
Received March 12, 2019, accepted March 21, 2019, date of current version April 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2907261

Deep Neural Network Hardware Implementation
Based on Stacked Sparse Autoencoder
MARIA G. F. COUTINHO 1, MATHEUS F. TORQUATO 2, AND MARCELO A. C. FERNANDES 1
1Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
2College of Engineering, Swansea University, Swansea SA2 8PP, U.K.

Corresponding author: Marcelo A. C. Fernandes (mfernandes@dca.urn.br)

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-Finance Code 001.

ABSTRACT Deep learning techniques have been gaining prominence in the research world in the past years;
however, the deep learning algorithms have high computational cost, making them hard to be used to several
commercial applications. On the other hand, new alternatives have been studied and some methodologies
focusing on accelerating complex algorithms including those based on reconfigurable hardware has been
showing significant results. Therefore, the objective of this paper is to propose a neural network hardware
implementation to be used in deep learning applications. The implementation was developed on a field-
programmable gate array (FPGA) and supports deep neural network (DNN) trained with the stacked
sparse autoencoder (SSAE) technique. In order to allow DNNs with several inputs and layers on the
FPGA, the systolic array technique was used in the entire architecture. Details regarding the designed
implementation were evidenced, as well as the hardware area occupation and the processing time for two
different implementations. The results showed that both implementations achieved high throughput enabling
deep learning techniques to be applied for problems with large data amounts.

INDEX TERMS Deep learning, stacked sparse autoencoder, FPGA, systolic array.

I. INTRODUCTION
The use of Artificial Intelligence (AI) techniques for solving
problems in several areas, such as Deep Learning (DL), also
called Deep Neural Networks (DNN), have been gaining a
great deal of attention in recent years. The DNNs are able
to prove high computational power, concomitantly with the
use of several hidden layers. Among the various Deep Learn-
ing techniques found in the literature, those ones based on
Autoencoders (AEs) are mainly applied to prediction and
classification problems [1]–[3].

The methodology of using multiple stacked autoencoders,
forming a single DNN has proved to be effective in the
training of deep learning networks, as can be seen in [4], [5].
Stacked Sparse Autoencoders (SSAE) have been used in
classification problems as can be seen in [5]. In this approach,
each hidden layer is composed of an individually trained
sparse autoencoder, in an unsupervised way. The output of
each hidden layer of each AE is used as input to the next
AE, so that the input data characteristics are propagated
through the network layer by layer, enabling the output

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

layer to perform the data classification, after a supervised
training.

However, deep neural networks have a high computational
complexity due to the large number of hidden layers, which
makes it difficult or impossible to apply this approach in
several commercial applications. This problem is further
aggravated by applying this technique in problem with large
data amounts. With that in mind, several researches aiming
the acceleration of complex algorithms have been conducted,
and among them the use of reconfigurable computing have
proved to be a great option.

The present paper is organized as follows: This first section
presented a general introduction about the work explaining
the motivation behind it. Section II discusses some related
works and the state of the art. In Section III will be pre-
sented a theoretical foundation regarding the deep learn-
ing techniques, evidencing the Stacked Sparse Autoencoder.
Section IV presents the hardware architecture details for the
feedforward phase of two implementation. Section V will
present the results of the proposed hardware validation and
synthesis results, as well as comparisons with a state-of-the-
art work. Finally, Section VI will present the final considera-
tions regarding the obtained results.

40674
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-8167-5568
https://orcid.org/0000-0001-6356-3538
https://orcid.org/0000-0001-7536-2506


M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

II. RELATED WORKS
It is possible to find in the literature a great variety of works
containing hardware implementations of artificial intelli-
gence algorithms. As in the works developed in [6]–[9],
in which it was possible to achieve high speed gains with
the use of Field Programmable Gate Array (FPGA) recon-
figurable computing, comparing to implementations using
graphics processing units (GPUs) and general purpose pro-
cessors used in High Performance Computers (HPC).

In [6] a hardware Radial Base Functios (RBF) Artificial
Neural Network (ANN) was implemented and trained with
the Least Mean Square (LMS) algorithm. The architecture
implemented in Register-transfer level (RTL) was analyzed
in terms of hardware occupancy rate, bit resolution and pro-
cessing delay. The synthesis results for two distinct scenarios
and several fixed point resolutions suggest the possibility of
using the design in more complex practical situations. In the
work of [7]–[9] a FPGA parallel implementation of genetic
algorithm was proposed. The architecture was also imple-
mented in RTL and performed tests with different parameters.
The functions used by the genetic algorithm were stored
in Lookup Tables (LUTs), thus eliminating the need for a
dedicated circuit to perform each function and, consequently,
enabling the reduction of area occupied in the FPGA, making
the implementation more flexible. That approach resulted in
a throughput increase, since building a complex circuit for
these functions would produce longer hardware critical paths.

Somework involving implementations of DL techniques in
FPGA motivated the development of this work. In the work
of [10] it was proposed the implementation of a Convolutional
Neural Network (CNN) in FPGA using fixed point. The
circuit was built using the Vivado HLS tool. The hardware
implementation, using a FPGA Virtex 7, managed to operate
approximately 16.42 times faster than a CNN implemented in
Matlab. Another proposal for the implementation of a CNN
in FPGA is presented in [11] which also used high-level
synthesis (HLS). Experiments showed that the FPGA imple-
mentation achieved up to 3× more energy efficiency than a
CPU implementation, and a energy efficiency equivalent to
the same CPU implementation with 16 threads operating in
parallel. In addition, in respect to the implementation in SoC
GPU for mobile applications, it was possible to obtain a gain
of almost 15× in terms of speed and 16× in terms of energy
efficiency. In [12] is proposed an optimized implementation
to accelerate the CNNs on FPGA. For this, an analytical
design scheme was adopted using the roofline model. How-
ever, the hardware implementationwas developed usingHLS.
The CNN implemented had as target a Virtex 7 FPGA, and
it obtained a speedup of 17.42× over the Intel Xeon 2.2GHz
Microprocessor.

The work [13] presented the effects of using data repre-
sentation with limited precision in neural network training.
The results showed that using stochastic rounding with a
resolution of 16 bits fixed-point, it was possible to obtain
a similar performance to the 32 bits in floating point. The
work used the systolic matrix strategy to build multiplier

arrays, thus contributing to the implementation throughput
increase. Aiming the use of reconfigurable computing, [14]
proposed a deep learning accelerator unit on FPGA, called
DLAU. The proposed architecture was split into three pro-
cessing units using a pipeline scheme and it can be applied
to different network topologies. The hardware was developed
using the Xilinx Zynq Zedboard development platformwhich
features an ARM Cortex-A9 processor. Experiments showed
that the DLAU achieved a speedup of 36.1× over Intel Core 2
2.3GHz processors, in addition to achieving low power con-
sumption compared to implementing an NVIDIA Tesla K40c
GPU.

The systolic array has been studied for designing deep
learning accelerators in recent years, for to reduce the area
and power of the large matrix multiply unit [15], as also,
to achieve high throughput [16]. The systolic array can pro-
vide low global data transfer and high clock frequency which
is suitable for large-scale parallel design on FPGAs [16].

In [17] a DNN implementation in FPGA was proposed
using VHSIC Hardware Description Language (VHDL) and
floating point which enabled the use of a single layer of
physical computation to execute the entire network feed-
forward step. Synthesis were performed for several net-
work architectures and the largest ones supported by each
hardware used in the experiments were identified. The Xil-
inx Virtex-5 XC5VLX-110T FPGA was able to fit the
784 − 40 − 40 − 40 − 10 architecture, whereas the Xilinx
ZynQ-7000 XC7Z045 FPGA could fit the 784−126−126−
126−10 architecture. However, it was observed that with the
784− 40− 40− 10 and 784− 126− 126− 10 architectures,
the best results were obtained in terms of recognition rate
and processing time, reaching the maximum performance of
15810 and 15900 manuscript digits frames (from the MNIST
database) per second, respectively. In the work of [18] an RTL
compiler was proposed to accelerate FPGA Deep Learning
algorithms that aimed to achieve similar performance to the
implementations in RTL, since implementations that used
high-level synthesis could not optimize the FPGA resources
consumption.

