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ABSTRACT The deep convolutional network has shown excellent performance in medical image analysis.
However, almost all network variants are presented for one specific task, e.g., segment pancreas on
computerized tomography (CT). In this paper, we propose a nested dilation network (NDN) which is applied
to multiple segmentation tasks even for different modalities, including CT, magnetic resonance imaging
(MRI), and endoscopic images. We design residual blocks nested with dilations (RnD Blocks) that catch
larger receptive field in the first few layers to boost shallow semantic information. Besides, we apply the
modified focal loss to help the network to provide more accurate segmentation results. We evaluate our
method on five subtasks from medical segmentation decathlon challenge and GIANA2018, and the results
show that our method achieves a better performance than the latest methods in each task. A lot of research
works have been done recently to strengthen the learning power of the convolutional neural network (CNN)
to get better performance.

INDEX TERMS Deep learning, medical segmentation, residual blocks nested with dilations, multi-task,
focal loss.

I. INTRODUCTION
In recent years, with the historical opportunities brought by
the growth of computing power and a large number of annota-
tion data, deep learning has gained considerable attention [1].
Deep learning, especially deep convolutional neural net-
works (DCNN) has brought about great progress to computer
vision in many aspects including image classification [2],
detection [3], and segmentation [4], which is credited to its
ability to learn abstractions in all levels from raw data auto-
matically. In 1998, LeCun et al. proposed the LeNet [5]
consisting of convolution layers, pooling layers and fully-
connected layers which define the prototype of the CNN.
After many years, AlexNet [6] presented by Krizhevsky et al.
won the 2012 ImageNet competition by a large margin,
which promotes ConvNets to become the mainstream of
visual research. In subsequent years, with the emergence
of deeper network architectures and various network vari-
ants such as VGGNet [7], Inception networks [8]–[11] and
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Residual networks [12], [13], deep convolutional networks
have rapidly become a prominent methodology for computer
vision.

Inspired by remarkable progress acquired by CNN, many
medical image analysis groups enter this field and try
to apply DCNN to the computer-aided diagnosis (CAD)
systems [14]–[20]. Automated segmentation for organs and
lesions is an important task in medical image analysis, which
provides visualization of various anatomical structures in
different modalities and the region information obtained by
segmentation can be utilized for such purposes as computer-
aided diagnosis or computer-assisted surgery [21]. Since Olaf
et al. proposed UNet [22] for biomedical image segmenta-
tion, researchers have already published a lot of excellent
work in this area. Li et al. proposed H-DenseUnet [23] to
segment liver and tumor from CT volumes and achieved very
competitive performance for liver segmentation even with a
single model. Kamnitsas et al. employed DeepMedic [24],
a 3D CNN architecture for brain lesion segmentation in MRI
that helps improve disease diagnosis and treatment planning.
CNNs also have been utilized to analyze the endoscopic
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images. Wickstrom et al. presented a method on semantic
segmentation of polyps by colonoscopy images [25].

However, as can be seen from the above, almost all
methods are developed to perform one specific task, which
typically focuses on a single organ in a single modality
(e.g., CT or MRI). Inspired by wide applications of transfer
learning in natural images, we consider that maybe there
are similar features between different medical images and
whether we can develop a framework that works out-of-
the-box on many tasks. Moeskops et al. have investigated
a similar topic before, using a single CNN architecture for
different medical image segmentation tasks in different imag-
ing modalities [26]. However, they only experimented with
a small number of tasks and did not quantitatively analyze
the gap between their results and the latest results for each
task. From a methodological point of view, there are some
main constraints as follows. First, the size of the different
targets varies greatly, which causes difficulty in selecting the
input size and designing the receptive field of network. For
instance, the volume of the liver is much larger than the
volume of the pancreas. Second, according to the doctor’s
diagnostic need, targets are imaged in different modalities
where each pixel represents different information, and these
distinctions require the network to re-understand to extract
the corresponding features. Third, due to the characteristics
of different lesions, for example, lung nodules are usually
diagnosed on CT Volumes [27] while colonic polyps are
detected on endoscopic slices, different tasks need to analyze
various images range from two dimensions to three dimen-
sions. Besides, small data, unbalanced labels, and multi-class
labels also increase the challenge.

