problem well.

Recently, the successful application of deep convolutional
neural networks (DCNNs) encourages us that DCNN may
be one of the most promising means to handle the problem
above [6]. Though DCNN has the powerful ability to extract
features, there are still some problems. CNNs are inherently
limited to model large, unknown transformations because of
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FIGURE 2. Framework of the proposed method.

CNN modules’ fixed geometric structures: the input feature
map at fixed positions; a region-of-interest (RoI) pooling
layer separates a RoI into fixed bins and so on. Moreover,
most of current DCNNs owe very small sizes of receptive
field for convolution sampling, limiting the sampling range
severely. Simultaneously, the resolution of the output fea-
ture maps will be progressively reduced by convolutional
networks for localization and recognition, until the image is
represented by tiny feature maps that retain little spatial infor-
mation, and the spatial structure is no longer discernible, such
as some ISAR images’ feature maps. There lacks internal
mechanisms to handle the multi-modal recognition problem.

Moreover, although extensive efforts have been devoted
for feature extraction in recent years [7], [8], most existing
works neglected attributes mining and the correlations of
features, attributes and classes during learning, while most
of the rest, simply combined multiple familiar features with
simple fusion strategies, and no one consider such complex
multi-modal objects.

In this paper, an end-to-end DRGL is proposed for multi-
modal ISAR object recognition, which not only handles
the complex multi-modal problem fast and efficiently, but
also exploits the relationships among feature, attribute and
classes. (1) Dilated Deformable Convolution (DDC) and
Dilated Deformable Location-Aware (DDLA) RoI Pooling
are introduced to greatly improve CNNs’ sampling and trans-
formation ability, and increase the resolution of output fea-
ture maps. And an associated multi-modal regions ranking
strategy is proposed. (2) Deep Graph Attribute-Association
Learning (DGAAL) is proposed to jointly estimate large
numbers of heterogeneous attributes, and exploit the features,
attributes and the semantic knowledge to learn the inter-
modal associations. (3) Multi-Scale Relational-Regularized
Convolutional Sparse Learning (MSRCSL) is proposed to
further improve the accuracy and speed of the whole sys-
tem. The proposed method is evaluated on two multi-modal
ISAR datasets with extensive experiments, showing that our
proposed method outperforms several state-of-the-art recog-
nition methods.

II. PROPOSED METHOD
A. NETWORK ARCHITECTURE
The overall framework of CIOR is shown in Fig. 2. DMCNN
is used to handle the multimodal recognition problem,

DGAAL is used to jointly estimate large numbers of het-
erogeneous attributes and exploit the inter-modal relation-
ships among features, attributes, labels, classes, and semantic
knowledge, while MSRCSL is used to improve the accuracy
and speed of the entire system.

The proposed DRGL contains a deep network (the former)
to learn shared attributes-features, followed by some shallow-
layer networks (the latter) to learn class-individual attributes-
features. The shared attributes-features are fine-tuned by the
latter networks to get an optimal estimation of individual
attributes, features and relationships. Particularly, a modified
VGG-14 model is used as the default baseline deep model
(the shared learning section includes 4 convolutional (Conv.),
4 batch normalization (BN), 4 pooling, 2 fully connected (FC)
layers. Particularly, each BN layer is between each Conv. and
pooling layer).

B. DILATED DEFORMABLE CONVOLUTIONAL
NEURAL NETWORK
DDC and DDLA RoI Pooling are introduced to provide the
receptive field with exponential level expansion without res-
olution loss or coverage, enable free form deformation of the
sampling grid, which greatly improves CNNs’ sampling and
transformation ability, and increases the output feature maps’
resolution. Both the two modules are light weight. They add
small amount of computation for the offset learning. They
can readily replace their plain counterparts in DCNNs and
can be easily trained end-to-end with standard backpropaga-
tion (BP).

1) DILATED DEFORMABLE CONVOLUTION
In the dilated modules [9], [10], Fi(i = 0, 1, ..., n − 1) :
Z2
→ R and ki(i = 0, 1, ..., n − 2) : �r → R are defined

as discrete functions and discrete filters of size (2r + 1)2,
respectively, �r = [−r, r]2 ∩ Z2. Applying the filters with
exponentially increasing dilation:

Fi+1 = Fi∗[2i]ki (1)

(Fi∗[e]k)(l) =
∑

s+et=l

Fi(s)k(t) (2)

where e is a dilation factor, and ∗[e] is defined as the discrete
l-dilated convolution operator. The receptive field of an ele-
ment l in Fi+1 is defined as the group of elements in F0 that
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FIGURE 3. Illustration of the sampling positions in 3 × 3 SC and DDC.

