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ABSTRACT In this paper, the neural network-based adaptive tracking control method is addressed for a
class of multi-input affine unknown nonlinear singularly perturbed systems. Based on the Lyapunov stability
theorem and by utilizing the neural networks to approximate the unknown nonlinear function, an adap-
tive neural network controller is constructed for the singularly perturbed nonlinear systems. Meanwhile,
the proposed design method can avoid ill-conditioned numerical problems that often occur in the feedback
design for singularly perturbed systems. It is proved that the proposed controller can ensure that semi-global
ultimately uniformly boundedness of all the signals in the closed-loop systems while the target signals
converge to a small neighborhood of the desired signal. Finally, two simulation examples are given to
illustrate the theoretical results.

INDEX TERMS Adaptive control, neural networks, singularly perturbed systems, uncertain nonlinear.

I. INTRODUCTION
The many industrial systems, such as power systems, motor
control systems, electronic circuit systems, robotics systems,
have ‘‘slow’’ and ‘‘fast’’ dynamics due to the presence of
some small parameters such as capacitances, resistances,
inductances, moments of inertia, and so on [1]–[5]. It gives
rise to significant difficulties in analyzing and designing
the system because the small parameters can lead to high
dimensionality and ill-conditioned numerical issues. In the
past decades, the stability analysis and control design of
singularly perturbed system have attracted great attention and
have been intensively studied by many researchers [6]–[8].
For example, by using singular perturbation theory and Lya-
punov stability theory, stability analysis and stabilization
problem were investigated in [9]–[13]. And observer-based
control [14], [15], optimal control [16]–[20], sliding-mode
control [21], and H∞ control [22], [23] also were consid-
ered. However, it is worth mentioning that adaptive tracking
control approach is not considered in the existing works
on unknown singularly perturbed systems. It is known that
trajectory tracking plays a key role in excellent
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maneuverability for many industrial systems and can ensure
that a predefined trajectory can be tracked with acceptable
accuracy. Thus, how to solve the problem of adaptive tracking
control for unknown singularly perturbed systems is impor-
tant and challenging in both theory and practice.

As we all known, a good method for dealing with sys-
tems with unknown function is that the fuzzy logic sys-
tems or neural networks are accustomed to approximating
the unknown functions. By utilizing the excellent approx-
imation capabilities of neural networks, adaptive neural
network control schemes were widely used to nonlin-
ear systems with unknown functions [24], [25]. In [26],
a direct adaptive control was presented for a class of strict-
feedback systems with unknown functions where the neu-
ral networks were employed to approximate the unknown
functions. Utilizing backstepping technique and multi-layer
neural networks, the tracking control problem of a class of
strict-feedback unknown nonlinear systems were addressed
in [27]. In order to guarantee semi-global uniform ulti-
mate boundedness of all the signals in the two classes of
multi-input multi-output (MIMO) systems [28], [29] with
unknown functions, the adaptive controllers were proposed.
Based on the universal approximation property of neural
networks, the adaptive control of nonlinear multi-agent
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systems with unknown functions was studied in [30], [31].
Adaptive neural network control was investigated in
[32]–[34] for nonlinear systems with unknown input delay
by using Lyapunov-Krasovskii functionals. Unfortunately,
it is not straightforward to apply the above results to analysis
and design of singularly perturbed systems with unknown
functions.

The methods mentioned above show that the neural net-
work is an effective tool to deal with highly nonlinear, uncer-
tain, and complex systems’ control issue. Due to the theo-
retical challenges and practical needs, some researchers pay
more and more attention to singularly perturbed nonlinear
systems. For instance, in [35], an H∞ controller was pre-
sented for a class of singularly perturbed nonlinear systems
to achieveH∞ control performance via neural network-based
control and observer design. Han et al. [36] first indicated
dynamic multi-time-scale neural networks including both
fast and slow phenomena guarantee flexibility and accu-
racy of nonlinear system identification efficiently. On this
basis, the identification and control based on multi-layer
neural networks with multi-time-scales also were proposed
[37], [38]. To improve the convergence speed, the optimal
bounded ellipsoid algorithm-based identification for singu-
larly perturbed nonlinear systems with unknown functions
were proposed in [39], [40]. Moreover, an approximation-
based and adaptive dynamic programming method the opti-
mal control were studied in [15], [20] for singularly perturbed
nonlinear systems with unknown functions. Nevertheless,
there is relatively little research on neural network-based
adaptive tracking control for singularly perturbed nonlinear
systems.

