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ABSTRACT A deep convolutional neural network has recently witnessed rapid progress due to the strong
feature learning capability. In this paper, we focus on its application in the industrial field and propose a
method based on a fully convolutional network (FCN) for detecting defects in tire X-ray images. Owing to
the capability of pixel-wise prediction of FCN, the location, and segmentation of defects are completed
simultaneously. The network architecture used in the method mainly consists of three phases. The first
phase is a traditional deep network, which is used to extract the feature of tire images, and feature maps are
obtained at the last layer. By replacing fully connected layers into convolution layers, final featuremaps retain
sufficient spatial information. By adding up-sampling layers, in the second phase, outputs with the same size
as the original image can be generated. After the first two phases, we develop the coarse segmentation results
and refine them through fusing multi-scale feature maps. The experimental results show that the proposed
method can accurately locate and segment defects in tire images.

INDEX TERMS Defect detection, convolutional neural network, object segmentation.

I. INTRODUCTION
Automatic detection technology plays an important role
in industrial quality inspection, which lowers the risk of
human intervention in a hazardous environment. Compared
with human inspection, automatic defect detection has high
efficiency and excellent performance while reducing labor
costs. Most existing defect detection methods are based on
hand-crafted features, defects in images can be detected by
using these low-level features. A suitable detection method
can greatly improve the processing speed while ensuring
accuracy.

Over the past two decades, automatic detection tech-
niques have been widely used in industry inspection such
as steel [1], titanium coated aluminum [2], solar wafers [3]
and fabrics [4]–[6]. For simple fabric images with a repetitive
unit-motif like wallpaper and ceramic, Li et al. [7] provided
a feasible detection method based on combining low rank
and sparse matrix analysis. For complex patterned fabric,
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Gao et al. [8] preprocessed images with Gabor filter on the
basis of low rank. These methods lack adaptability although
some of them have been used in industrial production.
To improve overall performance, Li et al. [9] proposed a
feature descriptor based on biological vision modeling by
simulating the mechanism of biological visual perception,
which is suitable for describing fabric images and superior
to traditional hand-crafted feature descriptors. However, it is
not suitable for applications in the tire industry, due to weak
contrast and diversity of tire defects. Fig. 2 (a) shows a variety
of tire defect images. It can be observed, there are certainly
major difficulties in tire defect detection as follows.

1) Low visual quality. There are many uncertainties in the
acquisition of tire images, due to differences in the types of
machines and changes in the environment. On the other hand,
the images used for automatic detection are derived from
X-ray irradiation, and have some undesirable characteristics
such as low contrast and low brightness.

2) Different texture structures. Generally, tire images con-
sist of tread images and sidewall images. The tread is the
part of the tire that comes in contact with the road surface,
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which is made up of thick rubber. The sidewall is largely
rubber but reinforced with fabric or steel cords. Therefore,
the texture features are completely different between tread
and sidewall images. Due to the lower brightness of tread
images, the defects occurring in the tread are more difficult
to detect.

3) Diverse defects. There are similar types of defects dis-
tributed on the tread and sidewall, such as metallic impu-
rities and bubbles, but some defects only exist in the tread
or sidewall images. The characteristics of various types of
defects are obvious and there is a large gap between their
textures. In general, impurities have sharp edges and are
darker than their neighbors. For the bubble, it is brighter than
their neighbors, although its texture is similar to the texture of
defective-free parts. These differences in characteristics lead
to challenges for tire defect detection.

As mentioned above, there are unique characteristics in
tire images. Compared with defects in fabrics, the defects in
the tire image are less distinguishable from the defective-free
parts. Therefore, tire defect detection is more challenging.
In view of the diversity of tire defects, the methods for analyz-
ing the edges and texture features of defects have been widely
used in detection tasks in recent years. They can be roughly
classified into spatial domain methods and transform domain
methods. Spatial domain methods usually employ low-level
clues to produce regional detection results. For example,
a contrast-based method was proposed in [10]. It first applies
the local total variation filtering to decompose an image into
structure and texture components, and then locates the defects
by an adaptive thresholding operator. Guo et al. [11] used
the local kernel regression descriptor to derive spatial tex-
ture features, and detected defects through weighted texture
dissimilarity. The texture distortion degree of each pixel was
estimated by weighted averaging of the dissimilarity between
one pixel and its neighbors, which results in an anomaly map
of the inspected image. To the best of our knowledge, it is the
first work that can accurately locate the defects on tire thread
images. However, due to the high computational complexity,
it is not suitable for real-time detection tasks.