Using Verilog, [19] implemented a Convolutional auto-
encoder (CAE) network in FPGA, which represents a type
of CNN. The FPGA implementation was validated by run-
ning image compression algorithms. Comparisons with other
hardware implementation such as CPU and GPU implemen-
tations were carried out. The speed comparison pointed that
the FPGA was faster than the CPU and slower than the GPU.
However, with regard to performance per watt the FPGA
scored significantly higher than both others.

One of the first DNN implementations in FPGA using
Stacked Sparse Autoencoders is presented in [5]. DNN was
used to perform image classification of the data set called
CIFAR-10. The network architecture used two hidden layers,
containing 2000 neurons in the first hidden layer and 750 in
the second one, in addition to 3072 inputs and 10 neurons in
the output layer, called 3072 − 2000 − 750 − 10 architec-
ture. For the implementation, a high-level synthesis OpenCL

VOLUME 7, 2019 40675



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

framework was applied, which might have contributed for the
FPGA results being inferior in processing efficiency when
compared to the GPU implementation. In [20], the advan-
tages of using fixed point in autoencoder implementations
are shown, considering that using a 4 bits resolution in the
integer part, it was possible to obtain the same accuracy of
using floating point. For the experiments, the 784−400−10
network architecture and the MNIST database were used.
However, no information was presented regarding the FPGA
hardware resources occupancy rate and processing time.

In [21]–[23], proposals for traditional neural networks
using autoencoders were presented. In [21] a sparse autoen-
coder architecture was implemented in VerilogHDL. The
tests were carried out with a 196 − 100 − 196 network
architecture using the natural image data set of the Kyoto
city in Japan. In [22], it was proposed, in addition to the
traditional autoencoders architectures, a structure with two
chained autoencoders, the 4 − 2 − 1 − 2 − 4 architecture,
however, it aimed to rebuild the input in the output, as in the
conventional models. In this work, unlike the ones previously
mentioned which implemented autoencoders techniques as
well, the circuit was implemented in RTL, which allowed it
to achieve superior efficiency comparing to the other autoen-
coder implementationsmentioned here. The target FPGAwas
a Xilinx Virtex-6 xc6vlx240t.

Similar to the work structure showed in [22], in [23],
autoencoders were used to implement the 32−16−8−16−32
architecture. However, in this work the Xilinx Vivado HLS
tool was used to perform the synthesis from the C language
to RTL. A Xilinx Kintex-7 xc7k410tffg900-2 FPGA was
used for the experiments. The implementation was able to
achieve high throughput (about 200Mega samples per second
(MSPS)) and low latency (about 105 ns). However, it was
observed that most of the FPGA hardware resources were
occupied, which makes impracticable to design a network
architecture larger than the one implemented.

In order to guarantee the FPGA implementation efficiency,
through the optimum usage of resources, the implementa-
tion proposed in the present work was constructed in RTL,
unlike [5]. The RTL implementation was also adopted in [22],
however, in that work it was implemented autoencoders struc-
tures that were more similar to traditional ones than to DNNs.
Thus, the present paper presents a hardware implementation
proposal of a Deep Neural Network based on the Stacked
Sparse Autoencoder technique. The hardware was developed
for the feedforward phase adopting the systolic array tech-
nique, which allowed the use of multiple neurons and several
layers. Data regarding hardware occupancy rate and process-
ing time will be presented for a Virtex 6 XC6VLX240T-
1FF1156 FPGA.

III. DEEP LEARNING
In the last years, several Deep Learning techniques have
become the object of research of many academic works
around the world. These techniques can be defined as a
modernization of Multilayer Perceptron (MLP) networks,

considering that one of the main differences between MLP
networks and DNNs is the feasibility of the DNNs to train
networks with numerous hidden layers, which is a major
problem in conventional MLPs.

The term autoencoder precedes the Deep Learning advent.
In its traditional structure, autoencoders were mainly applied
to dimensionality reduction and patterns learning problems.
In these networks the training occurs so that the output layer
provides a reconstruction of the input layer, thus, both lay-
ers have the same size. At the same time, only one hidden
layer is used and performs the characteristics extraction of
the input data. Consequently, the autoencoder architecture is
composed of three layers: an input, a hidden and an output.
The input and hidden layers form the network encoder while
the hidden and output layers make up the decoder [24]. The
autoencoders have been used in many unsupervised learning
problems where it is possible to represent a P-dimensional
input vector (from input layer) in an M -dimensional vec-
tor (from output hidden layer), where M < P. In other
words, the autoencoders can reduce the dimensionality of the
input by extracting the essential information (hidden layer
output). With autoencoders, it is also possible to recover
the input information using the neurons of the output layer.
Basically, the neurons of the hidden layer reduce the input
information and the neurons of the output layer recover that
information [25].

A. STACKED SPARSE AUTOENCODER (SSAE)
With the Deep Learning ascent, the autoencoders began to be
used in a chained fashion, forming networks with numerous
hidden layers, whose training was previously performed in
each autoencoder in an unsupervised way. Among the autoen-
coder types the sparse are known for being heavily applied to
classification problems. In the stacked sparse autoencoders,
each hidden layer is composed of the hidden layer of an indi-
vidually trained sparse autoencoder. Each sparse autoencoder
receives as input the output of the hidden layer of the previous
sparse autoencoder so that the characteristics of the input data
are extracted along the network hidden layers, enabling the
output layer to perform the classification after the supervised
training. In this work, the network training was performed
using this methodology. Figure 1 presents the proposed SSAE
architecture with an input layer (P data inputs), two hidden
layers (M andN inputs) and an output layer (H outputs). This
architecture can be represented as a P−M − N − H SSAE.
This work is focused on implementing the SSAE feedfor-

ward phase, in which the equation that defines the output of
the i-th neuron from the k-th layer, zki (n), at the n-th instant,
can be expressed as

zki (n) =
U l∑
j=1

wkij(n)× y
l
j(n)+ wb

k
i (n)× b (1)

where wkij(n) is the weight associated with the j-th input of
the i-th neuron in the k-th layer at the n-th instant, ylj(n) is
the j-th input of the l-th layer, in which l = k − 1, at the

40676 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 1. Proposed stacked sparse autoencoder architecture.

n-th instant, wbki (n) is the bias weight of the i-th neuron from
the k-th layer at the n-th instant, b is the bias, which has a
value of 1, and U l is the number of inputs of the l-th layer,
where U0

= P, U1
= M e U2

= N . In the hidden layers the
sigmoid activation functionwas used, so the output associated
with the i-th neuron from the k-th layer at the n-th instant,
vki (n), can be expressed as

vki (n) =
(

1

1+ e−z
k
i (n)

)
(2)

in which vki (n) will be the value of the j-th input to be used in
the next layer at the n-th instant, yl+1j (n), that is

yl+1j (n) = vki (n) (3)

in which j = i.
The softmax activation function was used in the output

layer. This function has been adopted in neural classification
networks as presented in [5], and can be characterized as

si(n) =
ez

K
i (n)∑H

h=1 e
zKh (n)

(4)

in which si(n) consists of the i-th output of the last layer K
withH neurons at the n-th instant. TheH value is determined
by the number of classes of the problem, since this function
indicates the probability that each data belongs to a specific
class.

IV. IMPLEMENTATION DESCRIPTION
In this work, two SSAE proposals were implemented for the
feedforward phase using the systolic array technique. The
main difference between them is in the way the network’s
synaptic weights are inserted into the hardware. In the follow-
ing sections characteristics of each proposal will be present,
as well as the details regarding the processing time of each
implementation.