In this paper, adaptive tracking control problem for a
class of singularly perturbed nonlinear systemswith unknown
functions will be addressed. Compared with the published
literature on singularly perturbed systems, the main works
of this paper are as follows: 1) The neural network is used
to approximate unknown nonlinear continuous-time func-
tions, and ε-dependent adaptive laws are constructed to alle-
viate the ill-conditioned numerical problem which usually
occur in the analysis and design of singularly perturbed
systems. 2) An adaptive neural network trajectory tracking
controller for a class of unknown multi-input affine sin-
gularly perturbed nonlinear systems with unknown func-
tions is designed. The stability property is proved utilizing
Lyapunov stability theory and tracking error is shown to
converge to a small bound. Moreover, two simulation exam-
ples are given to verify the effectiveness of the control
schemes.

Notation: Some mathematical notations to be used
throughout this paper are given below. I denotes the iden-
tity matrix; |·| is the usual Euclidean norm of a vector, for
instance, if y is a scalar, |y| denote its absolute value, if A is a
matrix, ‖A‖ denotes the Frobenius matrix norm, i.e.

‖A‖2 =
∑
ij

‖aij‖2 = tr{ATA}

where tr{·} denotes the trace of a matrix. For a vector function
of time X (t). define

‖X‖2 = (
∫
∞

0
|X (t)|2 dt)

1
2

and

‖X‖∞ = sup
0≤t
|X (t)|

we will say that X ∈ L2 if ‖d‖2 is finite. Similarly, we will
say that d ∈ L∞ if ‖d‖∞ is finite.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. PROBLEM FORMULATIONS
Consider the following singularly perturbed systems

E (ε) ẋ(t) = f (x(t))+ g (x(t)) u(t) (1)

where

E (ε) =
[
I(n−m)×(n−m) 0

0 εIm

]
∈ Rn×n

f (x) = [f1(x), f2(x), . . . , fn(x)] ∈ Rn×1

g (x) =


g11(x) g12(x) · · · g1m(x)
g21(x) g22(x) · · · g2m(x)
...

...
. . .

...

gn1(x) gn2(x) · · · gnm(x)

 ∈ Rn×m
x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn×1 is the state vec-
tors, u(t) = [u1(t), u2(t), · · · , un(t)] ∈ Rm×1 is the control
input, and fi(·), gij(·), (i = 1, 2, · · · , n, j = 1, 2, · · · ,m) are
unknown continuous functions, and 0 < ε � 1 is the singular
perturbation parameter.
Remark 1: The main characteristic of (1) is that the dynam-

ical system possesses two time scale characteristics, that is,
the system states whose velocity is associated with ε (a very
small parameter) evolve faster than the other system states,
it will lead the system into high dimensionality and ill-
conditions often occur in the feedback design for singularly
perturbed systems.
Definition 1: Consider the nonlinear system

ẋ = f (x, t)

where x(t) ∈ Rn is the state vector. Its solution is said to be
semi-globally uniformly ultimately bounded (SGUUB), for
x(0) ∈ �x where �x ∈ Rn is a compact set, if there exist an
constant ε > 0 and a number N (ε, x(t0)) such that ‖x(t)‖ < ε

for all t > t0 + N .
Lemma 1( [41]): Let V (t) ≥ 0 (t ∈ R+) be a continuous

positive function with bounded initial value V (0). If V̇ (t) ≤
−aV (t) + c holds, where a and c are two positive constants,
then: V (t) ≤ e−atV (0)+ c

a

(
1− e−at

)
.