Besides, transform-based methods have also been applied
into tire defect detection tasks. Wavelet transform, which
has been proven to have excellent performance in analyz-
ing one-dimensional signals, was introduced to tire defect
detection tasks in [12]. Zhang et al. [13], [14] proposed a
multi-scale transform based method to drive the edge infor-
mation of defects. The curvelet transform was used to
strengthen the edges of the image, and optimized Canny edge
detection algorithm for locating defects. Furthermore, this
method was improved by preprocessing the defect image
with total variation. Compared with the wavelet transform,
the curvelet-based method has obtained better results. How-
ever, edge detection based methods are not sensitive enough
to defects in tread images. At the same time, the detec-
tion speed of the curvelet-based method is slow due to its
high computation complexity. From different perspective,
the projection transformation method was introduced in tire

inspection tasks in [15]. Using the radon transform to perform
multi-angle projection on the tire image can effectively detect
the linear defects. However, due to the limitation of linear
projection, it is not suitable for irregular defects. Most of the
classical transform methods that use fixed transform kernels
have a wide range of applications but are not targeted to
tire images. In addition, a detection method based on dic-
tionary representation was proposed in [16], which learned
a dictionary from tire images. The position of the defects
is detected based on the difference in distribution between
the indications of defects and defect-free parts. Compared
to fixed transform kernels, tire images are more accurately
described by self-learning representations. In spite of this,
detecting defects in the tire image, especially in tire tread
images without regular texture and obvious distribution pat-
tern, is still a challenging detection task.

In recent years, convolutional neural network (CNN) mod-
els have been proposed. A classical CNN consists of con-
volutional layers, pooled layers, and fully connected layers.
Owing to the excellent feature extraction capability, it is often
used to solve classic computer vision problems. Specially,
CNN can extract key features of a dataset by self-learning
when the artificial feature extraction fails, particularly for tire
images with various characteristics. CNN is also introduced
into the tire defect detection by Cui et al. [17] and has been
proven to be feasible in dealing with this challenging task.
This CNN-based method identified defect types by averaging
five parallel network classification results. However, the posi-
tion and shape of defects are not detected, and the perfor-
mance of detection in tread images is significantly worse than
that of the sidewall images.

Unlike the previous methods, we propose a tire detection
method based on fully convolutional network (FCN), which
is a CNN with the ability to preserve spatial information
of features. In the FCN, all full-connected layers used in
the traditional classification network are replaced by convo-
lutional layers. Feature information is learned by the con-
volution and pooling layers, and retained in feature maps.
Compared with the full-connected layer, which reduces each
feature map to a vector and outputs label results, convolved
full-connected layers can retain spatial information of the
feature map to achieve accurate pixel-wise prediction and
object segmentation. In this paper, we take advantage of
the powerful self-learning and segmentation capability of
FCN to overcome the deficiency of the traditional tire defect
detection.

The rest of this paper is organized as follows. In Section II,
we first briefly introduce the proposed method. Then the
implementation details of this method are described in
Section III. Section IV presents experimental results and
analyses. A conclusion is drawn in Section V.

II. PROPOSED APPROACH
Our architecture is partly inspired by the FCN, whose
performance has been validated in semantic segmentation
tasks. We simplify a full convolution segmentation network
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FIGURE 1. The network architecture used in this paper. In first phase, features of different scales are obtained through an original
FCN based on VGG16. Then up-sampling layers are adopted to enlarge and align the feature map in up-sampling phase. Finally,
multi-scale features are concatenated and fused using a simple linear strategy to obtain accurate results.

