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ABSTRACT Multi-task learning (MTL) is a machine learning method to share knowledge for multiple
related machine learning tasks via learning those tasks jointly. It has been shown to be capable of effectively
improving the generalization capability of each single task (learning just one task at a time). In this paper,
we propose a novel MTL architecture that first combines 3D convolutional neural networks (3D CNN) plus
the long short-term memory (LSTM) networks together with the MTL mechanism, tailored to information
sharing of video inputs. We split each video into several clips and apply the hybrid deep model of 3D CNN
and LSTM to extract the sequential features of those video clips. Therefore, our MTLmodel can share visual
knowledge based on those video-clip features among different categories more efficiently. We evaluate our
method on three popular public action recognition video datasets. The experimental results show that our
novelMTLmethod can efficiently share detailed information in video clips amongmultiple action categories
and outperforms other multi-task methods.

INDEX TERMS Action recognition, 3D CNN, LSTM, multi-task learning.

I. INTRODUCTION
The standard paradigm in machine learning is to learn one
task at a time, however this methodology ignores the rich
information contained in the related tasks from the same
domain. Multi-task learning (MTL) aims to simultaneously
learn multiple related prediction tasks, sharing informa-
tion across the tasks [1], [4], [6], [74]. It has been shown
to improve generalization performance than independently
learning each task [2], [3], [5]. Due to the ability of MTL,
Kumar and Daume [31] applied this method to recognize
handwritten digit number and achieved great performance.

However, those MTL methods follow the same pattern:
first, using a feature vector to represent each input example;
second, decomposing the overall model parameters into a
latent task matrix and combination matrix based on such
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feature description. The information will be shared in the
latent task matrix across different categories. All those MTL
methods require using a single feature vector to represent
each input example no matter whether inputs are images or
videos [32], [33]. This paradigm can be efficient for image
inputs, however it has a congenital defect when dealing with
videos. Due to that videos consist of rich long-term sequential
information, lots of detailed information in videos will be
discarded if just using a single feature vector to represent
the whole video. It can only share rough general information
of each video but not the detailed information within each
video. Actually, only some specific video clips are similar
between different videos. There are lots of examples when
we investigate the task of human action recognition on video
data. For example, the motion pattern of straightening knees
exists both in the beginning clips of standing up and jumping.
However, the following clips of those two actions are very
different. Based on this key observation, we redesign a novel
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MTL method to share the video clip information and do
evaluation on human action recognition datasets.

Human action recognition, as a significant problem in the
research community, has attracted a gargantuan amount of
attention in computer vision research [7]–[12]. This is due
to the wide applications in many fields, such as intelligent
public safety surveillance, sociology, human-computer inter-
action. Meanwhile, it is a challenging task when recogniz-
ing human action in natural environment, considering the
complex spatiotemporal features, cluttered backgrounds and
various angles of view, etc. Feature extraction is one of the
key steps in the traditional strategy in computer vision and
pattern recognition to solve this problem [13]–[17]. Some
feature extraction methods like Histograms of Oriented Gra-
dients (HOG) [18], Histograms of Optical Flow (HOF) [19],
and Motion Boundary Histogram (MBH) [20], are applied
in this problem to compute complex features artifi-
cially. Then, those handcrafted features are used to train
classifiers like Logistic Regression, and Support Vector
Machines (SVM) [21].

Deep learning techniques have achieved remarkable per-
formance in computer vision, which are focal points of
both industrial and academic circles recently [22], [75]–[78].
Deep models are applied widely in many fields of computer
vision, especially after that Krizhevsky et al. [23] greatly
improve the classification accuracy of ImageNet based on
the convolutional neural network (CNN). Deep learning also
have shown great performance on human action recognition
due to its automatic extraction of features [24], [24]–[27].

Given the aforementioned issues, we combine 3D CNNs
and a Long-Short Term Memory (LSTM) network to auto-
matically extract a sequential feature representation of each
video, and propose an enhanced multi-task framework to
share the similar parts of those feature representations across
related action categories. In our work, we split each video into
several video clips and train a 3D CNNmodel for those clips.
Then these features generated from our 3D CNNs will be fed
into LSTM models in order to learn the sequential feature
representation of each video. LSTM [29] is one of recurrent
neural networkmodels [30] which enables long-range tempo-
ral interval learning. We use this network to gain a sequential
feature representation of different video clips in each action
video, rather than to use just a single feature vector to rep-
resent a video [32], [34]. Then, we build up a weight matrix
to get the weighted mean of the feature sequence generated
from the LSTM model, and enforce the matrix `2,1 norm
regularization on this weight matrix. We can use the `2,1
norm to conduct a robust feature selection on the feature
sequence as this regularization term can ensure the sparsity
of the weight matrix in row.

Meanwhile, like the works of Kumar and Daume [31] and
Zhou et al. [32], we decompose the overall model parameters
into a latent taskmatrix and combinationmatrix. The columns
of the latent task matrix represent the parameter vectors of
latent tasks. Then, we reconstruct classifiers through linear
combinations of these columns. Considering the `1 norm

regularization in our optimization goal, we apply a modified
stochastic gradient method (SGD-L1) [35] to train our model,
and the overall parameters are optimized via an efficient
alternative optimization strategy. This SGD-L1 method can
efficiently train the `1-regularized models, and requires much
less training time than proximal gradient methods like the
accelerated proximal gradient method (APG) [36].

Our main contributions of this paper are as follows:
• We upgrade the normal MTL architecture to adapt
to accept a feature sequence representation for each
video input rather than the limited single feature
representation.

• We uniquely combine 3D CNN, LSTM with an
enhancedMTLmechanism, tailored to information shar-
ing among videos. This promising structure digs more
detailed information to share among videos.