The objective is to design the neural network
approximation-based adaptive control for system (1), such
that: the system states can track the desired trajectory xd =
[xd1(t), x12(t), · · · , xnd (x)]T ∈ Rn to the desired accuracy;
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all signals of the closed-loop systems remain semiglobally
uniformly bounded.

Throughout this paper, the following assumptions are sat-
isfied.
Assumption 1: The state x of the system is available for

measurement.
Assumption 2: The matrix g(x) is either uniformly positive

definite or uniformly negative definite for all x ∈ �x , where
�x ⊆ Rn is a compact set.

If g(x) satisfies Assumption 2 then σ (g(x)) ≥ g > 0,∀x ∈
�x where σ (·) represents the smallest singular value of the
matrix inside the brackets and g∗ is its lower bound. Assump-
tion 2 guarantees that (1) is uniformly strongly controllable.
Assumption 3:The desired trajectories xd = [xd1, xd2, · · · ,

xdn] ∈ Rn are known bounded function of time with bounded
known derivatives.
Assumption 4: The function fi(x) and gij(x), i, j =

1, 2, · · · , n are continuous but completely unknown.
Remark 2: The above assumptions are common assump-

tions in the literature and easy to be satisfied in applica-
tions [26], [33], [34].

B. NEURAL NETWORKS AND FUNCTION APPROXIMATION
It is known that neural networks are mostly used as approx-
imation models for the unknown nonlinearities due to their
inherent approximation capabilities [26], [28], [32], [41].
A class of linearly parameterized neural network used to
approximate (2), the continuous function y(x) : Rp −→ R
is represented as follows:

y (x) = W TZ (x) (2)

where y(x) ∈ R is the neural network output, the input vector
of the approximator is x = [x1, x2, · · · , xn] ∈ Rn, W ∈ Rp×1

is a p-dimensional vector of updated weights, and Z (x) =[
z1 (x) , z2 (x) , · · · , zp (x)

]
∈ Rp is p-dimensional vector of

known continuous basis function.
Since neural networks can smoothly approximate any con-

tinuous function with arbitrary any accuracy, y (x) over the
compact set �x ∈ Rn can be redescribed in the following
form:

y (x) = W ∗TZ (x)+ ε(x) ∀x ∈ �x ⊂ Rn (3)

where W ∗ ∈ R1×n is the ideal constant weight in the output
layer, ε(x) ∈ R1×n is the approximation error satisfying
ε(x) ≤ ε, and ε is an unknown bounded parameter. zi(x) is
known smooth function, in this paper, which is chosen as the
Gaussian function:

zi(x) = exp

(
−(x − ςi)T (x − ςi)

µ2
i

)
, i = 1, 2, · · · , p (4)

where ςi and µi are the center and width of the neural cell
of the ith hidden layer. The optimal weight vector W ∗ is
an "artificial" quantity required for analytical purposes. W ∗

is defined as the value of Ŵ that minimizes |ε(x)| for all

x ∈ �x ⊂ Rn in a compact region, i.e.

W ∗ = arg min
Ŵ∈�f

[
sup
x∈�x

∣∣∣y(x)−W TZ (x)
∣∣∣] (5)

Under the optimal weight value, combining (2) and(3),
we have ∣∣∣y(x)−W ∗TZ (x)∣∣∣ = |ε(x)| ≤ ε (6)

In general, the ideal neural network weightW ∗ is unknown
and needs to be estimated. In the paper, we shall consider Ŵ
being the estimate of the ideal neural network weight W ∗.
In this paper, f (x) ∈ Rn and g(x) ∈ Rn×m are

unknown functions so they cannot be directly used in the
control law. To overcome the highly uncertain environ-
ment and provide a valid solution to our problem, we uti-
lize the approximation capabilities of linear in the weights
neural networks. Based on the neural network approxima-
tion (2), the functions f (x) and g(x) can be redescribed neu-
ral network linear form in the following form: f

(
x|wf

)
=[

f1(x|wf1 ), f2(x|wf2 ), · · · , fn(x|wfn )
]
.

g(x) =


g11(x|w11) g12(x|w12) · · · g1m(x|w11)
g21(x|w21) g22(x|w22) · · · g2m(x|w2m)

...
...