FIGURE 4. Illustration of 3 × 3 DDC.

revises Fi+1(l). Let the size of the receptive field of l in Fi+1
be the number of these elements. This is illustrated in Fig. 3
(yellow grid).

At the same time, with the deformable modules [11], [12],
it adds 2D offests to the grid sampling positions in the
standard convolution (SC). Fig. 3 is the illustration of the
sampling positions in 3 × 3 SC and DDC. Fig. 3 (a) shows
regular sampling grid Rof SC. Fig. 3 (b) (c)are 1-dilated and
2-dilated deformed sampling with Fig. 3 (a)’s different cases
of deformed sampling positions (red points) with augmented
offsets (green arrows) in DDC. Fig. 4 shows the illustration
of DDC. In DDC, for each location l1 on the output feature
map y, we have

y(l1) =
∑
ln∈R

w(ln) · x(l1 + ln +1ln) (3)

Regular grid R is augmented with offsets {1ln|n = 1, ...,N },
where N = {R}. Sampling is on the irregular and offset
locations ln +1ln.

2) DILATED DEFORMABLE LOCATION-AWARE RoI POOLING
It adds an offset to each bin position in the regular bin
partition of the previous RoI pooling. Similarly, the offsets
are learned from the preceding feature maps and the RoIs,
enabling adaptive part localization with different shapes.
In this paper, DDLA RoI Pooling [13] is in the last pooling
layer in VGG-14. Fig.5 is the illustration of DDLA RoI
Pooling.

Given the input feature map x and a RoI of size w × h
and top-left corner l1, RoI pooling divides the RoI into k × k
bins and outputs a feature map y. In DDLA RoI pooling, for
(i, j)-th bin (0 ≤ i, j < k), we have

y(i, j) =
∑

l∈bin(i,j)

x(l1 + l +1lij)/nij (4)

FIGURE 5. Illustration of 3 × 3 DDLA RoI pooling.

where nij is the number of pixels in the bin, the (i, j)-th bin
spans bi(w/k)c ≤ lx < d(i+ 1)(w/k)e and bj(h/k)c ≤ ly <
d(j+ 1)(h/k)e, offsets {1lij|0 ≤ i, j < k} are added to the
binning locations.

3) ASSOCIATED MULTI-MODAL REGIONS RANKING
It may produce many redundant or unlikely multi-modal
object regions with the introducing of DDC and DDLA
RoI Pooling. So a ranker is proposed, to offer an ordering
of a group of associated multi-modal regions, which may
belong to the same objects or the same scenes with different
viewpoints or deformation styles and so on, and ensure that
each object owes a set of top-ranked associated multi-modal
regions, which simultaneously suppresses both the undesir-
able redundant and unlikely sample regions.

Our ranker incrementally adds regions, from best to worst,
based on the combination of an object appearance score and
a penalty for overlapping with previously added associated
multi-modal regions. By taking into account the overlap with
higher ranked associated multi-modal regions, our ranker
ensures that redundant regions are suppressed, forcing the
top-rank regions to be diverse.

By writing a scoring function S(x, r,w) over the set of
associated multi-modal regions x and their ranking r , we cast
the ranking problem as a joint inference problem [14]. The
goal is to find the parameters w such that S(x, r,w) gives
higher scores to rankings that place associated multi-modal
regions for all objects in high ranks.

S(x, r,w) =
∑
i

α(ri) · (wTα9(xi)− wTp8(ri)) (5)

The score is a combination of appearance features 9(x)
and overlap penalty terms 8(r), where r denotes the rank of
a set of multi-modal regions, ranging from 1 to the number
of regions M . This allows us to jointly learn the appearance
model and the trade-off for overlapping regions. 8(r) is the
concatenation of two vectors 81(r);82(r): 81(r) penalizes
regions with high overlap with previously ranked associated
multi-modal regions, and82(r) further suppresses associated
multi-modal regions that overlap with multiple higher ranked
regions. The second penalty is necessary to continue to
enforce diversity after manymulti-modal regions have at least
one overlapping associated multi-modal region. Since the
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strength of the penalty should depend on the amount of
overlap (regionswith 90%overlap should be suppressedmore
than regions with 50%), we want to learn overlap specific
weights. To do this, we quantize the overlaps into bins of 10%
andmap the values to a 10 dimensional vector q(ov) with 1 for
the bin it falls into and 0 for all other bins.