• Experiments conducted on three benchmark datasets
demonstrate that the proposed architecture outperform
other MTL methods. Meanwhile, our MTL method also
shows a significant improvement compared with the
baseline deep models embedded in our architecture.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III and
Section IV describe the structure of deep model and
our enhanced MTL architecture, respectively. Experimental
results are presented and analyzed in Section V. Finally,
we conclude the study in Section VI.

II. RELATED WORK
A. MULTI-TASK LEARNING
Comparedwith learning each task independently [1]–[4], [34],
multi-task learning is able to significantly improve general-
ization performance for the related task. In this paper, the key
factor of applying MTL method in action recognition is that
many action categories are highly correlated. Most previ-
ous methods proposed for multi-task learning are based on
the assumption that all tasks are related [3], [4]. Obviously,
this assumption is harsh and can debase the performance
because some tasks are not similar. Then, some researchers
assume that there are disjoint groups of tasks to address
this problem [5], [6]. For example, Kang et al. [6] assume
that tasks within each group lie in a low dimensional sub-
space through a regularization framework, and the subspaces
shared by each group do not overlap. To solve this problem,
the work of Kumar and Daume [31] allows the tasks in
different groups to overlap with each other via representing
all tasks as the linear combinations of some latent basic tasks.
Furthermore, Zhou et al. [32] enforce `1 norm regularization
on the parameter vectors of latent tasks to avoid sharing too
much ‘‘holistic’’ information. Adbulnabi et al. [34] apply the
MTL method to the multi-label tasks.

Our work is related to [31], [32], and [34], but it is
different. First, our work aims to share more detailed infor-
mation and we add a new weight matrix to share the sim-
ilarities of video clips not just the whole videos. We also
compare the performance of our method and these MTL
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methods in the experiment part. Second, we apply a different
optimization method which is a modified stochastic gradient
method (SGD-L1) [35] to optimize the non-smooth convex
optimization problems. Compared with other optimization
methods like Accelerated Proximal Method (APG), SGD-L1
is quite efficient in the training time cost especially when we
conduct our experiments on video data. We will explain the
details in the next section.

B. HUMAN ACTION RECOGNITION
Many works of action recognition follow the orthodox
paradigm of computer vision and pattern analysis. In com-
puter vision, it is extremely successful to analyze static
images with local hand-designed features. Some typical illus-
trations of such successful features are SIFT [37], SURF [38],
ORB [39]. These methods to extract features of static images
usually contain two steps: a feature detection step followed
by a local feature description step. Many researchers extent
those local features to calculate spatiotemporal interest points
of videos in video action recognition. Similarly, The Harris-
3D detector [7] and the Cuboid detector [40] are likely the
most used interest points detection methods. For descriptors,
popular methods are HOG [18], HOF [19], and HOG3D [41].
These features are the pre-processing step before applying
them to any classification methods.

Moreover, the feature trajectory-based method [42], [43]
is also successful for shallow video representations recently.
The dense human trajectories by computing the information
of optical flow in videos is also considered to calculate video
feature vectors. Dalal et al. [20] extend this method to com-
pute on the horizontal and vertical components of optical flow
separately, and gain the Motion Boundary Histogram (MBH)
feature. Wang and Schmid [15] apply the improved dense
trajectories (iDT) to gain an impressive improvement.

C. DEEP LEARNING
Deep learning methods have been demonstrated as an
effective class of methods for computer vision and pat-
tern recognition [44]–[48]. Especially, after the remarkable
results produced in ImageNet in 2012 [23], deep learning
technology has actually became the common solution for
computer vision. Although CNNs are considered as the tech-
nological frontier, LeCun et al. [49] have successfully devel-
oped the LeNet-5 (a CNN model) on MNIST dataset to
recognize hand-written numbers as early as 1998. Limited
to computing power at that time, CNNs can just be success-
fully applied in small dataset like MNIST, and CIFAR-10.
Recently, with the improvement of hardware (especially
GPUs), we have the capability to train a huge CNN net-
work with stacking multiple convolutional and pooling lay-
ers. Encouraged by great results in domain of static images,
there has also been a number of attempts to adapt CNNs to
video recognition [24]–[26].

However, video recognition is more challenging compared
to static images due to the difficulties of capturing both
the spatial and temporal information of consecutive video

frames [79]. Ji et al. [27] propose the 3D convolution opera-
tor to compute features from both spatial and temporal dimen-
sions. Additionally, Karpathy et al. [54] speed up the training
through a hybrid CNN structure containing a low-resolution
context CNN and a high-resolution fovea CNN to implement
the large-scale video classification. Moerover, the two stream
CNNs method [28] is a representative work of deep learning
which outperforms the iDT method [15]. Based on this work,
Yue-Hei Ng et al. [53] combine the LSTM with this two
stream CNNs and gains the state-of-art performance. The
spatial stream performs action recognition from still video
frames, while the temporal stream is trained to recognize
action from motion in the form of dense optical flow. Fur-
thermore, the work of Srivastava et al. [55] performs well
in UCF-101 through applying a LSTM network to represent
videos because of the long-range time sequence learning
tasks capacity of LSTM.

In our work, we combine a 3D CNN and LSTM network to
learn the video representation. The 3D CNNmodel is applied
to video clips to capture features of video clips, whilst the
LSTM network is used to understand the temporal correlation
of these video clips.