In this paper, we propose an end-to-end Nested Dilation
Network (NDN) that can be used to segment organs or lesions
in several highly different tasks. We design the Residual
Blocks Nested with Dilations (RnD Blocks) in the first few
layers to help network adapt to targets of any size. What’s
more, we insert squeeze-and-excitation blocks [28] into mul-
tiple nodes in the network to boost essential features for each
task. Besides, we also modify the focal loss [29] to over-
come small data, unbalanced labels, and multi-class labels.
We evaluate our method on five subtasks from Medical Seg-
mentation Decathlon challenge and GIANA2018 challenge
presented in Fig. 5. Our method achieves better performance
than the latest method in each task.

The remainder of this paper is organized as follows.
In Section II, we introduce background and related tech-
nologies. In Section III, we set forth our method in detail.
In Section IV, we present the experimental results and make
a comparison between our method and other latest methods
for each task. Finally, we present a conclusion in Section VI.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
Semantic segmentation is intended to assign a categorical
label to every pixel in an image. Most approaches are training
an end-to-end fully convolutional network, which replaces

the last fully-connected few layers with convolutional
layers and recovers the downsampled feature maps to orig-
inal maps through a decoder path consisting of deconvo-
lutional layers or other upsampling layers. On this basis,
many variants [30]–[32] have made great progress by merg-
ing richer features at various levels. What’s more, some
researchers [33] apply Conditional Random Fields (CRFs) to
refine the prediction maps further.

B. DILATED CONVOLUTION
Dilated convolution is referred to as ‘‘convolution with a
dilated filter,’’ which is first introduced in [34] for wavelet
decomposition. In general, the network enlarges the receptive
field through a series of downsampling operations. However,
the loss of resolution or coverage brought by downsampling
operations has a negative impact on the segmentation result.
Dilated convolution handles this conflict by increasing the
kernel size without increasing its calculation. Dilated convo-
lution is first applied to semantic segmentation by Yu et al.
in [35]. In [33], Chen et al. highlight the significance of
dilated convolution in dense prediction and propose atrous
spatial pyramid pooling (ASPP) to aggregate multi-scale
receptive fields. Their subsequent work [36] further explore
the application of dilated convolution in previous ASPP. After
that, to alleviate the ‘‘gridding issue’’ caused by the standard
dilated convolution operation, Wang et al. [37] develop the
hybrid dilated convolution (HDC) module that consists of
well-designed groups of dilation rates. Due to the mentioned
advantages, dilated convolution has been extensively used to
other computer vision tasks.

C. MEDICAL IMAGE SEGMENTATION WITH CNN
Medical image segmentation requires accurate dense pre-
diction for organs or lesions to assist the computer-aided
diagnosis or computer-assisted surgery. A broad range of
work proves that CNNs outperforms previous methods which
utilize the hand-craft features in medical image segmentation.
In 2015, U-Net architecture demonstrated the dominance of
dense end-to-end prediction for medical images. From then
on, various variants of U-Net have been developed to segment
lesions, organs or tissues. Due to the difference in anatomical
structures of various parts, they need to be displayed in dif-
ferent imaging modalities such as CT, MRI, and Endoscopic
where each pixel represents different information. Therefore,
there is still a challenging task for CNNs to perform segmen-
tation tasks on various data modalities.

III. METHOD
In this section, we will introduce our method in detail. Net-
work functionmodules are described in III-A, III-B and III-C.
The overall network structure is shown in III-D. At last, III-E
illustrates our modified focal loss.