into a binary-classification and pixel-wise prediction model,
and combine different scale features to refine the defection
results. The overall architecture of our approach is illustrated
in Fig. 1. Each pixel in input image is tagged with cate-
gory label through three phases, i.e., feature extraction, map
up-sampling and multi-scale fusion. As the basic framework
of the network, in the first phase, the classical VGG16 is
used. It consists of the repeated application of a stack of
3 × 3 convolution layers and 2 × 2 pooling layers, each
convolution layer followed by rectified linear unit (ReLU)
for non-linearity rectification. Then, the fully connected lay-
ers in VGG16 are convolved so that the generated feature
maps can retain complete spatial information. Nevertheless,
the extracted feature maps are down-sampled due to the
existence of pooling layers. In the second phase, feature maps
are enlarged to keep the size identical to input images through
up-sampling layers. We can obtain multi-scale feature maps
by feedforwarding an input image in the feature extraction
module. In general, feature maps after pooling can be used to
derive the detection result using class score maps obtained
by the softmax layer. However, these results are generally
coarse, due to feature maps after pooling layers contain insuf-
ficient texture features. Therefore, multi-scale feature maps
are sequentially aligned and fused through the crop and the
eltwise layer. Then refined detection results are derived by
fusing different scales features. The following describes our
model in details.

A. EXTRACTING FEATURES
As mentioned above, the features of tire images are firstly
extracted by a convolutional network. In general, a clas-
sical CNN with the excellent feature extraction capability
and less training parameters is usually expected. Here we
use VGGNet [18] as our backbone architecture. VGGNet is
based on AlexNet [19] by repeatedly stacking 3 × 3 small
convolutional kernels and 2×2maximum pooling layers, and
has achieved good recognition performance in segmenting

natural images. A stack of two 3 × 3 convolution layers has
an effective receptive field of 5×5, and three such layers can
replace 7× 7. The configuration of convolution layers is the
same in each stack. Therefore, the strong feature extraction
capability is realized by increasing layer depth without reduc-
ing receptive field in VGGNet. In Section IV, we compare
the performance of AlexNet and VGGNet in detecting tire
defects.

Furthermore, we also compare VGGNet with different
configurations and depths, such as VGG11, VGG13, VGG16.
Due to its strong feature extraction capability, VGG16 is
selected as the backbone. More specifically, VGG16 con-
sists of 13 convolutional layers with a ReLU and 3 fully
connected layers. Some convolutional layers are followed
by a non-overlapping maximum pooling layer for filtering
noisy features. The softmax layer is finally used for category
prediction. In order to extract features, we completely pre-
serve the convolutional and pooling layers, where the pooling
layers are used to filter noisy features by abstracting features
in a receptive field with a single representative value. The
maps after each pooling layer involve different scale features.
Besides, the fully connected layers are regarded as special
convolutions with large receptive fields. The features with
spatial information are remained through these special con-
volutional layers, which are beneficial for accurate detection.

B. UP-SAMPLING FEATURE MAPS
The feature maps with spatial information are derived from
the feature extraction phase. However, these feature maps are
down-sampled after the five pooling layers in the first phase.
For instance, a 2× 2 max-pooling layer with stride 2, which
is designed to help classification by retaining only robust
features, can reduce the image size by half. Due to the size
reduction, the final output of the network can not indicate the
probability of each pixel that belongs to one of the predefined
classes. Therefore, feature maps are up-sampled in second
phase so that it keeps the same size as the input images.

43504 VOLUME 7, 2019



R. Wang et al.: Tire Defect Detection Using FCN

In this paper, we use bilinear interpolation strategy for
obtaining the enlarged feature map, which is initialized in
network construction and updated during backpropagation.
Bilinear interpolation can effectively reduce parameters with-
out reducing the accuracy.

C. FUSING MULTI-SCALE FEATURES
The pooled feature maps can be directly up-sampled to obtain
the pixel-wise predictions corresponding to original images.
However, the standard pooling layers lose detailed textures
while retaining high-level semantic information. These lost
details are critical for accurately detecting defects. To address
such issue, we fuse multi-scale feature maps to reduce the
negative impact of the detail loss and refine the detec-
tion results. More concretely, feature maps obtained by the
each pooling layer are sequentially up-sampled, as shown
in the up-sampling phase of Fig. 1. These enlarged feature
maps describe different scales information. Local details
are involved in shallow layers and semantic information is
involved in the deep layers. Due to up-sampling and padding,
the size of cross layer maps are not consistent. Before fusing
these maps, the enlarged feature maps must be aligned by
cropping. More details about cropping are discussed in the
next section. Then we fuse these maps through the simple
element-wise operations, which has been proven to be valid
in [20], and also use the softmax classifier as the end of the
network for pixel-wise prediction.