A. PROPOSAL 1
Based on the network structure detailed in Figure 1, the over-
all architecture of the first implementation proposed in this
work is presented in Figure 2. This architecture is able to

FIGURE 2. General architecture of proposal 1.

receive the networkweights throughweights streams, without
the need of using memory resources to store them, unlike
most implementations found in the literature [5], [22], [23].
The variables and constants of the implementation are rep-
resented in fixed point and for each j-th entry, y0j (n), 1 bit is
used in the integer part (without signal) and 12 bits in the
decimal part, as the inputs are normalized between 0 and 1.
For the synaptic weights of neurons from hidden layers, one
and two, expressed as w1

ij(n) and w
2
ij(n), as well as for the bias

weights of all layers, wbki (n), 5 bits are used in the integer
part (one bit for signal) and 12 bits in the decimal part. For
the weights from the output layer neurons, w3

ij(n), 7 bits are
used in the integer part (one bit for signal) and 12 bits in the
decimal part.

For this proposal implementation, the systolic array tech-
nique was used and it acts as an intermediary approach
between a completely parallel and fully serial methodol-
ogy. This technique allows data to be received serially and
the processing elements (PEs) perform their operations in
parallel [26].

VOLUME 7, 2019 40677



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 3. Architecture of the SSAE k-th hidden layer from proposal 1.

The network implemented in this work used two hid-
den layers, consisting of the 784-100-50-10 architecture.
However, to add more hidden layers to the network it is
necessary to replicate the inner block present in Figure 2,
which represents the second hidden layer of the network.
Another small adjust is necessary in order to set each layer
with the amount of desired neurons.

1) SSAE LAYERS
The architecture of the k-th hidden layer, called k autoencoder
in Figure 2, is presented in Figure 3 and it implements the
systolic array technique. Each neuron of the k-th layer is
represented by a i-th PEki and the amount of PEs is defined
by the value of V k , where V 1

= M , V 2
= N and V 3

= H .
Thus, each i-th PEki implements the Equation 1. The values
computed in each i-th PEki from the k-th hidden layer pass
through an activation function, called here AFk (see Equa-
tion 2), and are used as input to the next layer (see Equation 3).
The values computed in the output layer PEs go through

the activation function defined in Equation 4 in order to
generate the network output. The sel signal corresponds
to the multiplexer selector, Muxk , used to select the out-
puts of each i-th PEki for the k-th layer input activation
function, AFk .
Through the systolic array, the inputs values flow between

the PEs so that each PE starts its operations at the instant
following the beginning of the operations of its preceding
PE, causing these modules to operate in parallel. It is worth
mentioning that it is from the second hidden layer, that is,
when k > 1, that the bias, b, and the biasweights,wbki (n), are
inserted as input of the k-th layer, as per the structure shown
in Figure 2. Only in the first hidden layer, that is, when k = 1,
these values are inserted together with the network inputs and
the weights of the neurons layer, respectively.

FIGURE 4. i -th PE1
i architecture from proposal 1.

An advantage of this first proposal is the insertion of the
weights from each layer in a serial way through a single
weight stream in the first hidden layer and two weights
streams in the other network layers. This would be the least
amount of weight streams required for the operation of this
implementation, however, this architecture is easily scalable,
which allow the weight streams parallelization for each layer.
The amount of weight streams per layer may range from one
to the amount of neurons in the layer, V 1, in the first network
hidden layer, and from 2 up to 2× V k , in the others network
layers, due to bias weights.

It is worth mentioning that the possibility of receiving the
weights by streams allows the use of the same hardware for
different problems, since the weights trained for a different
problem can be inserted in the network, as well as the inputs
of the problem in question, without the need to reconfig-
ure the hardware.

40678 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 5. i -th PEk
i architecture, for k > 1, from proposal 1.

2) PROCESSING ELEMENTS (PEs)
The architecture of the first hidden layer PEs differs from the
PE architecture of the other layers. In the first hidden layer,
the bias, b, and the bias weights, wb1i (n), are inserted along
with the network inputs and the neurons synaptic weights in
the layer, respectively. Thus, the architecture of each i-th PE1

i
from proposal 1 is detailed in Figure 4 and it’s formed by a
multiplier, an adder and four registers, R. The architecture
of each i-th PEki , for k > 1, from proposal 1, is detailed
in Figure 5 and it’s formed by two multipliers, two adders
and six registers, R. Each i-th PEki generates an output after
Z samples, where for the first hidden layer, Z = P and for
the others, the Z variable must be greater than or equal to the
number of entries (Z ≥ P) and multiple of the number of
neurons of the first hidden layer (mod(Z ,M ) = 0).

FIGURE 6. k-th activation function, AF k , associated with the hidden
layers.

3) ACTIVATION FUNCTIONS (AFs)
The implementation of each k-th activation function, AFk ,
was designed using Lookup Tables (LUTs) as shown
in Figure 6, which allows the approximation of functions
through a L-values table. In order to implement the activation
function of each hidden layer (Equation 2), ROM memo-
ries with 16 bits of depth were used, in which L = 216,
storing words of 13 bits. For the implementation of the

activation function from the output layer, the softmax, defined
by Equation 4, a LUT was used to approximate the expo-
nential function, only then the Equation 4 division was per-
formed. The output layer LUT, AF3, was set to a depth of
L = 216, storing 57 bits.
An important fact associated with this implementation

strategy is the use of a single activation function only, or LUT,
per layer. This feature significantly reduces the space occu-
pied in the FPGA (see [6]).

4) PROCESSING TIME
In proposal 1, a ring counter in each k-th layer, as shown
in Figure 3, is used to enable receipt of the weights in each
i-th PEki from the k-th layer. Since the least amount of weight
streams per layer is being used, the operation of the k-th
layer’s ring counter must beV k times faster than the operation
of each PEki . In order to maintain the implementation timing,
V k > V k+1 is considered. Thus, the execution time of each
PE circuit is determined by the ring counter run-time of the
first hidden layer, trc. Therefore, the PE time, tPE , can be
defined as

tPE = (V 1
× trc) (5)

where (V 1
× trc) ≥ tc and tc is the system critical path time.

The proposed architecture has an initial delay that can be
expressed as

d = (Q× K + D)× tPE (6)

in which Q represents the initial delay of the first layer, and
it is a number greater than or equal to the number of neural
network inputs (Q ≥ P) and a multiple of the number of

VOLUME 7, 2019 40679



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

neurons from the first hidden layer (mod(Q,M ) = 0). As the
first layer is greater than other layers (V 1 > V 2 > . . . >

VK−1 > VK ), the variableQ can be used to estimate the delay
for all layers. K is the number of network layers with neurons
and, D is the delay in number of samples which is a result of
the hidden and output layers activation functions. The neural
network throughput, thff , in frames per second (FPS) or in
inputs per second (IPS) can be expressed as

thff =
1

Q× tPE
. (7)

It is important to mention that the throughput achieved is
independent from the number of layers of the network, as it
only depends on the amount of inputs and neurons used in the
first hidden layer. The amount of layers with neurons, K , will
only impact in the system initial delay.

Based on Equation 7, the execution time of the proposed
SSAE, called here as feedforward time, tff , after the initial
delay of d seconds (Equation 6), can be expressed as

tff = Q× tPE =
1
thff

(8)

thus, in every tff , it is possible to obtain the output of all the
H neurons from the last layer, that is, the network output for
a given input.

B. PROPOSAL 2
The general architecture of the second proposal is presented
in Figure 7 and it is based on the structure shown in Figure 1.
The main differences regarding the first proposal are related
to the way in which the synaptic weights are inserted into
the network. In this second proposal, the weight values are
stored in ROM memories and they are no longer received
serially as in the first implementation. The project variables
and constants are represented in fixed point, using the bit
resolutions presented in Subsection IV-A, for proposal 1.

1) SSAE LAYER
The Figure 3 presents the general architecture of the k-th
hidden layer, called k autoencoder (Figure 2). In this second
proposal, there are no streams for the synaptic weights, since
these values are stored in LUTs using ROM memories. This
is possible since the network training has been previously
finished, thus there is no need to change the weights once
the network has already been trained for a specific problem.
However, in the need to use the network for a new problem,
the hardware must be reconfigured, storing the new weights,
obtained after the previous network training for the new
problem in the lookup tables.