A. RESIDUAL BLOCKS NESTED WITH DILATIONS
In semantic segmentation, dilated convolution is seen
as inserting ‘‘holes’’(zeros) between each pixel in the
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FIGURE 1. The schema of the RnD blocks (left) and corresponding
receptive field (right) for each dilated convolution.

convolutional kernel [37]. For a k ∗ k dilated convolution
kernel with dilate rate r , the receptive field of resulting dilated
convolution filter is kr ∗ kr , where kr = k + (k − 1) ∗ (r − 1).
Dilated convolution is employed in segmentation to maintain
more extensive local information while keeping the same res-
olution. Fig. 1 depicts the schema of an RnD block, the RnD
module superimposes three convolution layers with dilation
rates 1, 2, 4 and obtains a 15 × 15 receptive field which is
twice that of superimposes three standard convolution layers.
To avoid the loss of detail result from sparse dilated convo-
lution, we add a short-distance residual connection inside the
RnD block, which helps recovery details. The RnD module
operates like the equation defined below:

Xi+1 = F(r3,F(r2,F(r1,Xi)))+ Xi (1)

where F represents the convolution function and ri denotes
the dilation rate, e.g. r1, r2, r3 correspond to 1, 2, 4.

B. RESIDUAL BLOCKS
Convolution neural network’s performance is closely related
to its depth, but simply stacking convolution layers
may result in vanishing/exploding gradients when back
propagation [12]. Residual connections alleviate this issue by
directly detouring the input information to the output and
protect the integrity of the gradient flow. The equation 2
illustrates the working principle, where x is the input, andF is
the residual mapping function. Instead of learning a complex
nonlinear mapping directly, residual modules asymptotically
approximate a residual function which has the similar effect
as the desired mapping. Residual function simplifies the
optimization objective without extra parameters but improves
the performance, which inspires the applications of deeper

FIGURE 2. The schema of the residual blocks.

FIGURE 3. The schematic diagram of the proposed network architecture.
Arrows represent different operations explained below.

residual-based networks. As shown in Fig. 2, we stack five
convolutional layers in each residual block to leverage advan-
tages of the residual learning.

y = F(x,Wi)+ x (2)

C. SQUEEZE-AND-EXCITATION BLOCKS
As the core of the convolutional neural network, the con-
volution kernel is usually regarded as the aggregation of
spatial information and channel-wise information on the
local receptive field. Hu et al. [38] consider the relationships
between feature channels and put forward a novel mod-
ule, namely Squeeze-and-Excitation Blocks (SE Blocks).
SE Blocks learn channel weights through global spatial infor-
mation that emphasizes the effective feature maps and sup-
presses the low-effect feature maps. Given a 4D input X of
size W ∗ H ∗ D ∗ C where W , H , D correspond to different
spatial dimensions and C represents the number of channels.
As shown in Fig. 3, squeeze-and-excitation blocks recalibrate
the previously obtained features through three operations.
Firstly, the squeeze operation compresses features in spatial
dimensions, responds to global distribution in each feature
channel, and has the global receptive field to some extent.
Then the excitation operation generates the weight for each
channel, which works like the mechanism of gates in recur-
rent neural networks. Two fully-connection layers achieve the
excitation vector and are activated by a sigmoid function.
Finally, reweight input feature maps with excitation vector
channel by channel.

D. NETWORK ARCHITECTURE
Inspired by [22], our network adopts the classic U-Net struc-
ture. Fig. 4 is a schematic diagram of network architecture.
Firstly, Szegedy et al. [8] have demonstrated that the deeper
the network, the stronger the learning ability. So we stack a
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FIGURE 4. The schematic diagram of the proposed network architecture.
Arrows represent different operations explained below. The details are
illustrated in Fig. 1, Fig. 2, and Fig. 3.

series of residual blocks as the backbone, and the network
containsmore than 50 convolution layers. Secondly, skip con-
nection between encode path and decode path transfer low-
level semantic information to the decoder, which is greatly
important to such an U-Net type architecture. However, there
exist some large targets such as liver tumors and colon polyps
that beyond the receptive field of shallow layers. Filters in
shallow layers couldn’t capture complete information, which
weakens the first two skip connection in Fig. 4. There-
fore, we apply the RnD blocks in shallow layers to obtain
enough receptive field after a few convolution layers. Thirdly,
we embed SE blocks after every block on the encoder-decoder
path to adaptively increase sensitivity to informative feature
and suppress less useful features in different tasks.