81(ri) = q( max
{j|rj<ri}

ov(i, j)) (6)

82(ri) =
∑
{j|rj<ri}

q(ov(i, j)) (7)

The overlap score between two regions is computed as
the area of their intersection divided by their union, with Ai
indicating the set of pixels belonging to region i:

ov(i, j) =
|Ai ∩ Aj|
|Ai ∪ Aj|

(8)

Each region’s score is weighted by α(r), a decreasing func-
tion. Because higher ranked associated multi-modal regions
are given more weight, they are encouraged to have higher
scores.We found the specific choice of α(r) is not particularly
important, as long as it falls to zero for a moderate rank value.
We use α(r) = exp( (r−1)

2

σ 2
) with σ = 100.

Computing maxr S(x, r,w) cannot be solved exactly, so a
greedy approximation that incrementally adds the associated
multi-modal regions with the maximum marginal gain is
used. We found that this works well for a test problem where
full enumeration is feasible, especially when ov(·, ·) is sparse,
which is true for this ranking problem.

DRGL takes a set of diverse hierarchies and computes the
n-tuples up to a certain height of the ranked region in the
tree. The n-tuples from each hierarchy can be interpreted as a
ranked list of Ni regions that are put together to produce the
final pool of Np regions.

4) FURTHER IMPROVE THE QUALITY OF FEATURE MAPS
AND THE SPEED OF REGIONS PROCESSING
To further reduce the quantity of the ranked multi-modal
regions, a regressor is trained from low- and mid-level fea-
tures. Since the top-ranked associated multi-modal regions
are all formed by a set of regions from a reduced set of
hierarchies, the features which can be computed fast and
efficiently in a bottom-up style are focused on, including
the boundary, size and position (area and perimeter of the
candidate, scale and aspect ratio of the bounding box).

The object overlap with the ground-truth is regressed using
a Random Forest [15], trained with these features above, and
the ranking based on Maximum Marginal Relevance mea-
sures [16] is diversified, which the measure only considers
the best overlap with each ground-truth object, and finally
only the top ranked regions are retained.

To further reduce the dimensionality of the search space,
we start by selecting two ranked lists L1, L2 and the list at
S levels of number of regions are sampled. Then the full

different parameters are scanned to combine the associated
multi-modal regions from both. The final sets of regions are
generated by combining the top N1 from L1 and the top N2
from L2. The process is iterated until all the ranked lists are
combined. The number of sampled configurations using the
proposed algorithm is (R− 1)S2, that is, we have reduced an
exponential problem (SR) to a quadratic one.

C. DEEP GRAPH ATTRIBUTE-ASSOCIATION LEARNING
A DGAAL [17]–[19] is presented to jointly estimate multi-
ple heterogeneous attributes, and discovery the inter-modal
of image dataset, features, and attributes with higher-level
semantic knowledge, which takes into account both attribute
correlation and heterogeneity into a single convolutional
neural network. DGAAL contains of a deep network to
lean shared attribute-features for all the attributes, followed
by some shallow-layer networks to learn class-individual
attribute-features. Fig. 6 is the illustration of DGAAL.

FIGURE 6. ARG, SAP, variable attribute relations discovery modeling.

1) THE DEFINITION OF ARG AND SAP
A Soft Attributed Pattern (SAP) is defined to represent
the common conjunct subgraph pattern among a group of
attributed relational graphs (ARGs) to estimate node corre-
spondences, which takes into account both the attributes and
architectures. And a novel mining method which efficiently
draws the ARG is introduced.

a: ARG DEFINITION
An ARG G is defined as G = (V ,FV ,FV×V ), where V is
the node set. Undirected edges connect each pair of nodes to
form a complete graph. There are Np types of local attributes
for each node and NQ types of pairwise attributes for each
edge in G. FV = {F si |s ∈ V , i = 1, 2, · · ·,NP} and FV×V =
{F stj |s, t ∈ V , s 6= t, j = 1, 2, · · ·,NQ} are the local and
pairwise attribute sets, respectively.