2) PROCESSING ELEMENTS (PEs)
In this proposal, the PEs architecture from the first hidden
layer differs from the PE architecture from the other layers.
The architecture of each i-th PE1

i of proposal 2 is detailed
in Figure 9 and consists of a multiplier, an adder, four regis-
ters, R, and a LUT used to store the weights of the i-th PE1

i ,
called W 1

i . The architecture of each i-th PEki , for k > 1

FIGURE 7. General architecture of proposal 2.

from proposal 2, is detailed in Figure 10 and consists of
two multipliers, two adders, six registers, R, one LUT used
to store the weights of the i-th PEki , called the W k

i , and a
constant for the biasweight, wbki . Each i-th PE

k
i generates an

output after Z samples, as shown in Subsection IV-A2 from
the proposal 1. The LUTs of each PEki and W k

i , use a ROM
memory with a depth of L = Z , storing words of 17 bits in
the hidden layers, and 19 bits in the output layer. In addition,
the constants used for the bias weight of each i-th neuron,
wbki , were configured with 5 bits in the integer part (using
one for signal) and 12 bits in the decimal part.

3) ACTIVATION FUNCTIONS (AFs)
The implementation of each k-th activation function, AFk ,
from the hidden layers as well as the activation function of the
output layer of proposal 2 corresponds to what was already
presented for proposal 1 in Subsection IV-A3.

4) PROCESSING TIME
In this second proposal, the PE execution time corresponds to
the system critical path time, tc, i.e.

tPE = tc. (9)

However, the other equations from subsection IV-A4 can
be considered for the processing time calculation from pro-
posal 2, taking into account the Equation 9. The initial delay,
d , can be defined by Equation 6. In addition, the throughput,
thff , can be expressed by Equation 7, as well as the execution
time of the SSAE, tff , can be expressed by Equation 8 .

V. RESULTS
A. HARDWARE OCCUPATION ANALYSIS
This subsectionwill present the hardware occupation analysis
associated with the PEs on FPGA. For all synthesis results,

40680 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 8. Architecture of the SSAE k-th hidden layer from proposal 2.

FIGURE 9. Architecture of the i -th PE1
i from proposal 2.

TABLE 1. Hardware occupation (logic cells and multipliers) per PE for
proposal 1.

the Virtex 6 XC6VLX240T-1FF1156 target FPGA was used.
Table 1 shows the hardware occupation (logic cells and mul-
tipliers) per PE (nPE ) for proposal 1. As each PEki represents

the i-th neuron in the k-th layer, table 1 shows the occupation
per neuron.

Figures 11 and 12 show the linear regression curve for the
first layer (k = 1) and other layers (k ≥ 2), respectively.
The measurement points were obtained from Table 1, and the
equation associated with the regression analysis for the first
layer can be expressed as

n1LC =
⌊
212.2n1PE

⌋
(10)

where n1LC and n1PE are the number of logic cells and PEs in
the first layer, respectively.

For other layers the equation is

nk≥2LC =

⌊
285.1nk≥2PE

⌋
(11)

where nk≥2LC and nk≥2PE are the number of logic cells and PEs in
the other layers, respectively. The total number of PEs, nPE

VOLUME 7, 2019 40681



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 10. Architecture of the i -th PEk
i , for k > 1, from proposal 2.

FIGURE 11. Linear regression curve for the hardware occupation (logic
cells) per PE for proposal 1 in the first layer, n1

LC .

can be expressed as

nPE = n1PE + n
k≥2
PE = n1PE +

K∑
k=2

nkPE = V 1
+

K∑
k=2

V k (12)

where nkPE is the number of PEs in the k-th layer and the total
of logic cells, nLC , is expressed as

nLC = n1LC + n
k≥2
LC = n1LC +

K∑
k=2

nkLC . (13)

FIGURE 12. Linear regression curve for the hardware occupation (logic
cells) per PE for proposal 1 in the other layers, nk

LC (k ≥ 2).

The regression analysis is not necessary for the multipliers,
and the equations can be expressed as

n1Mult = n1PE , (14)

nk≥2Mult = 2nk≥2PE , (15)

and

nMult = n1Mult + n
k≥2
Mult = n1Mult + 2

K∑
k=2

nkMult (16)

where the nkMult is the number of multipliers in the k-th layer.
The hardware occupation results concerning proposal 2 are

presented in Table 2, and the regression analysis for the

40682 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

TABLE 2. Hardware occupation (logic cells and multipliers) per PE for
proposal 2.

FIGURE 13. Linear regression curve for the hardware occupation (logic
cells) per PE for proposal 2 in the first layer, n1

LC .

first and others layers are illustrated in Figures 11 and 12,
respectively. The regression analysis equations for logic cells
can be expressed as

n1LC =
⌊
133.8n1PE + 34.17

⌋
(17)

and

nk≥2LC =

⌊
191.7nk≥2PE + 129.1

⌋
. (18)

The multipliers occupation can be described by
Equations 14, 15 and 16.

It is essential to observe that in Equations 10, 11, 17 and 18,
it was considered that the maximum number of DSP multi-
pliers was sufficient for all PEs (nmaxMult ≥ nMult ); otherwise
(nMult > nmaxMult ), the Equations 10 and 11 could be rewritten as

n1LC =
⌊
(212.2+ NLCM )α1 + 212.2n1maxMult

⌋
(19)

and

nk≥2LC =

⌊
(285.1+ 2NLCM )αk≥2 + 285.1

nk≥2maxMult

2

⌋
(20)

where

α1 = n1PE − n
1max
Mult (21)

FIGURE 14. Linear regression curve for the hardware occupation (logic
cells) per PE for proposal 2 in the other layers, nk

LC (k ≥ 2).

and

αk≥2 = nk≥2PE −
nk≥2maxMult

2
(22)

where the NLCM represents the number of logic cells needed
to build a multiplier. The n1maxMult and n

k≥2max
Mult are the maximum

numbers of the DSP multiplier used in first and other layers,
respectively.

Following the same idea, Equations 17 and 18 can be
rewritten as

n1LC =
⌊
(133.8+ NLCM )α1 + β1

⌋
(23)

and

nk≥2LC =

⌊
(191.7+ 2NLCM )αk≥2 + βk≥2

⌋
(24)

where

β1 = 34.17+ 133.8nk
1max

Mult (25)

and

βk≥2 = 129.1+ 191.7
nk≥2maxMult

2
. (26)

Figures 15 and 16 show the estimate number of PEs for
some commercial FPGAs [27]–[29]. The estimation was
based on Equations 10, 11, 19 and 20, for proposal 1, and
Equations 17, 18, 23 and 24, for proposal 2. Based on Xilinx
datasheet of the Multiplier IP Core [30], [31], the variable
NLCM = 200. For all values, it was considered

n1PE =
⌊
γ × nPE
100

⌋
(27)

where γ is the percentage of the total number of PEs, nPE ,
(or neurons) in the first layer (k = 1). Table 3 shows
the values of the maximum number of PEs, nmaxPE for each
proposal. Figures 15 and 16 show results for γ = 20% and
Table 3 presented results for several values of γ .
The results from Figures 15 and 16 and Table 3 show the

proposal viability for real problems with several layers and
neurons (each PEki represents the i-th neuron associated with
the k-th layer).

VOLUME 7, 2019 40683



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

TABLE 3. The estimate of the maximum number of PEs, nmax
PE , for some commercial FPGAs.

FIGURE 15. Scalability of Proposal 1 for the number of PEs (nPE ),
γ = 20%.

FIGURE 16. Scalability of Proposal 2 for the number of PEs (nPE ),
γ = 20%.