III. METHODOLOGY
The overall structure of the proposed method is shown
in Fig. 1, and the description of our structure will be par-
titioned into two sections. Our method has two stages to
make action category predictions from raw videos. First,
we train deep models to extract features of action videos
whose structure is a combination of 3D CNNs and LSTM
models. For each action category, we train a binary classifier
via 3D CNNs and LSTM models, and these classifiers are
trained independently. Second, the features generated from
the second LSTM layer will be sent into our MTL model.
After gaining the features in the last LSTM layer, we replace
the fully-connected layer and the logistic regression layer
with our enhancedMTL framework as shown in Fig 1. Mean-
while, the weight parameters learned in the logistic regression
of the trained binary classifier will be used to initialize the
parameters of weight matrix Tc and the latent task matrix L
in the MTL model. Then the whole structure including 3D
CNNs, LSTM and the parameters in MTLmodel will be end-
to-end trained according to the loss function of the proposed
MTL architecture.

IV. DEEP MODELS
A. 3D CNNs
Our goal is to gain a feature sequence representation for each
video. Therefore, we split each video into several video clips.
Each video is split into 25 clips, and 3D CNNs are applied
into all those 25 video clips to generate 25 feature vectors for
one video.

In our experiments, we use an efficient 3D convolutional
neural network (C3D [57]) to extract feature of all the video
clips. C3D is an efficient 3D CNN model to learning spa-
tiotemporal features. It has 8 convolution layers, 5 pooling
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FIGURE 1. The overall structure of our system. First, we train 3D CNN and LSTM models to compute features from action videos as the
representations of video. We apply C3D on video frames. {m1, m2,. . . , mn} are the learned feature sequence by two LSTM layers of each
video. Then, we build up a weight matrix Tc to get the weighted mean of the feature sequence generated from the LSTM model. We build
{T1, T2,. . . , TC } for all the c action categories. Matrix L contain the latent task of all the action categories C . S is a matrix, and its columns
{s1, s2,. . . , sC } represent the weights of linear combination for each category.

FIGURE 2. The structure of C3D network.

layers, followed by 2 fully connected layers, and a softmax
output layer. The network architecture is presented in Fig. 2.
Actually, the overall structure of C3D is quite similar to
VGG-16 [58] but replaces all the 2D convolutional kernels
with 3D convolutional kernels. All the 3D convolution ker-
nels are 3× 3× 3 with stride 1× 1× 1. All the 3D pooling
layers are 2×2×2with stride 2×2×2 except for pool1 which
has kernel size of 1 × 2 × 2 and stride 1 × 2 × 2 with the
intention of preserving the temporal information in the early
phase [57]. Each fully connected layer has 4096 output units.
C3D requires the input size of 16 × 112 × 112, so we will
randomly select 16 frames in all the video clips and resize all
the frames to 112× 112.

B. LSTM MODELS
As mentioned above, we need to train a binary classifier
for each action category. Fig. 3 shows the structure of the
binary classifier for each category. We apply the LSTM
network for binary classifiers, which is one of the recurrent
neural network (RNN) models. The RNN is a neural network
that is specialized for processing sequential inputs. RNNs
can learn complex temporal dynamics by mapping input
sequences to a sequence of hidden states, and hidden states

to outputs. However, there exists the vanishing and exploding
gradients problem when vanilla RNNs learn the long-term
dynamics [60]. Then LSTM network provides a mechanism
to forget the old state in its forget gate.

In our work, we build a two-layer LSTM network for each
category to learn the temporal dynamic of videos based on
features generated by the last pooling layer of C3D networks.
In Fig. 3, {f1, f2,. . . , fn} are the n = 25 features computed by
C3D from 25 video clips in each video. Thus, from an input
sequence {f1, f2,. . . , fn}, the memory cells in the two LSTM
layers will produce a representation sequence {m1, m2,. . . ,
mn}. Next, we calculate the entry-wise products of ui and
this representation sequence mi (i = 1, 2, . . . , n). {u1, u2,. . . ,
un} are all initialized to 1 and will be updated when train
the binary classifiers. F represents the mean pooling feature
vector using those entry-wise products, which is expressed
as:

F =
u1 · m1+u2 · m2+ . . .+un · mn

n
. (1)

Finally, this feature vector F will be fed into a logistic layer
to complete the binary classifier for each action category, and
w is the parameter vector of the last logistic regression layer.
All the binary classifiers for each category are trained on data
of each category, and all follow this process of training.

Since the feature sequence {m1, m2,. . . , mn} generated
by two LSTM layers represents the spatio-temporal features
of 25 video clips in each video, the parameters {u1, u2,. . . ,
un} stores the weights of 25 video clips for each video.
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FIGURE 3. The structure of the binary classifier for each category.
{f1, f2,. . . , fn} are the n = 25 features which is computed by C3D from
25 video clips in each video. F represents the mean pooling feature vector
using the weighted features {m1, m2,. . . , mn}, which are learned by two
LSTM layers. w is the parameter vector of the last logistic regression layer.

The parameter w in the logistic regression layer is the clas-
sifier weight. Then, the weighted parameters {u1, u2,. . . , un}
of video vector F and parameter w of logistic regression
layer will be used to initialize the parameters of the following
multi-task learning layer.

V. ENHANCED MULTI-TASK LEARNING MECHANISM
In the following subsections, we describe our novelmulti-task
learning mechanism. As the best of our knowledge, it is the
first time to adopt the hybrid model of CNN and LSTM into
the MTL mechanism, tailored to share knowledge among
videos. As shown in Fig. 1, after completing the training of
all binary classifiers for all categories, we take the outputs
{m1, m2,. . . , mn} of the last LSTM layer as the feature repre-
sentation of each video. Those video feature representations
will be used to train the whole network of ourmulti-task layer.
Meanwhile, we show how to share the similar information
across all categories, and limit the transmission of dissimilar
information through norm regularization.Moreover, the alter-
native optimization strategy used to train theMTL framework
is also explained in the following subsections.