b: SAP DEFINITION
Given a set of ARGs GS = {G

′

k |k = 1, 2, · · ·,N }
and a threshold τ , if graph template G = (V ,FV ,FV×V )
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satisfies among the ARGs the following three conditions,
G is an SAP:
(1) x̂k = argmin

xk
ε(xk |G,G

′

k ); we set

x̂k = {xks |s ∈ V , k = 1, 2, · · ·,N }

(2) (FV ,FV×V )← argmin
N∑
k=1

ε(x̂k |G,G
′

k )

FV ,FV×V

(3) ∀s ∈ V , Es({x̂k}|G,G
′

k ) ≤ τ
where Es({x̂k}|G,G

′

k ) is the average matching penalty of
node s in G among all the ARGs in GS.

Es({x̂k}|G,G
′

k ) =
1
N

N∑
k=1

Ps(x̂k |G,G′k )
+

∑
t∈V ,t 6=s

Qst (x̂ks , x̂
k
t |G,G

′

k )

 (9)

2) MULTI-ATTRIBUTE JOINTLY ESTIMATION
To jointly estimate multiple various attributes instead of
individual attribute, and ingeniously perform a majority of
attributes correlation and shared feature learning, DGAAL is
formulated:

argmin
Wc,{W j}Mi=1

M∑
j=1

N∑
i=1

L(yji,F(Xi,W
j
◦Wc))

+ γ18(Wc)+ γ28(W j) (10)

where Xi is input,Wc andW j are weight vectors, F(·) denotes
the attribute forecasting function of Xi and Wc and W j; yji is
the ground-truth values F(Xi,W j

◦ Wc), L(·) means the loss
function between F(Xi,W q

◦Wc) and y
j
i; 8(·) and γ denotes

the regularization term and parameter respectively.

3) ATTRIBUTE GRAPH MATCHING
Given a set of ARGs GS = {G

′

k |k = 1, 2, · · ·,N },
G
′

k = (Vk ,FVk ,FVk×Vk ), the graph template G represents
an attribute pattern among the ARGs in GS. The matching
between G and G

′

k aims to compute a set of matching assign-
ments between G and G

′

k , denoted by x
k
= {xks |s ∈ V }. Each

matching assignment xks ∈ Vk∪{ε}maps node n inG to either
a node in G

′

k or a dummy choice ε is used when some nodes
in G do not exist in G

′

k . The graph matching is formulated as
a typical QAP with the following energy function:

ε(xk |G,G
′

k ) =
∑
s∈V

Ps(xks |G,G
′

k )

+

∑
(s,t)∈V ,s6=t

Qst (xks , x
k
t |G,G

′

k ) (11)

where ε(xk |G,G
′

k ) indicates the total matching energy. Ps(·)
and Qst (·, ·) denote matching penalties for local and pair-
wise attributes. Various graph matching optimization tech-
niques can solve the energy minimization of ε(xk |G,G

′

k ),
and we choose TRW-S (tree-reweighted message passing).

In this study, matching penalties are defined using squared
differences.

Ps(xk |G,G
′

k )

=


Np∑
i=1

ωPi

∥∥∥∥F si − Fxksj ∥∥∥∥2 , xks ∈ Vk

Pε, xks = ε

(12)

Qst (xks , x
k
t |G,G

′

k )

=



NQ∑
j=1

ω
Q
j

∥∥∥∥F si − Fxks xktj

∥∥∥∥2
‖V‖ − 1

, xks 6= xkt ∈ Vk

+∞, xks = xkt ∈ V
Qε

‖V‖ − 1
, xks or x

k
t = ε

(13)

where Pε and Qε are relatively large constant penalties for
matching to the dummy node ε in the case of occlusions.
‖ · ‖ is the Euclidean norm. We use infinite penalties to avoid
many-to-one matching assignments. ωPi and ωQj denote the
weights for local and pairwise attribute differences respec-
tively.

We require the pairwise penalty to be symmetric, i.e.,
Qst (xs, xt |G,G

′

k ) = Qts(xt , xs|G,G
′

k ), and to be normalized
by ‖V‖ − 1. Penalties Pε and Qε and attribute weights {ωPi }
and {ωQj } can be manually set or automatically mined.