B. TIME PROCESSING ANALYSIS
1) PROPOSAL 1 - TIME PROCESSING ANALYSIS
In the proposal 1 (see Figure 4), the weights are input streams
per neural network layer, and this reduces the hardware mem-
ory needed to store the weights at the same time it reduces
the throughput (see Equations 5 and 7). One way to address
this drawback is by creating a parallelization in the weights
streams per layer, that is,

tPE =
(V 1
× trc)
G

=
(n1PE × trc)

G
(28)

where G is the parallelization degree of the weights streams,
in other words, for the k-th layer, there are G group of
PEs, called GPE, and each GPE has pr = V k/G PEs.

Figure 17 illustrates the parallelization of the weight stream
where each g-th GPEkg drives a weight stream. The paral-
lelization degree value is 1 ≤ G ≤ n1PE and

(n1PE × trc)
G

≥ tc (29)

which can be described as

G =
⌊(
n1PE − 1

)
η + 1

⌋
=

⌊(⌊
γ × nPE
100

⌋
− 1

)
η + 1

⌋
(30)

where 0 ≤ η ≤ 1.
Based on Equations 28 and 30, Equation 7 can be

rewritten as

thff =
G

Q× n1PE × trc
=

⌊(⌊
γ×nPE
100

⌋
− 1

)
η + 1

⌋
Q×

⌊
γ×nPE
100

⌋
× trc

. (31)

The number of operations (adds and multipliers) per PE are
2 and 4 for the first (k = 1) and other (k ≥ 2) layers,
respectively. Thus using Equation 28, the performance, for
proposal 1, pf , in operations per seconds (OPS) can be
expressed as

pf =
G
(
2n1PE + 4nk≥2PE

)
n1PE × trc

. (32)

Using Equations 12, 27, and 30, the Equation 32 can be
rewritten as

pf =
G (400− 2γ )
γ × trc

=

⌊(⌊
γ×nPE
100

⌋
−1
)
η+1

⌋
(400−2γ )

γ × trc
.

(33)

After several synthesis results (see Table 1), the median
values of trc and tc were about 10 ns and 12.31 ns, respec-
tively. The system critical path time can be increased regard-
ing the number of bits and other operations such as the
softmax activation function (see Equation 4) in the last
layer, however, as the number of PEs is high, the con-
straint presented in Equation 29 can be easily satisfied.
Figures 18, 19 and 20 show the throughput curve, thff , in IPS,
and performance, pf , in Giga OPS (GOPS) to several values
of Q, G and η for nPE values presented in Table 3 with
γ = 40%.

Figures 18 and 19 show the throughput, thff , with different
values of η = {0,1/8,1/4,1/8} and it is possible to observe
that the thff decreases withQ for η = 0, however it is possible

40684 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 17. Architecture of the GPEs in the k-th hidden layer from proposal 1.

FIGURE 18. Throughput, thff , (in IPS) for several values of Q and η for nPE values presented
in Table 3 with γ = 40%.

FIGURE 19. Throughput, thff , (in IPS) for several values of Q and G for nPE values presented
in Table 3 with γ = 40%.

to compensate the reduction increasing η (or G). Figures 20
shows the performance of the proposal 1 for several values
of η and, it could achieve more than 1000GOPS or 1 tera
OPS (TOPS) on FPGA 4 with η ≥ 0.3. Table 4 shows the
values of the thff in ×1000 IPS (KIPS), and pf illustrated
in Figures 18, 19 and 20.

2) PROPOSAL 2 - TIME PROCESSING ANALYSIS
For proposal 2, the throughput, thff , depends just on the
system critical path time, tc, and using the Equations 7 and 9,
the throughput, in IPS, can be expressed as

thff =
1

Q× tc
. (34)

VOLUME 7, 2019 40685



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

TABLE 4. Values of the throughput, thff , (in KIPS) and performance, pf , (in GOPS) shown in Figures 18, 19 and 20 (γ = 40%).

FIGURE 20. Performance, pf , (in GOPS) for several values of η (or G) for
proposal 1 and using nPE values presented in Table 3 with γ = 40%.

FIGURE 21. Throughput, thff , (in IPS) to several values of Q and tc for
proposal 2.

Figure 21 shows the curves of the thff for various values of
Q and tc. Based on the values presented in Table 2, the tc
achieved a median value of approximately 12 ns. However,
the tc value can increase with the number of bits and the
other circuit elements such the softmax activation function
implementation (see Equation 4). It is interesting to notice
that the value of tc is similar for the two proposals since the
critical path of PE is similar for both.

Similarly of proposal 1, the number of operations (adds and
multipliers) per PE for proposal 2 are 2 and 4 for the first
(k = 1) and other (k ≥ 2) layers, respectively. Thus using

FIGURE 22. Proposal 2 performance, pf , (in GOPS) to several values of
nPE and tc for some FPGAs. with γ = 40%.

TABLE 5. Values of the throughput, thff , (in MIPS) and performance, pf ,
(in GOPS) shown in Figures 21 and 22 (γ = 40%).

Equation 9, the performance, for proposal 2, pf , in operations
per seconds (OPS) can be expressed as

pf =

(
2n1PE + 4nk≥2PE

)
tc

. (35)

Using Equations 12, 27, and

nk≥2PE = nPE −
⌊
γ × nPE
100

⌋
, (36)

Equation 35 can be rewritten as

pf =

(
4nPE − 2n1PE

)
tc

=

(
4nPE − 2

⌊
γ×nPE
100

⌋)
tc

. (37)

Figure 22 shows the performance, pf , using several values
of nPE and tc for some FPGAs. Table 5 resumes the val-
ues illustrated in Figures 21 and 22. Similar to proposal 1,
proposal 2 can also achieve a performance of thousands of
Giga operations per second or TOPS.

40686 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 23. Surface of regression analysis of dynamic power
consumption, P1

PE , per number of PEs, n1
PE , and frequency of PE, fPE ,

in MHz for the first layer of proposal 1.

TABLE 6. Measured dynamic power consumption per number of PEs,
n1

PE , and frequency of PE, fPE , in MHz for the first layer of proposal 1.

C. POWER CONSUMPTION ANALYSIS
1) PROPOSAL 1 - POWER CONSUMPTION
Figure 23 shows the surface of regression analysis using
the measurement points presented in Table 6. The equation
obtained from regression analysis (R2 = 0.9987) can be
expressed as

P1PE =
fPE

(
505+ 0.0592fPE + 10.65n1PE

)
1× 106

(38)

whereP1PE is the dynamic power consumption in watts (W) of
the first layer, and fPE is the frequency of PE in MHz, that is

fPE =
1× 10−6

tPE
=
G× 10−6

n1PE × trc
. (39)

The dynamic power measurement for other layers (k ≥ 2)
is presented in Table 7. For this case, the surface of regression
analysis (R2 = 0.9984) can be expressed as

Pk≥2PE =
fPE

(
565.3+ 0.0429fPE + 12.39nk≥2PE

)
1× 106

. (40)

where Pk≥2PE is the dynamic power consumption in watts (W)
for other layers (k ≥ 2). The Figure 24 shows the curve of
regression analysis of dynamic power consumption,Pk≥2PE , per

TABLE 7. Measured dynamic power consumption per number of PEs,
nk≥2

PE , and frequency of PE, fPE , in MHz for other layers of
proposal 1 (k ≥ 2).

FIGURE 24. Surface of regression analysis of dynamic power
consumption, Pk≥2

PE , per number of PEs, nk≥2
PE , and frequency of PE, fPE ,

in MHz for other layers of proposal 1 (k ≥ 2).

number of PEs, nk≥2PE , and frequency of PE, fPE , in MHz for
other layers of proposal 1 (k ≥ 2).

Using Equations 27 and 39, the dynamic power consump-
tion, P1PE , for the first layer can be expressed as

P1PE =

G

(
505+ 0.0592G×10−6⌊

γ×nPE
100

⌋
×trc
+ 10.65

⌊
γ×nPE
100

⌋)
⌊
γ×nPE
100

⌋
× trc × 1012

(41)

and the dynamic power consumption, Pk≥2PE , for other layers
can be expressed by

Pk≥2PE =

G

(
565.3+ 0.0429G×10−6⌊

γ×nPE
100

⌋
×trc
+ 12.39nk≥2PE

)
⌊
γ×nPE
100

⌋
× trc × 1012

. (42)

Finally, the total of dynamic power consumption, PPE ,
is expressed as

Pd = P1PE + P
k≥2
PE . (43)

Figures 25 and 26 show curves associated with power
consumption using Equations 41, 42, and 43. Some curves

VOLUME 7, 2019 40687



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 25. Total dynamic power consumption, Pd , per number of PEs,
nPE , for several values of G of proposal 1 (γ = 40%).