III. IMPLEMENTATION DETAILS
Although a standard FCN performs well in processing natural
images, the detail loss caused by pooling operation makes
the segmentation results of small objects unsatisfactory. For
instance, it is not sensitive to small defects in tire images, for
example, bubbles. Meanwhile, the amount of training data
is limited, and these lost information cannot be effectively
recovered from other data samples. To overcome this issue,
on one hand, we modify the traditional multi-classification
neural network into a two-classification network. The reduc-
tion of categories can also prevent over-fitting and enhance
the robustness of the network. On the other hand, multi-scale
features derived from pooled layers of different depths are
aligned and fused to complement the detailed texture. In this
section, we discuss the implementation details of data align-
ment and fusion.

A. PIXEL ALIGNMENT
In order to derive dense prediction output from the feature
map, we adopt the softmax classifier, which has been widely
used in multi-classification and segmentation tasks. The cal-
culation of the softmax loss function requires ground truths
and feature maps of the same size. Meanwhile, the multi-
scale feature map fusion in third phase is essentially an
element-wise operation. Therefore, for aligning the corre-
sponding pixels, we analyze the effect of different network
components on the size of feature maps.

In convolutional layers, the size of the output feature map
depends on the layer configuration. Specifically, writing zi,j

for the pixel value at location (i, j) in convolved image, xi,j
be the value at location (i, j) in image before convolution, and
the convolutional mapping used in the proposed approach can
be formulated as follows

zi,j = g
( k∑
m=0

k∑
n=0

ωm,nxi+m,j+n + ωb
)
, (1)

where g is the activation function (ReLU), k is the convo-
lutional kernel size, ωm,n denotes the weight of pixel value
at location (m, n). For a W × W input image, the size N of
convolved image is calculated by

N = (W − k + 2p)/s+ 1, (2)

where p and s represent the padding and stride size in the
convolution operation, respectively. In general, convolution
layers have no influence on the image size, when the sizes of
the convolution kernel and padding are 3 and 1.

With the help of up-sampling layers, the image size is
enlarged for fusing multi-scale features. In this paper, we use
bilinear interpolation method to up-sample feature maps and
update its weight parameters during training. Simple bilinear
interpolation computes each output yij from the nearest four
inputs by a linear map that depends only on the relative
positions of the input and output cells. The output yij can be
written as

yij=
1∑

α,β=0

|1−α−{i/f }| |1−β−{j/f }| xbi/f c+α,bj/f c+β , (3)

where f is the up-sampling factor, and {·} denotes the frac-
tional part. In the concrete implementation, up-sampling lay-
ers are initialized using bilinear interpolation, then performed
in-network for end-to-end learning through backpropagation
from the pixel-wise loss. With some layer configurations,
the feature map size is enlarged by non-integer multiples
after up-sampling and convolved fully connected layers, for
instance, the convolution kernel size and padding size are
set to 7 and 0, respectively. However, a standard pooling
layer strictly reduces the feature map size by half. Therefore,
we add an cropping layer after each up-sampling layers to
ensure the same size between feature maps and the ground
truth.

B. FUSION STRATEGIES
As described in Section II-C, we fuse multi-scale features to
obtain accurate prediction results. The feature maps obtained
by each pooling layer are up-sampled to the same size and
fused through a pixel-wise operation. Although this strategy
is feasible, the concatenated features are stored in memory
during fusion. In order to reduce memory overhead, in the
experiment, we fuse score maps [20] corresponding to the
features rather than fusing feature maps. These score maps
are derived from feature maps by a 1 × 1 convolutional
layer before each up-sample layer. Due to parameters of the
convolutional layer are obtained by learning, the score fusion
and the feature fusion can replace each other. Meanwhile,

VOLUME 7, 2019 43505



R. Wang et al.: Tire Defect Detection Using FCN

FIGURE 2. Detection results of several benchmark architecture. (a) shows input tire images with different defects. From top to
bottom, the first four are tire sidewall images, which involve following defect types: impurity, overlap, slack, bubble. The last two are
tire tread images, which involve overlaps. (b) indicates ground truths obtained by manual marking. (c),(d),(e) and (f) are detection
results using AlexNet, VGG11, VGG13 and VGG16 as the basic architecture, respectively.

both of these two fusion strategies are linear operations, and
the fusion of scoremaps has fewer parameters. Therefore, this
trick is used to overcome the issue of insufficient memory
during training.