4) ASSOCIATED MULTI-MODAL REGIONS MATCHING
A probabilistic Bayesian model is proposed for related multi-
modal regions matching, and an efficient matching strategy
based on local regularization is described.

a: ¬ PROBABILISTIC BAYESIAN MODEL FOR ASSOCIATED
MULTI-MODAL REGIONS MATCHING
R and R′ denote two groups of region samples extracted from
images I and I ′, respectively. r = (f , s) is a region sample
with appearance feature f and spatial support s, r ∈ R. f and s
represent the region’s visual descriptor and the set of all pixel
locations respectively. Given the dataD = (R,R′), to estimate
the posteriormatching probability score of region sample rinR
matches region sample r ′ in R′, r 7→ r ′, we have:

p(r 7→ r ′|D) = p(f 7→ f ′)p(s 7→ s′|D) (14)

where p(f 7→ f ′) denotes a similarity between feature
descriptors f and f ′, and p(s 7→ s′|D) is computed by the
spatial supports s and s′, s, s′ ∈ D. Assign the best match
φ(r) for every region sample in R:

φ(r) = argmax
r ′∈R′

p(r 7→ r ′|D) (15)

If (f ′, s′) = φ(f , s), f ′ = φ(f ) and s′ = φ(s).

b:  LOCAL OFFSET GEOMETRIC MATCHING
STRATEGY (LOGMS)
To achieve reliable correspondences considering both the
appearance, geometric relationship, and the noised clutter,
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which distracts outlier regions, a novel local offset geometric
matching strategy is proposed.

For each region sample, to estimate a reliable offset for
each region sample r in a robust manner without any infor-
mation about objects and their positions, a reliable offset is
considered for translation and scale which exploits only the
neighboring region samples. For each region r , its neighbor-
hood N (r) is defined as the set of regions with overlapping
spatial support:

N (r) = {r̂|s ∩ s′ 6= ∅, r̂ ∈ R} (16)

Using an initial correspondence ψ(r), determined by the
best match, each neighboring region r̂ is assigned its own
offset, and all of them form a set of neighbor offsets:

X (r) = {r(ŝ)− r(ψ(ŝ))|r̂ ∈ N (r)} (17)

From the set of neighbor offsets, a local offset x∗r for the
region r by the geometric median [21] is estimated:

x∗r = argmin
x∈R3

∑
y∈X (r)

‖x − y‖2 (18)

The local offset x∗r for the region r is estimated by regres-
sion using its local neighboring offsets X (r). Based on x∗r
optimized for each region, we define the geometric consis-
tency function:

g(s 7→ s′|D) = p(s 7→ s′|x∗r )
∑
r̂∈N (r)

p(f̂ 7→ ψ(f̂ )) (19)

which can be interpreted as the fact that the region rinR is
likely to match r ′ in R′ where its offset γ (s)−γ (s′) is close to
the local offset x∗r , and the region r has many neighboring
matches with a high appearance fidelity. By using g(s 7→
s′|D) as a proxy for p(s 7→ s′|D), LOGMS imposes local
smoothness on offsets between neighboring regions.

5) ATTRIBUTE AND FEATURE HETEROGENEITY
Although attribute correlation and region matching are con-
sidered in feature learning above, the attribute heterogeneity
still needs to be considered. We treat each of the hetero-
geneous attribute categories separately, but attributes within
each category are expected to share feature learning and
classification model to a larger extent. To accomplish this,
the objective function is written as:

argmin
Wc,{W j}Mi=1

G∑
g=1

M∑
j=1

N∑
i=1

λgLg(yji,F(Xi,W
g
◦W ))

+ argmin
Wc,{W j}Mi=1

G∑
g=1

M∑
j=1

N∑
i=1

γ18(Wc)+ γ28(W g) (20)

where G is the number of heterogeneous attribute categories,
and M is the number of attributes within each attribute cate-
gory; λg balances the importance of each attribute category;
W g refines the shared features w.r.t. each of the heteroge-
neous attribute class. Lg(·) is a loss function for each of the

TABLE 1. Definitions of the symbols in (21).

heterogeneous attribute categories, given the estimated values
by F and the corresponding ground-truth yji.