A. LEARNING VIDEO CLIPS SHARING
Suppose we have C action categories and Ac = {(xci, yci) :
i ∈ {1, 2, . . . ,Nc}} be the training set for each task c ∈
{1, 2, . . . ,C}. Nc denotes the number of training exam-
ples of action categories c, whilst xci and yci represent the
training data and labels of the training example i in cate-
gory c. Since it is a binary classifier for each category, yci
belongs to {0, 1}. Suppose xci represents the output gener-
ated from the last LSTM layer in each binary classier, such

that we will have
C∑
i=1

Nc training examples as the input for

our multi-task learning network. In previous works of MTL
framework [31], [32], xci is a fixed one-dimensional vector to
represent each training example. However, it can not share the
partial information of the whole sequential inputs. Consider-
ing videos are time-series data, we calculate the entry-wise
products of weight parameters t ic and the sequential feature
mici (i = 1, 2, . . . , n, in our experiment we choose n =
25 video clips) for each video example, and xci (the train-
ing example i in category c) is the mean pooling of those
entry-wise products, which is expressed as

xci =
t1c · m

1
ci+t

2
c · m

2
ci+ . . .+t

n
c · m

n
ci

n
, (2)

where {m1
ci, m

2
ci,. . . , m

n
ci} denote the outputs of the second

LSTM layer of input xci. n represents the number of video
clips we choose in each video. {t1c , t

2
c ,. . . , t

n
c } are the parame-

ters of entry-wise products with sequential feature of LSTM.
The parameters of {t1c , t

2
c ,. . . , t

n
c } are the same for each

category, initialized by the parameters of {u1, u2,. . . , un} of
the corresponding binary classifier in Fig. 3. We use l to
denote the length of mici, which refers to the length of the
feature generated by LSTM. Since xci is the mean pooling
of the entry-wise products of t ic and mici (i = 1, 2, . . . , n),
the length d of xci should be the same asmici (d = l). We stack
{t1c , t

2
c ,. . . , t

n
c } as columns of a matrix Tc, and {m1

ci, m
2
ci,. . . ,

mnci} as columns of a matrixMci. For simplicity, we represent
Eq. 2 as

xci = Tc �Mci, (3)

where Tc � Mci =
t1c ·m

1
ci+t

2
c ·m

2
ci+...+t

n
c ·m

n
ci

n . Since Mci is the
sequential feature representation of the input video, Tc can
control the weights of different video clips in the final feature
vector xci.

In our model, it is important to encourage partial video clip
sharing across whole videos. To address this problem, we add
the `2,1 norm regularization as ‖Tc‖2,1 into the learning cost
function of our whole multi-task learning network, which can
encourage robust feature selection of Tc. Due to that `2,1 norm
can ensure the sparsity of the matrix Tc in row, ‖Tc‖2,1 can
automatically select the video clip features of each video.

B. LEARNING LATENT TASKS SHARING
Our basic idea of sharing latent tasks in MTL is related with
the works of Kumar and Daume [31] and Zhou et al. [32],
but we enhance this framework to be well suited to process
time-series data, which will be described in this subsection.
As mentioned above, we will train a binary classifier for each
action category. In Fig. 3, we use the parameter w to express
the parameter vector of the last logistic regression layer. Con-
sequently, for each category indexed by c, we definewc as the
parameter of last logistic regression layer. Suppose a weight
matrix W for all action categories is made up of wc (c =
1, 2, . . . ,C), whose columns are stacked by those vectors.
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Because of the length of the training examples xci is d , the size
of matrixW will be d × C .
We also want to construct classifiers for all categories in

the multi-task layer as we did in the deep models. How-
ever, In the multi-task learning framework, we attempt to
learn classifiers for all the action categories simultaneously
instead of training classifiers independently in our deep mod-
els. In order to achieve this attempt, we make an impor-
tant assumption that each classifier can be reconstructed
from a number of shared latent tasks and each action cat-
egory can be represented as a linear combination of these
tasks. Let L denote the shared latent task matrix and S
denote the matrix containing the weights of linear combi-
nation for each task. Then the weight matrix W can be
decomposed as:

W = LS. (4)

We assume there are k latent tasks for all the categories.
In specific, L is a matrix of size d × k , whose columns
represent the latent task. At the same time, S is a matrix of
size k × C , whose columns sc (c = 1, 2, ..,C) represent
the weights of linear combination for each action category.
In other words, the parameter wc of our model for category c
can be expressed as:

wc = Lsc. (5)

The elements in sc decide the weights of all the latent tasks
for the action category c. Then different action categories are
able to share similar visual information via the combination
of the matrix L and S.
We apply norm regularization to learn a robust model and

control the information sharing across all the categories. First,
for the matrix L, we apply the Frobenius norm to improve
the generalization ability of the system. It can avoid over-
fitting of our MTL model. Meanwhile, we use the `1 norm
regularization of L to encourage the sparsity between latent
tasks, which can control the information sharing across all the
categories. Second, similarly, we control the sparsity patterns
of matrix S to determine the number latent tasks sharing
in different categories through the `1 norm regularization
on S.

To gain the final cost function of the MTL layer, we first
conduct the logistic regression of each binary classification
in our deep model. As we mentioned in the previous section,
we choose logistic regression for binary classifiers of each
category in the last layer of LSTM. The logistic loss for yci ∈
{0, 1} is defined as:

L(yci,wTc xci)

= −
1
NC

[ NC∑
i=1

ycihwc (xci)+ (1− yci)(1− hwc (xci))

]
, (6)

where hwc (xci) = 1
/
(1+ e−w

T
c xci ). Due to Eq. 5, wc can

be expressed as Lsc. Based on the above equations, the cost

function can be expressed as the following form:

min
L,S

C∑
c=1

[
−

1
NC

[ NC∑
i=1

yci log
1

1+ e−(Lsc)T xci

+(1− yci) log(1−
1

1+ e−(Lsc)T xci
)
]]
+ µ‖S‖1

+ λ ‖L‖2F + γ ‖L‖1, (7)

where first term ‖S‖1 after the loss function is entry-wise
`1 norm of the matrix S, enforcing the sparsity of the linear
combination weight for each category. The parameterµ is the
penalty term to control the level of sparsity in S. Similarly,
the term ‖L‖1 denotes the `1 norm of the latent task matrix.
At the same time, ‖L‖2F = trace(LLT ) is the Frobenius norm
of matrix L to avoid overfitting of our model. λ and γ are
also the penalty terms of the Frobenius norm and `1 norm
of L.We can build a linear classifier for each category through
learning latent task matrix L and the combination weight
matrix S in Eq. 7.