E. MODIFIED FOCAL LOSS
In segmentation tasks, cross entropy loss and dice loss are
commonly used to promote the training. They are defined as

ce_loss = −
∑

(y) ∗ log(p)+ (1− y) ∗ log(1− p) (3)

dice_loss = 1−
2 ∗

∑
py+ ε∑

y+
∑
p+ ε

(4)

where p is the prediction score map and y is the corre-
sponding ground truth. However, as defined in equation (3),

cross entropy loss has an obvious disadvantage. When the
foreground (y = 1) takes up a very small part, the component
of y = 0 in the loss function will dominate, making the
model severely biased towards the background. There is also
a problem with dice loss that the penalty factor for positive
samples is greater than the negative sample, which results in
the possibility of false positive.

Focal loss [29] is first proposed for dense object detection
to reshape the standard cross entropy loss such that it down-
weights the loss assigned to well-classified examples. In this
paper, we modify the standard focal loss to apply in segmen-
tation tasks to overcome above two problems. It is defined as
follows:

focal_loss(i) =
−
∑

X ,Y ,Z (1− p
(i)
x,y,z)2 ∗ log(p

(i)
x,y,z)

max(
√∑

X ,Y ,Z 1
{
yx,y,z 6= px,y,z

}
, 1)

(5)

where focal_loss(i) denotes the focal loss for an input image
X (i) and the function

∑
X ,Y ,Z 1

{
yx,y,z 6= px,y,z

}
is to count

the number of error predicted pixels in X (i). The modified
focal loss has a very high penalty for error pixels regardless of
foreground or background which breaks limitations of above
two common losses.

IV. EXPERIMENTS
In this section, we demonstrate the effectiveness of our
method on five different segmentation tasks. There are the
segmentation of brain tumors in multimodal multisite MRI
(FLAIR, T1w, T1gd, T2w), the segmentation of hippocampus
in mono-modal MRI, the segmentation of liver tumors in por-
tal venous phase CT, the segmentation of pancreas in portal
venous phase CT and colon polyps in endoscopic images.

A. EXPERIMENT DESIGN
1) DATASET
Medical Segmentation Decathlon Challenge provides the
above first four datasets and the last dataset for colon polyps
is obtained from the GIANA2018 challenge. There are 484,
260, 118, 281, 190 image data for brain tumor, hippocampus,
liver tumor, pancreas, and colon polyp tasks respectively.
All data have been pixel-wise labeled to mimic the accuracy
required for clinical use. In this experiment, each dataset is
divided into training, validation, and test in a ratio of 7:2:1.

2) DATA PREPROCESSING AND AUGMENTATION
Data used in experiments are from five different datasets
and in different modalities. Under different modalities, every
pixel represents unique situational information, therefore we
do preprocessing separately for each dataset to attempt to
eliminate this difference. For CT data, we adjust window
width and window level. For instance, CT value of liver
tumor data is limited to [−110, 190] and that of pancreas data
are in the range [−100, 200]. As for hippocampus imaged
in MRI, all pixels in an image are sorted by pixel value
firstly, only pixels whose value is in the range [5%, 95%]
are finally retained. And brain tumor data are processed by
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FIGURE 5. Five samples for each segmentation task. The first row shows the original images and the second row shows the ground truth. (a) Brain Tumor.
(b) Hippocampus. (c) Liver Tumor. (d) Pancreas. (e) Colon Polyp.

whitening. Besides, all five datasets are finally normalized to
[0, 1]. Data augmentation only includes random rotation and
random flipping.

3) IMPLEMENTATION DETAILS
All tasks use the identical network structure except for the
last convolution layer and they don’t share the model weights
each other. All five tasks are training from scratch. For the
polyp task, considering the format of endoscopic images,
we reduce all convolution kernels from 3D to 2D without any
further changes. Due to GPU memory limitation, we make
a prediction using a smaller sliding prediction window over
the whole image for brain tumor, liver tumor, and pancreas
segmentation task. We utilize the Adam optimizer and the
learning rate is initialized to 1e-4. Training time for each task
is less than 10 hours and we select the model that performs
best on validation dataset as the final model.