FIGURE 26. Total dynamic power consumption, Pd , per number of η for
some FPGAs of proposal 1 (γ = 40%).

values are presented in Table 8. All values were calculated
with γ = 40%.

2) PROPOSAL 2 - POWER CONSUMPTION
Figures 27 and 28 show the surface of regression analysis
using the measurement points presented in Tables 9 and 10,
respectively. The equation obtained from regression analysis
(R2 = 0.9964) for the first layer, P1PE can be expressed as

P1PE =
fPE

(
569.0849+ 24.4342n1PE

)
1× 106

(44)

where fPE in MHz can be expressed by

fPE =
1× 10−6

tPE
=

1× 10−6

tc
(45)

and the equation obtained from regression analysis (R2 =
0.9931) for other layer, Pk≥2PE can be expressed a

Pk≥2PE =
fPE

(
639.3527+ 20.7985nk≥2PE

)
1× 106

. (46)

TABLE 8. Some curves values presented in Figures 25 and 26.

FIGURE 27. Surface of regression analysis of the dynamic power
consumption, P1

PE , per number of PEs, n1
PE , and frequency of PE, fPE ,

in MHz for the first layer of proposal 2.

Using Equations 27, 36 and 45, the Equations 44 and 46
can be characterized as

P1PE =
569.0849+ 24.4342

⌊
γ×nPE
100

⌋
tc × 1012

(47)

and

Pk≥2PE =
639.3527+ 20.7985

(
nPE −

⌊
γ×nPE
100

⌋)
tc × 1012

. (48)

40688 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

TABLE 9. Measured dynamic power consumption per number of PEs, n1
PE , and frequency of PE, fPE , in MHz for the first layer of proposal 2.

FIGURE 28. Surface of regression analysis of the dynamic power
consumption, Pk≥2

PE , per number of PEs, nk≥2
PE , and frequency of PE, fPE ,

in MHz for the first layer of proposal 2.

TABLE 10. Measured dynamic power consumption per number of PEs,
nk≥2

PE , and frequency of PE, fPE , in MHz for other layers of proposal 2
(k ≥ 2).

Based of Equations 43, 47 and 48, the total dynamic power
consumption per PEs, Pd , for proposal 2 can be expressed as

Pd =
1208.4376+ 20.7985nPE + 3.6357

⌊
γ×nPE
100

⌋
tc × 1012

. (49)

Figure 29 shows the total dynamic power consumption per
PEs, Pd , using Equation 49 and Table 11 presented some
values for FPGA1, FPGA2, FPGA3 and FPGA4.

FIGURE 29. Proposal 2 total dynamic power consumption, Pd , (in watts)
to several values of nPE and tc for some FPGAs with γ = 40%.

TABLE 11. Values of the dynamic power consumption, Pd , (in watts)
shown in Figure 29 (γ = 40%).

D. VALIDATION
In order to validate the implementation proposed in this
article, a data set of manuscript digits called MNIST [32],
containing 60000 images in the training set and 10000 images
in the test set was used for the experiments. Each image
contains 28 × 28 pixels, totaling 784 inputs for the SSAE.
The SSAE implemented in this validation used two hidden
layers, consisting of the 784-100-50-10 architecture. The
experiments were performed with the 10000 images from
the MNIST test set. The network training was previously
performed using the 60000 images from the train set in the
Matlab/Simulink [33] simulation platform (License number
1080073) with the scaled conjugate gradient (SCG) algo-
rithm and the target FPGA was a Virtex 6 XC6VLX240T-
1FF1156 [27]. Figure 30 shows the hardware setup for the
experiments. It was used the Virtex-6 FPGA ML605 Eval-
uation Kit by Xilinx [34]. A video demonstration of the
proposal 2 executing the MNIST test set is presented in [35].

VOLUME 7, 2019 40689



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

FIGURE 30. Hardware setup for the experiments with the Xilinx
Virtex-6 FPGA ML605 evaluation kit.

1) PROPOSAL 1 VALIDATION
For the hardware validation, a comparison was made between
the results obtained by the implementation on the Matlab/
Simulink platform and the results obtained by the hardware
implementation. Thus, the mean square error (MSE) between
the output of the Matlab implementation, srefi (n), and the
output of the hardware implementation was calculated. The
MSE calculation for this experiment is defined as

MSE =
1

H × 10000

H∑
i=1

10000∑
n=1

(
srefi (n)− si(n)

)2
. (50)

It was found that the MSE between the implementation
results in Matlab, which used floating point (64 bits), and the
fixed-point hardware implementation was only 2.1 × 10−6,
which is a fairly acceptable result, since the weights associ-
ated with the hardware implementation used only 12 bits in
the decimal part. Among the 10000 images used in the valida-
tion, Matlab’s hit percentage was 93.4%, while the proposed
hardware implementation reached a 93.38% hit. The small
percentage error in the classification of the implementation in
FPGA comparing to the implementation in Matlab is related
to the bit resolution used for the network synaptic weights.
However, this result is still quite relevant since it indicates
that a higher bit resolution (such as 64 bits, for example)
is not required to achieve meaningful results, showing that
by using only 12 bits in the decimal part, in a fixed point
representation, it is possible to guarantee the reduction in the
hardware occupation area, besides promoting the throughput
increase [6], [20].

TABLE 12. Proposal 1 - hardware area occupation.

After the validation of the hardware implementation using
Matlab, the synthesis was performed in order to obtain the
FPGA resources allocation report. The Table 12 details the

data related to the hardware area occupation of the circuit
implemented in the FPGA. The first column shows the num-
ber of multipliers which are usedmainly by the PEs of each k-
th layer. The second column displays the number of registers
and the third column shows the amount of logic cells used
throughout the circuit.

The data presented in Table 12 show the feasibility of the
implementation of proposal 1. It turns out that only 16%of the
target FPGA logic cells were occupied, indicating that there
is still plenty of room to additional layers and neurons. One of
the elements that were most used was the multipliers, around
29%, since each PE from the first layer utilizes one, and the
PEs of the other layers consume two due to the bias. Despite
this, it is noted that it is still possible to greatly increase the
number of layers and neurons of the SSAE.

TABLE 13. Proposal 1 - processing times and delays (G = 1 and Q = 800).

TABLE 14. Proposal 2 - hardware area occupation.

TABLE 15. Proposal 2 - processing times and delays (Q = 800).

The Table 13 presents information about the processing
time of proposal 1, considering the least amount of required
weight streams. The first column exposes the ring counter
time for the first hidden network layer, trc. The second column
shows the architecture initial delay, d , defined by Equation 6.
The third column presents the network feedforward execution
time, tff , expressed by Equation 8, after the initial delay
(Equation 6), the fourth column shows the network through-
put, thff , determined by Equation 7, which in this particu-
lar experiment consists of the number of images classified
per second and the last column shows the dynamic power
consumption, Pd , for this implementation.

2) PROPOSAL 2 VALIDATION
The hardware validation results with Matlab for pro-
posal 1, presented in Section V-D1 for a Virtex FPGA 6
XC6VLX240T-1FF1156, also applies for proposal 2.

40690 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

TABLE 16. State of the art comparison associated with throughput, thff , and power consumption, Pd , for two different deep neural network size.

However, new reports were obtained regarding the hardware
resources occupation and the processing time, after the syn-
thesis of the implementation of the second proposal.

Table 14 presents the synthesis data related to the FPGA
occupation area from proposal 2. The columns of this table
are organized according to what was already presented for
Table 12 in the Subsection V-D1 for proposal 1.