In this paper, we propose a novel MTL to enable the video
clip information sharing. As shown in Eq. 3, every training
example xci is the mean pooling of the columns of matrix Tc
and Mci. Mci represents the feature matrix learning by our
deep model of the training example i in category c, and Tc
denotes video clip sharing weights for the action category c.
We use the `2,1 norm of matrix Tc to enforce the sparsity of
the matrix Tc in row and automatically select the video clip
feature of each video. Thus, based on Eq. 3 and Eq. 7, the cost
function of our enhancedMTL framework takes the following
form ultimately:

min
L,S,T

C∑
c=1

[
−

1
NC

[ NC∑
i=1

yci log
1

1+ e−(Lsc)T (Tc�Mci)

+(1− yci) log(1−
1

1+ e−(Lsc)T (Tc�Mci)
)
]]

+µ‖S‖1 + λ ‖L‖
2
F + γ ‖L‖1 + α

C∑
c=1

‖Tc‖2,1. (8)

Consequently, we can learn the latent task matrix L,
the combination weight sc for the action category c and the
video clip sharing weights Tc for each category c to obtain
a linear classifier for each category in our enhanced MTL
framework.

C. ALTERNATIVE OPTIMIZATION STRATEGY
Since this cost function is not jointly convex in L, S and Tc,
we implement an alternative optimization strategy to opti-
mize Eq. 8. We notice that it is convex in L for fixed S and Tc,
and is convex in S for fixed L and Tc. Likewise, if L and S
are fixed, it becomes convex over Tc. Then, for the fixed L
and Tc, the optimization problem in terms of sc is described
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as follows:

min
S

C∑
c=1

[
−

1
NC

[ NC∑
i=1

yci log
1

1+ e−(Lsc)T (Tc�Mci)

+(1− yci) log(1−
1

1+ e−(Lsc)T (Tc�Mci)
)
]]
+ µ‖S‖1. (9)

Similarly, for the fixed L and S, the optimization problem
can be decomposed in individual problems for Tc:

min
T

C∑
c=1

[
−

1
NC

[ NC∑
i=1

yci log
1

1+ e−(Lsc)T (Tc�Mci)

+(1−yci) log(1−
1

1+e−(Lsc)T (Tc�Mci)
)
]]
+α

C∑
c=1

‖Tc‖2,1.

(10)

After fixing the S and Tc, the optimization problem is in
term of L as follows:

min
L

C∑
c=1

[
−

1
NC

[ NC∑
i=1

yci log
1

1+ e−(Lsc)T (Tc�Mci)

+(1−yci)log(1−
1

1+ e−(Lsc)T (Tc�Mci)
)
]]
+λ ‖L‖2F+γ ‖L‖1.

(11)

Although Eq. 9, Eq. 10 and Eq. 11 are convex functions for
their own optimization variables, stochastic gradient descent
methods (SGD) are not capable of solving such optimization
problems. Due to the `1 norm regularization terms exist-
ing in all the above equations, all the optimization prob-
lems are non-smooth convex functions. However, compared
with other optimization methods like Accelerated Proximal
Method (APG), SGD is very attractive because it often needs
less training time. Then, in this paper, we apply a modified
stochastic gradient method (SGD-L1) to optimize these equa-
tions. SGD-L1 handles the non-smooth convex functions by
penalizing the weights according to cumulative values for `1
penalty [35].

Moreover, we initialize matrix L and Tc via the parameters
wc and {uc1, u

c
2,. . . , u

c
n} of our binary classifiers in Fig. 3 for

the training data of category c. We stack wc of each category
c to the weight matrixW , and compute top-k singular vectors
through W = U6V T . Then the matrix L is initialized to the
top-k left singular vectors of W . Meanwhile, S is randomly
initialized. All the columns of Tc are initialized by {uc1,
uc2,. . . , u

c
n} of each category c. To sum up, Algorithm 1 shows

the steps of our optimization strategy. The VS-MTL algo-
rithm aims to optimize Eq. 8 by the alternative optimization
strategy.

During the training processing, the forward propagation
will generate the input for the multi-task loss layer from all
our deep models. Then, the output is the overall model weight
matrix W and the video clip sharing matrix Tc, where each
column in W will be dedicated to its specific corresponding
CNN model and is taken back in the backpagation pass

Algorithm 1VS-MTL: LearningVideoData Sharing inMTL
Input: Features generated from deep models:Mc

Labels 0, 1 of training data: yci
Output: Category predictors matrix L, S, Tc
1: Learn binary classifiers independently for each action

category.
2: Initialize the matrix L with the top-k left singular vectors

of W .
3: Initialize the columns of T with {uc1, u

c
2,. . . , u

c
n} of each

category c.
4: Initialize the matrix S randomly.
5: while not converged do
6: for c = 1 to C do
7: for i = 1 to Nc do
8: Solve Eq. 9 to obtain st .
9: Solve Eq. 10 to obtain Tc.
10: end for
11: end for
12: Construct matrix S = [s1s2 . . . sC ].
13: Fix S and Tc, and solve Eq. 11 to obtain L.
14: end while

Return: the matrix L,
the matrix S,
the matrixes Tc (c ∈ {1, 2, . . . ,C}).

alongside the gradients with respect to its input. This weight
matrix W will be decomposed into two matrices L and S,
where knowledge sharing is already explored through MTL
between all the CNN models via L. Meanwhile, the video
clip information will be shared by the matrix Tc. All our deep
models can collaborate together as the end-to-end training
when optimizing the MTL layer, which will consume too
much time. In our experiments, due to the large number
of videos, we freeze the training of the deep models and
optimize the MTL loss function using the outputs generated
from the C3D+LSTM models.