4) EVALUATION METRICS
Three metrics are utilized to assess the performance of each
model. Our main metric is dice score, which is evaluated as:

Dice =
2TP

2TP+ FP+ FN
(6)

where TP,FP,FN represent true positive, false positive and
false negative respectively. Additionally, we use the Jaccard
similarity coefficient and standard deviation of dice as two
optional measurement criteria. The Jaccard is defined as
equation 7 and the standard deviation is as equation 8, where
N is the total number of test samples, and D̂ is the mean
value of dice. The standard deviation can reflect the degree
of dispersion for a dataset, of which the value is expected to
close to 0.

Jaccard =
TP

TP+ FP+ FN
(7)

StdDev =

√∑
i(Di − D̂)2

N
(8)

B. BRAIN TUMOR
To evaluate the effectiveness of NDN, we first perform exper-
iments on MRI images for brain tumor diagnosis. Glioma
is the most common primary brain tumor, and glioma seg-
mentation is a challenging task because of the complex and
heterogeneously-located targets like samples in Fig.5(a). The
purpose of this task is to segment glioma into three subre-
gions, namely edema, non-enhancing tumor and enhancing
tumor, according to the activity of tumor cells.

In our task, the uninformative black border is removed, and
only brain area is retained for model training. We employ a
cascade strategy to segment substructures of gliomas hier-
archically and sequentially. A subvolume with a size of
96 × 96 × 48 × 4 (where 4 means different modalities)
random samples from the MRI and is used as an input to
segment thewhole tumor. Subsequent training takes the entire
tumor volume as input and differentiates non-enhancing
tumor and enhancing tumor respectively. Three classes are
segmented using the same architecture with different learned
weights. Besides, the following two methods are considered
as comparative trials to illustrate the segmentation effect.
Wang et al. [39] propose a triple cascaded framework with
anisotropic convolution to deal with 3D brain images. WNet,
TNet, and ENet are designed to segment substructures of
the brain tumor, and each of these networks settles a binary
segmentation problem. One-Pass Multi-task Network (OM-
Net) [40] exploits the correlation between classes in training
and simplifies the cascade inference processed by one-pass
computation. A comparison between NDN and these two
current published algorithms is listed in TABLE 1 and the
corresponding example images are shown in Fig. 6. The dice
scores obtained by NDN surpass the comparative methods in
all three classes.

C. HIPPOCAMPUS
The hippocampus, which locates between the thalamus and
the medial temporal lobe of the brain, is primarily responsible
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TABLE 1. Comparison of results on brain tumor segmentation.

FIGURE 6. Results for each of the experiments in TABLE 1. (a) Original
images. (b) Ground truth. (c) Results for NDN. (d) Results for triple
cascaded. (e) Results for OM-Net.

for long-term memory storage, conversion, and orientation.
The study of the hippocampus has implications for the treat-
ment of Alzheimer’s Disease (AD) because it bears the brunt
of the damage. As shown in Fig. 5(b), the challenge of hip-
pocampus segmentation is how to segment two neighboring
small structures with high precision.

An entire MRI image for hippocampus serves as input to
the networkwithout special processing in this work. The ante-
rior and posterior of the hippocampus are segmented simul-
taneously in a single NDN model. There exists two baseline
approaches for hippocampus segmentation. Cao et al. [41]
employ a 3D-Unet to joint hippocampus segmentation and
clinical score regression. Due to the limitation of the label,
we cut the regression branch in the experiment. In [42],
the authors utilized 2D U-Seg-Net (a modified U-Net) to
predict planar slices along different views and the predicted
slices are combined to form a 3D result in an Ensemble-Net.
As shown in TABLE 2, either anterior or posterior of the hip-
pocampus, our method achieves the best result compared to
the other two lastest methods. Fig. 7 displays the predictions
for all methods that [41] do not perform well in the posterior
and [42] shows poor performance in anterior. In contrast,
our method perfectly segments these two neighboring small
structures with high precision.

D. LIVER TUMOR
We next conduct experiments on CT scans for the task of
liver tumor segmentation. The liver has an abundant supply
of blood flow, which is closely related to the important blood
vessels in the human body. The liver is one of the areas where

TABLE 2. Comparison of results on hippocampus segmentation.

FIGURE 7. Results for each of the experiments in TABLE 2. (a) Original
images. (b) Ground truth. (c) Results for NDN. (d) Results for 3D U-Net.
(e) Results for U-Seg-Ensemble-Net.