D. MULTI-SCALE RELATIONAL-REGULARIZED
CONVOLUTIONAL SPARSE LEARNING
To get good translation invariance, accelerate, and improve
the performance of joint learning multi-modal relational fea-
tures, and provide an unsupervised transfer learning method
based feature attribute and relationship knowledge, we com-
bine multi-scale convolutional sparse coding with relational
regularization on the grid structures. Define a local descriptor
set X = [x1, x2, · · ·, xN ] ∈ Rd×N as an image, Bd×K is a
dictionary which represents the local descriptors, where xi is
the ith local descriptor column ofX ,K is the dictionary’s size.
A descriptor set’s sparse representations can be expressed as
(TABLE 1 shows the define of the symbols in (21)):

Ẑ = argmin
Z
‖X + D� C − BZ‖2F

+ γ ‖Z‖22,1 + ϕ1R1(Z )+ ϕ2R2(Z ) (21)

R1(Z ) =
FT∑

u,v=1

exp(−
∥∥xu − xv∥∥22) ∥∥zu − zv∥∥22 (22)

R2(Z ) =
S∑

j,k=1

exp(−
∥∥xj − xk∥∥22) ∥∥xjZ − xkZ∥∥22 (23)

where xu is the uth column of the input data X , zu is the
uth row of Z ,Xj is the jth row of X , FT and S denotes fea-
ture, attribute and subject, respectively. Particularly, feature-
subject associated context are integrated in a regularized
discriminative least squares regressionmodule with l2,1-norm
to exploit the underlying internal associations.

Define the image-level features with a concatenation of
max pooling features described on m2 spatial girds:

β =

m2⋃
c=1

[ξmax(ẐIc )] (24)

where β ∈ Rm
2K , ξmax is defined on each row of Ẑ ,

⋃
[ ] is

vector concatenation operator, and Ic is index set for the
descriptors falling into the receptive field of cth grid. Themax
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pooling feature is invariant to translations of the local descrip-
tors within each grid.

E. TRAINING
There are quite massive parameters to learn, so DCNN
requires a large amount of training data. However, there is
just a small amount of available annotated training data,
which becomes one of the bottlenecks in feasible DCNN
training. To relief the problem, the several DRGL sections
are weakly-supervised pre-trained, which started from super-
vised pre-training, ended to unsupervised pre-training and
then the integrated detection model is fine-tuned to detect.
It demonstrates that adapt the pre-trained DCNNs processed
using some state-of-the-art methods in an approximate way
with a spot of annotated and sufficent unlabeled training data
also can achieve a good performance. The DCNN was pre-
trained on ISAR-1 ISAR-2 supervisedly and unsupervisedly
jointly dataset, which is different with orthers’ strategies and
is significantly benificial to the following training, and the
pre-training is performed with Caffe [22].

Forward computation (FC), BP and stochastic gradient
descent with momentum (MSGD) is used to train DRGL end-
to-end. It is efficient to utilize FC and BP strategies when the
receptive fields of the final layer overlap seriously. We train
the dictionary for local descriptors through BP, by minimiz-
ing the training error of the image level features, which are
extracted by max pooling over the sparse codes. The achieved
dictionary is remarkablymore effective than the unsupervised
one in terms of classification. And the pooling procedure over
different spatial scales equips the proposed model with local
translation-invariance similar to the convolutional network.
All new layers are randomly initialized by drawing weights
from a zero-mean Gaussian distribution with standard
deviation 0.01.

III. EXPERIMENTS AND RESULTS
A. DATASETS
Two multi-modal ISAR datasets are constructed for multi-
modal ISAR object recognition: ISAR-1 and ISAR-2, which
consider intra-class variations and multi-modal conditions.
Assuming the ISAR objects present in the images and their
parts may undergo shape deformation, occlusion, thin plate
spline (TPSs) is used to interpolate sparse keypoints to gen-
erate ground-truth considering the multi-modal conditions.
TPS Warping is used directly to estimate a warping function
using ground truth keypoint annotations from sparse corre-
spondences. ISAR-1 consists of 5 ISAR object classes with
10 keypoint annotations for each image.

Note that these images contain more multi-modal issues
than existing datasets, which include mainly images with
tightly cropped regions. According to viewpoint or back-
ground clutter, the images are split into 8 sub-classes. Given
the images and regions, ground-truth data between all possi-
ble image pairs with each sub-class are produced. The two
multi-modal ISAR datasets are more challenging than other
existing datasets for multi-modal object recognition.

B. ATTRIBUTE ANNOTATION
The training sets of the two multi-modal ISAR datasets have
labels indicating the identities of the ISAR objects. In addi-
tion, a total of 86 binary user-defined attributes have been
annotated. We remove the user-defined attributes which do
not appear in each dataset, and the numbers of the remaining
attributes are 62 and 36 for ISAR-1 and ISAR-2, respectively.