VI. EXPERIMENTS
We first train and validate our model via two challenging
human action datasets. Then, the experimental results are
analyzed in detail to illuminate the effects of our enhanced
MTL framework. The experimental results show that our
method can efficiently not only share latent task information
in multiple action categories but also share the video clip
information.

A. DATASETS
There are several publicly available datasets for human action
recognition. In our work, we use threemost common datasets,
KTH [17], UCF101 [51] and HMDB51 [52].
KTH Dataset: KTH [17] is a lightweight human actions

dataset with six types (C = 6) of human actions (walking,
jogging, running, boxing, hand waving and hand clapping)
and 2391 sequences. Each sequence has 25fps frame rate,
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FIGURE 4. Prediction accuracy of the training process for our multi-task method. (a)-(d) belong to the first training epoch, and (e)-(h) belong to
the second training epoch. For each row, the first figure is the training process of the parameter S. The second figure is the training process of
the parameter T and the third figure is the training process of the parameter L. The last figure shows the gap of the final prediction accuracy of
all categories compared with the single-task method. (a) Training on S. (b) Training on T . (c) Training on L. (d) Training on S. (e) Training on T .
(f) Training on L.

a resolution of 160x120 pixels and a length of four seconds in
average. Because of all sequences taken over homogeneous
backgrounds with a static camera, KTH dataset is focused
on the human body movements which would demonstrate
the benefits of memory sharing. Besides, each action type is
performed several times by 25 subjects in four different sce-
narios, and we split the dataset into a training set (8 persons),
a validation set (8 persons) and a test set (9 persons) as the
methods in [17].
UCF101Dataset: UCF101 dataset [51] is an action dataset

with realistic video clips, which is more challenging than
KTH dataset because of camera motion, object appearance
and pose, object scale, viewpoint, cluttered background, illu-
mination conditions, etc. There are 101 action categories
(C = 101) such as biking, high jump, playing piano, skiing,
soccer juggling, etc., and about 13320 realistic video clips
taken from youtube in total with a resolution of 320 × 240
pixels and a frame rate of 30 frames per second. For this
dataset, we split the dataset into training and test set following
‘‘Three Train/Test Splits’’ [51] and repeat the experiment for
3 times.
HMDB51 Dataset: HMDB51 dataset [52] is collected

from various sources, mostly from movies, and a small pro-
portion from public databases such as the Prelinger archive,
YouTube and Google videos. The dataset contains 6849 clips
divided into 51 action categories, each containing a minimum
of 101 clips. We also follow the evaluation strategy of three
splits provided by the organizers for training and test data.

B. IMPLEMENTATION DETAILS
We implement our deep models and MTL framework
based on Theano [61], including achieving stochastic gra-
dient descent methods for L1 normalization (SGD-L1) [35]
in Theano. All algorithms are performed on a server

equipped with a 2.50 GHz Intel(R) Xeon(R) E5-2680 CPU,
a NVIDIA(R) Tesla(TM) K80 GPU and 64G RAM.

1) DATA AUGMENTATION AND PREPROCESSING
We use several data preprocessing and augmentation strate-
gies to preprocess videos on above datesets. For all datasets,
we split each video into twenty-five clips as feature points in
the time line, and in each clip, randomly select 16 frame in
chronological order as the representation of this time slice,
which means n = 25. Since videos are significantly more
difficult to collect, data augmentation is used to reduce the
effects of overfitting. Utilizing the temporal continuity of
video, different frames are randomly selected in each video
clip to generate new training examples.

2) DEEP MODEL TRAINING
We first extract video clip features via the 3D CNN (C3D),
and our C3D model is pretrained on very huge video dataset
which contains 1 million YouTube videos belonging to
487 classes. In our experiments, we use the output of last
fully connected layer of C3D to represent video clip fea-
tures, which is a 4096-dimensional vector. For each video,
a sequence of 25 video clip features will be used as the input
to the next two-layer LSTM network with 4096 hidden units
in both layers to extract spatial features with size k = 4096.
Then the output of the LSTM layer is multiplied by {u1,
u2,. . . , un} with n = 25 and vector u ∈ R4096, followed by
a mean pooling and a logistic regression layer as illustrated
in Fig. 3. The size of parameter w of logistic regression is
4096, which would be used to initialize matrix L in the MTL
model.

When only training the deep models for binary classifiers,
SGD (Stochastic Gradient Descent) is used with batch size
40 and learning rate 0.001. Besides, in order to prevent
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over-fitting, we use some tricks such as `2 norm regulariza-
tion with coefficient λ = 0.0001, dropout behind the LSTM
layer, and early stop when the error does not decrease.

3) MTL SETTING AND OPTIMIZATION
After the training of binary classifiers, we set latent task
number k = 4096, so the shared latent task matrix L ∈
R4096×4096 is initialized by the top 4096 left singular vectors
of the weight matrix W stacked by each wc. Besides, vector
sc ∈ R4096 containing the weight of linear combination of
latent tasks for the c-th single task is randomly initialized,
and video clip sharing weight matrix Tc ∈ R25×4096 for
the action category c is initialized by {uc1, u

c
2,. . . , u

c
n}. Then

we train the MTL model with µ = 0.01 (the parameter of
‖S‖1), α = 0.001 (the parameter of ‖Tc‖2,1), λ = 0.001
and γ = 0.001 (the `1 and Frobenius norm parameters
of ‖L‖1), which are selected by the results of validation
set.