FIGURE 8. Observing the liver tumor under different size fields of view.
(a) Ground truth. (b) Original images. (c) Small window of view.
(d) Middle window of view. (e) Large window of view.

tumors often occur, among which metastatic tumors are more
common in the malignant tumors. Moreover, malignant liver
tumors are insidious and grow rapidly, so early detection of
the tumor is quite urgent in clinical practice. Liver tumor
segmentation usually faces with all kinds of problems such
as unbalanced label with a large liver and small tumor targets
(Fig. 5(c)).

To mitigate the adverse effects of a complex background,
we utilize annotations of liver from dataset to train an NDN
liver segmentation network in advance. We first predict a seg-
mentation map of the whole liver and then inference the liver
tumor based on the location of the liver. This working work-
flow is similar to [43], which uses a cascaded fully convolu-
tional neural networks (CFCNs) to first segment liver as ROI
input for a second FCN. So does the particular DCNN model
presented in [44] by Han et al., which combines the long-
distance skip connection of U-Net and the short-distance skip
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TABLE 3. Comparison of results on liver tumor segmentation.

FIGURE 9. Results for each of the experiments in TABLE 3. (a) Original
images. (b) Ground truth. (c) Results for NDN. (d) Results for CFCNs.
(e) Results for DCNN.

connection of ResNet. However, instead of using 3D images
as input, Han et al. use 2.5D to produce the segmentation
map corresponding to the center slices. However, due to the
low contrast of tumor in the liver, it is usually necessary
to combine a large amount of surrounding information to
discover the liver tumor region. As shown in Fig. 8, the more
surrounding information, the easier it is to segment liver
cancer. Therefore, our method accumulates a large receptive
field by RnD blocks and Residual blocks and takes advantage
of this large region information to highlight the tumor region
inside the liver.

The result shown in TABLE 3 demonstrates that our
method achieves better performance in dice and Jaccard by
a large margin compared to the above two methods. Due to
the massive difference in the characterization of liver tumors
between various patients, the algorithm’s performance gen-
erally fluctuates greatly between different data. In order to
verify the robustness of the method, we add the standard devi-
ation of the dice score to evaluation metrics and our method
also achieves the smallest standard deviation. Fig. 9 shows
that our approach understands liver tumors more precisely
and provides a cleaner segmentation result without too many
false positives.

E. PANCREAS
The Pancreas is a small but extraordinary organ. Its physio-
logical function and pathological changes are closely bound
up with life. Up to now, pancreas segmentation has faced
opportunities and challenges due to the following: 1) there
exist great anatomical difference in shape and size between
patients, 2) the pancreas is a deformable organ and 3) its

TABLE 4. Comparison of results on pancreas segmentation.

TABLE 5. Comparison of results on polyp segmentation.

boundary is not clear. The pancreas is involved with a com-
plex abdominal environment, which leads to further difficul-
ties for its segmentation.

The network is hard to receive a complete pancreas CT
image as input due to GPU memory. We use a cascade
inference strategy in this task. Served as a preprocessing
step, the network uses a 128 × 128 × 48 sliding window
to scan on the whole CT image to generate a rough seg-
mentation map. Based on the maximum connected domain
in the rough map, we crop a subvolume that contains the
whole pancreas target and send it to the network for a refined
prediction. In addition, the ResDSN C2F network developed
in [45] introduces the twofold coarse-to-fine strategy, namely
ResDSN Coarse and ResDSN Fine, to segment the pancreas
leveraging the rich spatial information. What’s more, Roth
et al. describe a custom-built 3D U-Net in [46] and utilize a
random forest (RF) to remove the background.

In our consideration, the pancreas is almost in a fixed
position, so the surrounding environment is roughly similar.
It is important to utilize surrounding anatomical structural
information to locate the pancreas which is still needed as
large a receptive field as possible. Therefore, NDN’s strat-
egy to accumulate a large area. Then focal loss is applied
to outline clear boundaries. We reproduce the previous two
algorithms and make a comparison with our method. The
result is shown in TABLE 4 and Fig. 10.The proposed NDN
is obviously superior in all evaluation metrics.