C. EXPERIMENT IMPLEMENTATIONS
The same training strategies are utilized in the whole pro-
cess, the proposed method was evaluated in two multi-modal
ISAR datasets with Caffe. Experiment with 6000, 3000 and
2000 images on the training, validation, and testing set
respectively. Using fixed learning rates of 10−4, IoU 0.7,
weight decay of 5∗10−4. DRGL is trained end-to-end using
forward computation, BP and stochastic gradient descent.
The mean Average Precision (mAP) is selected as the eval-
uation metric. Fig. 7 shows the results with the proposed
method.

FIGURE 7. Complex ISAR object recognition results and the last layer
feature maps of the ISAR objects. The aspect ratio of the red, green and
yellow box denote 2:1, 1:2 and 1:1, respectively. And there are 4 scales of
the box, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024.

D. EVALUATIONS
Extensive ablation studies are performed to validated the
efficiency of our method. Table 2 evaluates the effect of
DDC with our proposed method and several state-of-the-art
models, such as RCNN [23], Faster R-CNN [24], R-FCN [25]
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TABLE 2. Evaluation of the effects of the proposed modules with several methods.

TABLE 3. Evaluation of the effects of all the proposed modules with several state-of-the-art methods.

and Mask R-CNN [26]. The performance of the proposed
method is evaluated using the VGG-16 [27] and the modified
VGG-14 (default) with or without DGAAL and MSRCSL,
respectively. The effect of DCC in the several state-of-the-art
models also are invested in the last 3 convolutional layers.

Particularly, DGAAL andMSRCSL are not used in RCNN,
Faster R-CNN, R-FCN and Mask R-CNN in this paper,
because the associated multi-modal region sample based
methods with DDC cost much more time with DGAAL and
MSRCSL. Table 2 shows that accuracy of all these models
steadily improves, when more DDC layers are used while
the running time also increased. But we find that it cannot
always achieve the best performance when all the Conv.
layers are replaced with DDC, so the last 3 Conv. layers
of these models are selected. In Table 2 and 3, ∗1, ∗2 ∗3,
∗4, ∗5, ∗6 denote our proposed method with VGG-16 (with-
out DGAAL and MSRCSL), with the modified VGG-14
(without DGAAL and MSRCSL), with VGG-16 (with
DGAAL without MSRCSL), with the modified VGG-14
(with DGAAL without MSRCSL), with VGG-16 (with
DGAAL and MSRCSL), and with the modified VGG-14
(with DGAAL and MSRCSL), respectively.

Table 3 shows the evaluation of the effect of all theDGAAL
and MSRCSL. As shown in TABLE 3, using the proposed
modules, including DDC, DDLA RoI Pooling, DDC and
DDLA RoI Pooling generates noticeable performance gains.
For Faster R-CNN, R-FCN in Table 2, the improvement
are increased slowly with the increasing of the number of

DDC layers. When both DDC and DDLA RoI Pooling
are used, significant accuracy improvements are obtained
to Faster R-CNN, R-FCN and Mask R-CNN. As shown in
Table 3, Our proposed method achieves the best accuracy
with the modified VGG-14 net.

Considering the tradeoff between accuracy and speed,
the proposed method achieves the best performance. The pro-
posed method performs much better than the six models with
the modified VGG-14 net. Ours outperforms Faster RCNN,
R-FCN and Mask R-CNN by about 11.1, 7.9 and 7.7 per-
cent in mAP respectively. This indicates that the significant
performance improvement is from the capability of modeling
geometric transformation and noise-occlusions, other than
increasing model parameters.

IV. CONCLUSION
In this paper, we have proposed a novel efficient real-
world ISAR object recognition and relation discoverymethod
based on Deep Relation Graph Learning. It not only can
greatly improve CNNs’ sampling and transformation model-
ing ability, handle the complexmulti-modal recognition prob-
lems, but also can leverage image datasets, region features,
attributes and their high-level semantic descriptions to learn
about their inter-modal associations between the features,
attributes and classes with attribute-association learning.
We evaluated the proposed method to recognize real-world
ISAR objects with other methods on two real-world ISAR
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datasets, and the results show that our proposed method
outperforms several state-of-the-art methods.
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