IV. RESULTS AND DISCUSSION
Our proposed method has been implemented on the public
FCN code 1, which was coded with Python 3.5 in the Caffe
framework. A GTX-1080 GPU and Intel Xeon-E5 3.40GHz
CPU are used for both training and testing. During training,
we set the momentum parameter to 0.99 and the weight decay

1 Available at https://github.com/shelhamer/fcn.berkeleyvision.org.

to 0.0005. The total number of iteration is set to 200k, and
the proposed model is tested on the validation set every 2k
iterations. Experimental results of the network with different
configurations are reported and compared as follows.

A. DATASET
Our experimental dataset consists of 914 tire images 2,
including both sidewall and tread images. Among them,
700 images are randomly selected as the training set, and the
remaining 214 are used to form the testing set. These images
involve various defects such as metal impurities, bubbles,

2 Raw images are provided by Linglong Tyre Co. Ltd.
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FIGURE 3. Results of ablation experiments on the optimal fusion layer number. (a), (b) indicate input
tire images and ground truths as Fig. 2, respectively. (c) shows detection results using FCN without
fusion. (d) shows detection results that fuse three scale features, which are derived from pool5,
pool4, and pool3. (e) shows detection results that fuse four scale features, which are derived from
pool5, pool4, pool3 and pool2.

and overlaps. All types of defects are treated as detection tar-
gets. Although images without defects are not included in our
dataset to improve accuracy, there exists a small amount of
defect-free pixels which are detected as defective. In practice,
this problem can be solved by the post-processing step, such
as the local variance analysis method [11]. During training,
the data fed into the network contains corresponding ground
truths in addition to the original tire images, where ground
truths are labeled manually. More specifically, defective
regions in images are regarded as objects, and defective-free
regions as background. Their pixel values are marked as 1 and
0, respectively. In order to improve the detection accuracy,
each ground truth is independently labeled by three persons,
and finally determined by the voting strategy. For the testing
set, its components are the same as the training set except that

the ground truth is not used as a network input. In addition,
to simplify the alignment operation, we scale all original
images and ground truths to 256 × 256 before feeding into
the network, although our network is not sensitive to the input
image size.

B. ACCURACY COMPARISONS OF SEVERAL
BENCHMARK ARCHITECTURE
In this experiment, we choose VGG16 as the basic archi-
tecture of the network. To verify the comprehensive per-
formance in dealing with tire detection task, we compare
candidate networks AlexNet, VGG11, VGG13 and VGG16.
The structure and parameters of various networks are listed
in Table 1. Obviously, a five-layer convolution and pooling
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FIGURE 4. Accuracy (PA) of our approach on different types of tire defects. ‘‘-number’’ indicates the number of fusion layers.
For instance, ‘‘VGG16-3’’ indicates VGG16 fused features from pool5, pool4 and pool3.

TABLE 1. Configurations and parameters of convolution and pooling
layers in different basic networks.

structure are used in both AlexNet and VGGNet. Latter uses
3 × 3 convolution kernels and expands each layer into
two or three sub-layers. Compared to AlexNet, VGGNet
has the excellent extraction capability of detailed fea-
tures without increasing parameters. Therefore, the detec-
tion of impurities, bubbles and other small defects is more
effective in tire images. For clearer comparisons, con-
volved fully connected, softmax and loss layers are all kept
unchanged in candidate networks. Then these networks are
tested separately, and experimental results with different
basic architectures are shown in Fig. 2. As can be seen,
with the same number of iterations, VGG16 shows the
strong feature extraction capability. Compared with other
networks, VGG16 is more effective for representing tire
images.