C. EXPERIMENT RESULTS
1) EXPERIMENT RESULTS ON KTH
We test our method on KTH dataset at first, which just con-
tains six types of human actions (walking, jogging, running,
boxing, hand waving and hand clapping). It is not a very
complex dataset. The experiment results are shown in Table 1
and 2. Single-task C3D + LSTM refers to our deep models
without MTL layer, which are the 6 individual fine-tuned
binary classifiers. To be specific, we input all the testing
videos into the 6 individual fine-tuned binary classifiers for
each category and gain the highest probability as the final pre-
diction result. Multi-task C3D + LSTM is our whole frame-
work, and all the binary classifiers can share information via
our enhancedMTL framework. Different from the single-task
model, the MTL framework shares knowledge among the
6 individual binary classifiers. As is shown in Table 1, we can
see our multi-task model has gained a great performance
compared with other methods (we chose the result in [27]).
Meanwhile, the accuracy rate of our multi-task model raises
more than 1% compared with the single-task model, which
shows that our MTL layer is efficient to share the similar
information on different action categories. We notice that

TABLE 1. Comparison of Our Results Against Famous Action Recognition
Methods on KTH.

there is a slight increase between the multi-task model and
single-task model. This is due to this dataset is very small,
and the accuracy rate is already quite high which will be hard
to improve further. We can see our method achieves much
better performance on a more complex dataset (UCF101) in
the following.

The detailed accuracy rates of six types of human actions
on KTH dataset are shown on Table 2. Compared with the
performance of 3D CNN [27], our method performs better
almost in all categories. We can see our framework shows
the best in the action ‘‘Running’’. This may be because our
framework can learn similar information from ‘‘Jogging’’
and ‘‘Walking’’. We also show the detailed training process
of our MTL framework in Fig. 4. Since this is not a com-
plex dataset, our model can be converged in two epochs
in which the training process of parameters S, T and L is
shown. In the beginning of training, the prediction accuracy
declines compared with results of the single-task method.
As showed in Fig. 4(d), our multi-task model still performs
worse than the single-task method in the end of the first
epoch. The prediction accuracies have a rise both in Fig. 4(b)
and 4(f), which indicates the effect of our video clip sharing
matrix T .

TABLE 2. Detailed Performance of Six Action Categories on KTH.

2) EXPERIMENTAL RESULTS ON UCF101 AND HMDB51
UCF101 and HMDB51 are much harder than KTH since
these two datasets contain much more videos and more
complex background information. UCF101 includes more
action categories and it is more difficult as compared with
UCF50 [50] which is a subset of this dataset. As mentioned
above, we first train the binary classifiers for each category
in UCF101 and HMDB51, and directly use the features gen-
erated from those classifiers. After that, MTL framework is
applied across all categories to share information in related
tasks.

The overall performance of our method on UCF101 is
shown in Table 3. Similarly with the setting in KTH,
single-task C3D + LSTM refers to all the binary classi-
fiers for each category, and the final prediction is made by
the highest probability among those classifiers. Multi-task
C3D + LSTM is our whole framework, and all the actions
can share information through our enhanced MTL frame-
work. As shown in Table 3, our model achieves competitive
results compared with the state-of-art methods. The first line
of table are the most representative traditional method for
action recognition (iDT [15], [56]), and we also compare
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FIGURE 5. Good and bad category prediction examples of UCF101 dataset are shown in (a) and (b). For each image in (a) and (b), we establish its
top three action category prediction scores with our multi-task C3D + LSTM. The prediction scores are represented by the height of columns.
Orange refers to the right action category for each image. (c) shows the changes of category prediction scores of multi-task C3D + LSTM
with/without video clip information sharing. In the right below each image, they are action category prediction scores of our multi-task
C3D + LSTM. In the left below each image, they are action category prediction scores of multi-task C3D + LSTM without video clip information
sharing. Orange still refers to the right action category for each image. (a) Good categories prediction examples. (b) Bad categories prediction
examples. (c) The performance of multi-task C3D + LSTM with/without video clip information sharing.

TABLE 3. Comparison of Our Results Against State-Of-The-Art Methods
on UCF101 and HMDB51.

our MTL method with many up-to-date deep learning
methods.

For the performance on UCF101 dataset, although our
multi-task C3D+LSTMcan achieve very competitive results
(93.4%) among those state-of-the-art methods, the perfor-
mance is still lower than that of TSN (94.2%) and FV-VAE
(94.2%). However, those methods fuse several different deep

models and use lots of tricks to gain such high accuracy,
which consumes too much time and requires for huge com-
puting resources. Also, for the performance on HMDB51, our
multi-task C3D + LSTM achieves state-of-the-art accuracy
(68.9%) which also sight worse than the TSN (69.4%). Even
compared with some more recent works [70], [71], [81], our
multi-task C3D + LSTM can also outperform those state-of-
the-art. In this paper, we focus on proposing a novel MTL
framework. As shown in Table 3, our multi-task C3D +
LSTM method brings a clear raise (4.5% on UCF101 and
5.3%, respectively) compared with the single-task C3D +
LSTM method.

Those results demonstrate that our method can effi-
ciently share latent information in different action categories,
and improves the performance of the single task learning
methods.