The data presented in Table 14 show that the proposal 2was
able to further optimize the use of FPGA hardware resources
comparing to proposal 1. This was possible due to the use of
LUTs to store the synaptic weights in each i-th PEki , dispens-
ing with the implementation of some modules used in pro-
posal 1. It can be seen that only 11% of the FPGA logic cells
were occupied. The amount of multipliers used remained the
same in relation to the previous proposal, around 29%, since
there was no change in the way calculations were performed
in each PEki . Thus, the data presented for proposal 2 reaffirm
the possibility of significantly increasing the number of layers
and neurons of the network, indicating even better results than
the previous proposal.

The Table 15 presents information about the circuit pro-
cessing time for the second proposal. The first column
exposes the PE processing time, tPE , and the other columns
are organized according to what was presented to the table 13
in the subsection V-D1, referring the proposal 1.

The data presented in Table 15, for proposal 2, are quite
expressive. The PE execution time achieved was only 48 ns,
the initial delay, 0.1ms, and the feedforward time achieved
0.03ms. With this, it was possible to reach a through-
put of 26000 classified images per second, which is a
value approximately 20× higher than the value obtained in

proposal 1, using the least possible amount of weight streams.
In this way, it was verified that the use of LUTs to store the
network neuron weights resulted in the throughput increase in
comparison with the previous proposal. However, when using
the maximum weights streams limit per layer, proposal 1
tends to reach the results of proposal 2. Thus, both proposals
proved feasibility in massive data problems.

E. STATE OF THE ART COMPARISON
From the results presented in the previous sections, this
section is intended to make a comparison of the results
obtained by the implementation of each proposal here pre-
sented with the results of works from the state of the
art. Table 16 shows a comparison with works presented
in [5] and [14]. In those works, it is possible to compare
results associated with throughput, thff , and power consump-
tion, Pd , for two different deep neural network size.

The related work presented in [5] proposes an SSAE FPGA
implementation and it uses an equivalent FPGA in terms
of processing for the validation. As presented in Table 16,
the proposal 1 has speedup gains for the values of G ≥ 4,
however implementation has an expressive power saving
(about 1000×) for several values of G (1 ≤ G ≤ 8). When G
increases, the speedup also increases (see Figures 18 and 19)
and the power saving decreases (see Figures 25 and 26).
Regarding the proposal 2, the speedup was about 116× over
the architecture presented in [5] and the power saving was
about 11×. The work presented [5] was implemented with
the high-level synthesis OpenCL framework and, this method
reduces the customization capacity implying a reduction in
performance.

VOLUME 7, 2019 40691



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

TABLE 17. State of the art comparison associated with performance, pf , in GOPS.

In [14], the speedup was more expressive than the work
presented in [5], between 31× and 251× for proposal 1 and
about 1784× for proposal 2, however the power consumption
was lower. It is interesting to observe that the power sav-
ing is greater for larger architectures, on the other hand the
speedup is lower. The FPGA accelerator proposed in [14],
called DLAU, computes just 32 neurons with 32 weights
every clock cycle and the implementations here proposed
can compute several neurons (or PEs) every clock cycle and
which increases the performance when comparing with the
DLAU.

Table 17 compares the performance results, pf , in GOPS
with works presented in [36], [12], [13] and [37]. The propos-
als presented in [36] and [12] were implemented with HLS
tools. In [36] was proposed an HLS engine called Caffeine
and in [12] was proposed an implementations with Xilinx
Vivado HLS. In [13] was presented the effects of the data
precision in neural network implementations and in [37] was
presented an application-specific integrated circuit (ASIC)
proposal.

As presented in Table 17, the speedup is higher with respect
to cases based onHLS, [36] and [12]. The proposal 1 achieved
a speedup about 7.4× and 20.8× over works presented in [36]
and [12], respectively and proposal 2 achieved a speedup
about 4.11× and 11.5× over the same works. Finally, it is
important to note that the implementations here proposed
(proposal 1 and 2) presented a speedup even over ASIC
implementations, as presented in [37].

VI. CONCLUSION
This paper presented a hardware implementation proposal of
the Stacked Sparse Autoencoder Deep Learning technique.
The DNN feedforward phase was implemented using fixed
point and design in RTL. Throughout the implementation
the systolic array technique was applied, which allowed the
use of many neurons in the various network layers, besides
allowing the results to be obtained in a short processing time.
All the implementation details were presented as well as
results related to the syntheses for occupation and processing
time of two distinct implementations targeting a FPGAVirtex
6 XC6VLX240T-1FF1156.

The results showed that both implementations could
achieve high throughputs. Particularly, the use of LUTs to
store the synaptic weights of each neuron in proposal 2
allowed the reduction of the area occupied in the FPGA,
besides guaranteeing the increase of the throughput obtained,
compared to the lower bound value of the proposal 1 through-
put. In spite of that, the throughput value reached by pro-
posal 1 could be increased in line with the increase in the
number of weight streams per network layer and may tend
to the throughput value obtained by proposal 2. On top of
that, the proposal 1 allows, in practical applications, the same
hardware to be used for different problems by enabling new
weights to be added to the network through weight streams
after previous network training. In addition, the compari-
son with related works also justified the feasibility of the
proposed implementations, demonstrating the possibility of

40692 VOLUME 7, 2019



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

reaching high speedups. Finally, the results indicated the
suitability of using this Deep Learning technique in massive
data problems.

REFERENCES

[1] P. Baldi, ‘‘Autoencoders, unsupervised learning, and deep architec-
tures,’’ in Proc. ICML Workshop Unsupervised Transf. Learn., 2012,
pp. 37–49.

[2] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’
Found. Trends Signal Process., vol. 7, nos. 3–4, pp. 197–387,
Jun. 2014.

[3] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

[4] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec. 2010.

[5] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, ‘‘Stacked autoen-
coders using low-power accelerated architectures for object recognition in
autonomous systems,’’ Neural Process. Lett., vol. 43, no. 2, pp. 445–458,
Apr. 2016.

[6] A. C. D. de Souza and M. A. C. Fernandes, ‘‘Parallel fixed point imple-
mentation of a radial basis function network in an FPGA,’’ Sensors, vol. 14,
no. 10, pp. 18223–18243, 2014.

[7] M. F. Torquato and M. A. C. Fernandes, ‘‘High-performance parallel
implementation of genetic algorithm on FPGA,’’ Circuits, Syst., Signal
Process., pp. 1–26, Jan. 2019.

[8] A. L. X. Da Costa, C. A. D. Silva, M. F. Torquato, and M. A. C. Fernandes,
‘‘Parallel implementation of particle swarm optimization on FPGA,’’ IEEE
Trans. Circuits Syst., II, Exp. Briefs, to be published.

[9] L. M. D. Da Silva, M. F. Torquato, and M. A. C. Fernandes, ‘‘Paral-
lel implementation of reinforcement learning Q-learning technique for
FPGA,’’ IEEE Access, vol. 7, pp. 2782–2798, 2018.

[10] Y. Zhou and J. Jiang, ‘‘An FPGA-based accelerator implementation for
deep convolutional neural networks,’’ in Proc. 4th Int. Conf. Comput. Sci.
Netw. Technol. (ICCSNT), vol. 1, Dec. 2015, pp. 829–832.

[11] M. Bettoni, G. Urgese, Y. Kobayashi, E. Macii, and A. Acquaviva,
‘‘A convolutional neural network fully implemented on FPGA for
embedded platforms,’’ in Proc. New Gener. CAS (NGCAS), Sep. 2017,
pp. 49–52.

[12] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
New York, NY, USA, 2015, pp. 161–170. doi: 10.1145/2684746.2689060.

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. (2015).
‘‘Deep learning with limited numerical precision.’’ [Online]. Available:
https://arxiv.org/abs/1502.02551

[14] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, ‘‘DLAU: A scalable
deep learning accelerator unit on FPGA,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 36, no. 3, pp. 513–517, Mar. 2017.

[15] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor
processing unit,’’ in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2017, pp. 1–12.