C. ABLATION EXPERIMENTS ON OPTIMAL
FUSION LAYER NUMBER
As discussed above, FCN is not sensitive to small defects and
edge details due to the information loss. We fuse different
scale feature maps to complement lost details. To investigate
the optimal number of fused layers, we conducted several
ablation experiments. First, feature maps obtained by five
pooling layers (pool5) are directly up-sampled and fed in
the softmax classifier to derive score maps. In Fig. 3 (c),
the predictions without multi-scale features are shown as a
comparison. After that, the predictions from pool2, pool3 and
pool4 are fused and shown in Fig. 3 (d) - (f), respectively.
As can be seen from Fig. 3, VGG16-3 (VGG16 fused features
from pool5, pool4 and pool3) has a positive effect on the over-
all results, it makes detection results more accurate in defect
edge regions. However, the computational cost of the network
increases as the number of layers increases. Moreover, fusing
too many layers can increase the computational complexity
and cause the segmentation result too smooth. To make a
tradeoff, we adopt VGG16-3 in tire defects detection task.

D. QUANTITATIVE ANALYSIS
We use PA (pixel accuracy) as a standard metric to evaluate
the accuracy of the proposed model. PA is a common strategy
in the field of image segmentation, which indicates the ratio
of the correct labeled pixels to the total pixels. Specifically,
the assumptions are as follows: There are a total of k + 1
classes in images. The pij represents the number of pixels
that belong to class i but are predicted to be class j, and pii
represents the correct number. Then PA can be defined as

PA =

∑k
i=0 pii∑k

i=0
∑k

j=0 pij
. (4)

We select the several representative types of defects in the
tire field, and PA values of different models are compared as
shown Fig. 4. For common defect types, the VGG16-3 has a
significant improvement than other structures, even small size
defects, whose PA values are inferior to other defect types.
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FIGURE 5. Result comparisons with traditional methods. (a), (b) indicate input tire images and
ground truths as Fig. 2, respectively. (c) shows detection results using the context-aware saliency
detection method [21]. (d) shows detection results using the transformation-based detection
method [12]. (e) shows detection results using the proposed method (VGG16-3).

TABLE 2. The average detection accuracy of different basic networks with
different fuse strategies.

The detection performance in the sidewall is better than
that in the tire tread. As comparisons, quantitative results of
detection accuracy are shown in Table 2. We can observe that
the VGG16 with three fused layers can not only accurately
detect different scales defects but also generate more precise
prediction results in different defect types.

E. COMPARISON WITH TRADITIONAL METHODS
The defect detection task has been around for a long time.
To verify the effectiveness of the proposed method, we also

compare two traditional methods: a wavelet transform-based
(WT) method [12] and a saliency detection (SD) method [21]
based on context-aware. The former uses local regularity
analysis and scale characteristics to represent the tire defects,
where the optimal threshold parameters are selected by a
defect edge measurement model. Then wavelet multi-scale
analysis are used to separate the defects from the background
textures. The latter combines local low-level and global clues
to detect salient objects, which can be used to detect defects.
Fig. 5 shows experimental results of these two methods
used in the tire defect detection. As can be seen, the WT
method is suitable for defects with the significant edge in
sidewall images, like impurities and overlaps. For tire tread
images, it has unsatisfactory results due to the interference
of defective-free region textures. The SD method focuses on
saliency regions rather than defects. Therefore, the method
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has high missing and inaccurate detection rates. Compared
with the SD method, the proposed method can obtain more
accurate results. In addition, our method is superior to tradi-
tional methods of comparison in detecting challenging type
defects, especially in the tread image.

V. CONCLUSION
This paper explores the solution for the tire defect detection
using FCN, which has outstanding performance in solving
segmentation problems. With the feature extraction ability,
VGG16 is constructed as the basic architecture to represent
tire images. We fine-tune the parameters and structure of
FCN to obtain coarse detection results, and refine results
by a fusion strategy. Experiments show that the proposed
method is applicable to more types of defects compared
with traditional methods. Unlike the existing learning based
method [17] in the tire industry, our algorithm can directly
segment defects, and is valid for both the sidewall and tread
images.
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