To evaluate the effects of the video clip length in the
LSTM layer, we test different settings (15 and 35) but not
only 25 in UCF101. The multi-task C3D + LSTM with
15 and 35 video clips achieve 92.5% and 90.7%, respectively.
We find that too short or too long video clip length will both
reduce performance. Actually, too short video clip
length can not fully share the video clip information.
It makes our multi-task method degenerate into [32]
when the video clip length is set to 1. Meanwhile, too
long video chip length will share too much redundant
information.
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FIGURE 6. Classification accuracy of each category on UCF101 dataset. Blue indicates the classification accuracy of single-task C3D + LSTM and red
indicates the classification accuracy of multi-task C3D + LSTM. Meanwhile, green indicates the classification accuracy of the multi-task C3D + LSTM
without video clip information sharing.

3) DETAILED ANALYSIS ON UCF101
We show the evaluation of some actions of UCF101 datasets
in Fig. 5. Good and bad category prediction examples are
shown in Fig. 5(a) and Fig. 5(b). For each image, we estab-
lish the top three action category prediction scores with
our multi-task C3D + LSTM. It can be seen that similar
actions can disturb the prediction of classifiers. For exam-
ple, as ApplyEyeMakeup and ApplyLipstick are very similar
which both belong to the make-up action, our classifiers may
feel confused.

Meanwhile, we show the classification accuracy of all
category on UCF101 dataset in Fig. 6. This figure shows the
results in detail including the performance of the single-task
C3D + LSTM and multi-task C3D + LSTM. Meanwhile,
we also add the comparison of multi-task C3D + LSTM
without our video clip information sharing method. The
detailed analysis of the comparison of multi-task C3D +
LSTM without video clip information sharing will be intro-
duced in the following section, while we focus on the com-
parison of single-task and multi-task C3D + LSTM here.
It can be seen from Fig. 6 that the classification accuracy
has been greatly improved on almost all the categories with
6% gain in average, especially on the related categories.

For example, ApplyEyeMakeup and ApplyLipstick both
belong to the make-up action which are related to each other,
thus their performances raisemore than 15%gain due toMTL
sharing. Other related categories like PlayingGuitar, Playing-
Piano and PlayingViolin share the same rules. On the con-
trary, the performance of a few categories (like Biliards and
Surfing) even decrease, perhaps because that there are some
useless interference information shared among categories.

D. EFFECT OF VIDEO CLIP INFORMATION
SHARING MECHANISM
To explain the influence of our MTL mechanism especially
our video clip information sharing mechanism, we conduct
two experiments: 1) removing our proposed layer for
sharing video clip information, and 2) comparing the pro-
posed model with other efficient MTL methods. For the first
setting, we remove the Tc matrix in our model to inactivate
our video clip information sharing mechanism. We test this
model on UCF101 and show the results in Fig. 5(c) and Fig. 6.
In Fig. 5(c), we show some examples of the differences of
categories prediction scores among multi-task C3D+ LSTM
with/without video clip information sharing. We can see that
some wrong predictions from the multi-task C3D + LSTM
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without video clip information sharing become right because
our video clip information sharing mechanism can learn
more detailed information among similar actions. Moreover,
the detailed results for each category in UCF101 are shown
in Fig. 6. Orange columns indicate the classification accuracy
of our multi-task C3D + LSTM and gray columns indicate
the classification accuracy of the multi-task C3D + LSTM
without video clip information sharing. This figure prove the
video clip sharing mechanism can be efficient to improve
the performance of the MTL method. It is clear that almost
all prediction accuracy rates of categories decline. However,
there also exist some abnormal examples like BabyCrawling
and BrushingTeeth. For those examples, the multi-task C3D
+ LSTM without video clip sharing even shows better than
the framework with the video clip sharing. The overall perfor-
mance is shown in Table 4.We can see the performance of the
multi-task learning framework without the video clip infor-
mation sharing mechanism drops approximately 2% than our
model.

TABLE 4. Effect of Video Clip Information Sharing.

TABLE 5. Comparison of Different MTL Methods.

For the second setting, we compare our model with other
MTL methods on the UCF101 dataset in Table 5. For a
fair comparison, all the methods in Table 5 use the same
C3D + LSTMmodel to extract the video features as the input
for the MTL framework. Actually, our method and the MTL
with Sharing Latent Tasks of [32] both share the basic MTL
framework of GO-MTL in [31] which can be regarded as
the baseline model. The cost function of our enhanced MTL
framework is presented in Eq. 8. Compared with the MTL
with Sharing Latent Tasks of [32], our method adds the video

clip sharing mechanism with the `2,1 norm of α
C∑
c=1
‖Tc‖2,1.

At the same time, the MTL with Sharing Latent Tasks in [32]
adds the γ ‖L‖1 on the baseline GO-MTL of [31]. Since the
two comparison method do not have the video clip sharing
mechanism, we directly use the mean average of the 25 fea-
ture vectors as the single feature representation of each video.
As shown in this table, we can see the effects of different
regularization items in the MTL framework. It shows that

our MTL algorithm is quite efficient for sharing knowledge
among the video data.

VII. CONCLUSION
We have proposed a novel MTL mechanism to allow video
clip information shared across related tasks instead of the
whole information of videos. To the best of our knowledge,
it is the first time to combine a spatiotemporal deep mod-
els (3D CNN plus LSTM) together with the MTL method.
Meanwhile, we propose the video clip sharing mechanism
tailored to information sharing among videos. We evaluate
the proposed enhanced MTL method on two popular video
datasets and achieve competitive results compared with the
state-of-art methods on those datasets, which demonstrates
that our method can encourage the efficient knowledge shar-
ing of similar parts of action videos. Moreover, the proposed
MTL method is not limited on the video data but can be
applied for all the spatiotemporal data. For example, it can
be also used to deal with the medical images like the CT or
MRI images as 3D CNNs are proved to be suitable for these
inputs.
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