[16] X. Wei et al., ‘‘Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,’’ in Proc. 54th Annu. Design
Automat. Conf., 2017, Art. no. 29.

[17] T. V. Huynh, ‘‘Deep neural network accelerator based on FPGA,’’ in Proc.
4th NAFOSTED Conf. Inf. Comput. Sci., Nov. 2017, pp. 254–257.

[18] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘ALAMO: FPGA
acceleration of deep learning algorithms with a modularized RTL com-
piler,’’ Integration, vol. 62, pp. 14–23, Jun. 2018.

[19] W. Zhao, Z. Jia, X. Wei, and H. Wang, ‘‘An FPGA implementation
of a convolutional auto-encoder,’’ Appl. Sci., vol. 8, no. 4, p. 504,
2018.

[20] J. F. Jiang, R. D. Hu, D. S. Wang, J. W. Xu, and Y. Dou, ‘‘Performance
of the fixed-point autoencoder,’’ Tehnicki Vjesnik-Tech. Gazette, vol. 23,
pp. 77–82, Feb. 2016.

[21] Y. Jin and D. Kim, ‘‘Unsupervised feature learning by pre-route simula-
tion of auto-encoder behavior model,’’ Int. J. Comput., Elect., Automat.,
Control Inf. Eng., vol. 8, no. 5, pp. 668–672, 2014.

[22] A. Suzuki, T. Morie, and H. Tamukoh, ‘‘A shared synapse architecture
for efficient FPGA implementation of autoencoders,’’ PLoS ONE, vol. 13,
no. 3, Mar. 2018, Art. no. e0194049.

[23] D. J. M. Moss, D. Boland, P. Pourbeik, and P. H. W. Leong, ‘‘Real-time
FPGA-based anomaly detection for radio frequency signals,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[25] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[26] H. T. Kung and C. E. Leiserson, ‘‘Systolic arrays (for VLSI),’’ in
Sparse Matrix Proceedings, vol. 1. Philadelphia, PA, USA: SIAM, 1978,
pp. 256–282.

[27] XILINX Virtex-6. (2018). Virtex-6 Family Overview. Accessed:
Dec. 28, 2018. [Online]. Available: https://www.xilinx.com/support/
documentation/data_sheets/ds150.pdf

[28] XILINX Virtex-7. (2018). 7 Series FPGAs Data Sheet: Overview.
Accessed: Dec. 28, 2018. [Online]. Available: https://www.xilinx.com/
support/documentation/data_sheets/ds180_7Series_Overview.pdf

[29] XILINX Virtex Ultra. (2018). UltraScale Architecture and Product
Data Sheet: Overview. Accessed: Dec. 28, 2018. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/data_sheets/ds890-
ultrascale-overview.pdf

[30] XILINX IP Core. (2018). LogiCORE IP Multiplier v11.2. Accessed:
Dec. 28, 2018. [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/mult_gen_ds255.pdf

[31] XILINX IP Core. (2018). LogiCORE IP Multiplier v12.0. Accessed:
Dec. 28, 2018. [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf

[32] Y. LeCun, C. Cortes, and C. J. Burges. (Jan. 2018). Yann LeCun’s Home
Page. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[33] The MathWorks. (Jan. 2018). Matlab/Simlink. [Online]. Available:
https://www.mathworks.com/

[34] XILINX ML605. (2019). Virtex-6 FPGA ML605 Evaluation Kit.
Accessed: Jan. 29, 2019. [Online]. Available: https://www.xilinx.
com/products/boards-and-kits/ek-v6-ml605-g.html

[35] G. F. Maria Coutinho and M. A. C. Fernandes. (2019). SSAE
Video Demonstration—MNIST. Accessed: Jan. 29, 2019. [Online].
Available: https://drive.google.com/drive/folders/1vKUv3LW04caC5Z
LONmHqqt0gg85IgWLE?usp=sharing

[36] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, ‘‘Caffeine: Towards uni-
formed representation and acceleration for deep convolutional neural net-
works,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2016, pp. 1–8.

[37] T. Chen et al., ‘‘DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,’’ ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 269–284, 2014.

MARIA G. F. COUTINHO was born in Natal,
Brazil. She received the B.S. degree in computer
science from the State University of Rio Grande
do Norte, Natal, in 2017, and the M.Sc. degree
in electrical and computer engineering from the
Federal University of Rio Grande do Norte, Natal,
in 2019, where she is currently pursuing the Ph.D.
degree in electrical and computer engineering and
a TeamMember of the Research Group on Embed-
ded Systems and Reconfigurable Computing. Her

main research topic is the acceleration of deep learning algorithms through
reconfigurable computing in FPGA. Her research interests include artificial
intelligence, embedded systems, and reconfigurable hardware.

VOLUME 7, 2019 40693



M. G. F. Coutinho et al.: DNN Hardware Implementation Based on SSAE

MATHEUS F. TORQUATO was born in Natal,
Brazil. He received the B.Sc. degree in science and
technology, the B.E. degree in computer engineer-
ing, and the M.Sc. degree in computer engineering
from the Federal University of Rio Grande do
Norte, Natal, in 2013, 2015, and 2017, respec-
tively. He is currently a part of the Research Group
on Embedded Systems and Reconfigurable Hard-
ware, where his main research topic is the accel-
eration of artificial intelligence (AI) algorithms

through reconfigurable computing (RC) on FPGA. Apart from his main
research topic of AI and RC at his home university, he has other research
experiences such as human–computer interaction at the Future Interaction
Technology Lab, Swansea University, Wales, U.K., and computer vision at
the Sensing and Machine Vision for Automation and Robotic Intelligence
Lab, University of Ottawa, ON, Canada. His research interests include AI,
embedded systems, reconfigurable hardware, human–computer interaction,
and the tactile Internet.

MARCELO A. C. FERNANDES was born inNatal,
Brazil. He received the B.S. andM.S. degrees from
the Federal University of Rio Grande do Norte,
Natal, in 1997 and 1999, respectively, and the
Ph.D. degree from the University of Campinas,
Campinas, Brazil, in 2010, all in electrical engi-
neering. From 2015 to 2016, he was a Visiting
Researcher with the Centre Telecommunication
Research (CTR), King’s College London, London,
U.K. He is currently an Adjunct Professor with the

Department of Computer Engineering andAutomation, Federal University of
RioGrande doNorte. He is also the Leader of the ResearchGroup on Embed-
ded Systems and Reconfigurable Computing (RESRC) and a Coordinator
of the Laboratory of Machine Learning and Intelligent System (LMLIS).
He has authored or co-authored many scientific papers and practical studies
with reconfigurable computing on FPGA to accelerate artificial intelligence
algorithms. His research interests include artificial intelligence, digital signal
processing, embedded systems, reconfigurable hardware, and the tactile
Internet.

40694 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	DEEP LEARNING
	STACKED SPARSE AUTOENCODER (SSAE)

	IMPLEMENTATION DESCRIPTION
	PROPOSAL 1
	SSAE LAYERS
	PROCESSING ELEMENTS (PEs)
	ACTIVATION FUNCTIONS (AFs)
	PROCESSING TIME

	PROPOSAL 2
	SSAE LAYER
	PROCESSING ELEMENTS (PEs)
	ACTIVATION FUNCTIONS (AFs)
	PROCESSING TIME


	RESULTS
	HARDWARE OCCUPATION ANALYSIS
	TIME PROCESSING ANALYSIS
	PROPOSAL 1 - TIME PROCESSING ANALYSIS
	PROPOSAL 2 - TIME PROCESSING ANALYSIS

	POWER CONSUMPTION ANALYSIS
	PROPOSAL 1 - POWER CONSUMPTION
	PROPOSAL 2 - POWER CONSUMPTION

	VALIDATION
	PROPOSAL 1 VALIDATION
	PROPOSAL 2 VALIDATION

	STATE OF THE ART COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	MARIA G. F. COUTINHO
	MATHEUS F. TORQUATO
	MARCELO A. C. FERNANDES