F. COLON POLYP
Endoscopic images for colon polyp diagnosis are chosen
for one of the experiments because of the variations in the
size and shape of the polyp. A colon polyp is a type of
benign tumor, but some of them are prone to malignant ones.
Detecting colon polyp lesions in their early stage has become
a serious medical issue.

In this experiment, the NDN is further investigated in 2D
medical image segmentation. The network structure is con-
sistent except for the change of replacing 3D convolution
kernels with 2D convolution kernels to fit 2D data. The
whole 2D images are fed into the network without any further
processing but normalization. For comparison, strong results
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TABLE 6. Comparison of dice score on each task using different losses.

FIGURE 10. Results for each of the experiments in TABLE 4. (a) Original
images. (b) Ground truth. (c) Results for NDN. (d) Results for ResDSN C2F.
(e) Results for 3D U-Net.

are included that we are currently aware of the published liter-
ature.Wickstrøm et al. [25] combine FCN-8 and SegNet with
recent development in the deep learning like Batch Normal-
ization and Dropout respectively. The enhanced FCN-8 and
SegNet are corresponding named to EFCN-8 and ESegNet.
According to the result provided by Zhu et al., the EFCN-8
perform better than ESegNet, so EFCN-8 is reproduced as
a comparative approach. Nguyen and Lee [47] develop a
deep encoder-decoder network which uses Deeplabv3 as an
encoder to segment polyps. They train the model three times
with different resolutions and ensemble the results as the final
segmentation map.

We evaluate the results of NDN, EFCN-8, Deeplabv3 based
model and provide a comparison between these models in
TABLE 5. It is observed that NDN achieves a dice of 0.8934,
a Jaccard of 0.8178 and a standard deviation of 0.0917, which
presents themost robust reported results. As shown in Fig. 11,
folds in the colon are easily mistaken for polyps because of
their similar appearance. Our model can well address this
issue.

G. THE COMPARISON OF DIFFERENT LOSS
To highlight the importance of our modified focal loss,
we adopt the variable-controlling method that only changes
the supervision loss. In the above experiments, we fine-tune
the NDN for each task with cross-entropy(CE) loss and dice
loss that are generally used in medical image segmentation.
As shown in Table 6, it is obvious that the focal loss performs

FIGURE 11. Results for each of the experiments in TABLE 5. (a) Original
images. (b) Ground truth. (c) Results for EFCN-8. (d) Results for ResDSN
C2F. (e) Results for Deeplabv3 based model.

FIGURE 12. Results for each of the experiments in TABLE 6. Rows
represent different tasks. (a) Original images. (b) Ground truth. (c) Results
for focal loss. (d) Results for dice loss. (e) Results for cross-entropy loss.

better against dice loss and CE loss in all. The focal loss
is used to help network focus on error regions including
missing area and false positive area. According to the row 3,
4 of Fig. 12, liver tumors, and pancreas are small and fuzzy,
which results in frequent omissions. However, our method
supervised by focal loss is able to detect these hard regions
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compared to the same framework supervised by the dice loss
and CE loss. Besides, the focal loss also plays an important
role in suppressing false positive. In colon polyp segmen-
tation task, affected by light and bubbles, the result usually
contains some false detection areas. Focal loss shows its role
and suppresses the false positive as shown in row 5 of Fig. 12.

V. CONCLUSION
In this paper, we propose a new network named Nested
Dilation Networks (NDN) to cope with multi-task medical
image segmentation imaging in different modalities. The
innovation of the article is mainly reflected in two aspects.
Firstly, the Residual Blocks Nested with Dilations (RnD
Blocks) is designed to enlarge the receptive field, which can
handle targets of different sizes simultaneously. Secondly,
the focal loss is carefully modified to adopt the segmentation
tasks. The modified focal loss can overcome the challenges
of small targets and unbalanced labels, which perform better
than previous dice loss. Besides, five experiments are con-
ducted to prove the generalization of NDN, and the results
demonstrate that our algorithm outperforms other currently
published methods which focus only one specific task. The
proposed approach is helpful for more medical segmentation
tasks.
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