. . .
...

gn1(x|wn1) gn2(x|wn2) · · · gnm(x|wnm)


Denote Wf = [wf1 ,wf2 , · · · ,wfn ]

T , Zf (x) =

[z1(x), z2(x), · · · , zl(x)]T ∈ Rl×1, and

Wg =


wT11,g wT12,g · · · wT1m,g
wT21,g wT22g · · · wT2m,g
...

...
. . .

...

wTn1.g wTn2g · · · wTnm,g



Sg =


Zf 0 · · · 0
0 Zf · · · 0
...

...
. . .

...

0 0 · · · Zf


f1(x|wf1 ) = wTf1Zf , gij = wTij,gZf .
Due to the approximation capabilities of the dynamic neu-

ral networks, we can assume without loss of generality, that
the unknown system (1) can be completely described by a
linear in the weights neural network structures, plus a mod-
eling error term ξ (x, u). In other words, there exist constant
but unknown optimal weight valuesW ∗f andW ∗g such that the
system (1) can be written as

E(ε)ẋ = W ∗Tf Zf (x)+W ∗Tg Sg(x)u

+[f (x)−W ∗Tf Zf (x)]+ [g(x)−W ∗Tg Sg(x)]u (7)

where

W ∗f = arg min
Wf ∈�f

[
sup
x∈�x

∣∣∣f (x)−W T
f Zf (x)

∣∣∣]

W ∗g = arg min
Wg∈�g

[
sup
x∈�x

∣∣∣g(x)−W T
g Sg(x)

∣∣∣]
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Let

ξ (x, u) = [f (x)−W ∗Tf Zf (x)]+ [g(x)−W ∗Tg Sg(x)]u

Then (7) can be written as

E(ε)ẋ = W ∗Tf Zf (x)+W ∗Tg Sg(x)u+ ξ (x, u) (8)

Remark 3: Because of approximation properties of neural
networks and the boundedness of u, |ξ (x, u)| can be arbitrarily
small if the neuron number p is chosen large enough [26].
Therefore, without loss of generality we assume that

sup
0≤t
|ξ (x, u)| ≤ ξ̄0

where ξ̄0 is an unknown bound.

III. CONTROLLER DESIGN AND THE STABILITY ANALYSIS
In this section, the adaptive neural network controller design
procedure is given. The controllers guarantees a uniform ulti-
mate boundedness property for the tracking error, as well as
for all other signals in the closed-loop systems with unknown
functions.

Define the tracking error e as

e = x − xd (9)

Differentiating e and substituting (1) and (7), we can get

E (ε) ė = E (ε) (ẋ − ẋd )

= E (ε) ẋ − E (ε) ẋd
= W ∗Tf S (x)+W ∗Tg Sg (x) u− E (ε) ẋd

+f (x)−W ∗Tf Zf (x)+
[
g (x)−W ∗Tg Sg (x)

]
u

= W ∗Tf Zf (x)+W ∗Tg Sg (x) u− E (ε) ẋd+ξ (x) (10)

Adding and subtracting the terms W T
f Zf (x), W

T
g Sg(x),

where Wf , Wg are estimates of the unknown weight values
W ∗f , W

∗
g , respectively, we can rearrange (10) as

E (ε) ė = E (ε) ẋ − E (ε) ẋd
= W ∗Tf Zf (x)+W ∗Tg Sg (x) u− E (ε) ẋd + ξ (x)

=

(
Wf − W̃f

)
S (x)+

(
Wg − W̃g

)
S1 (x) u

−E (ε) ẋd + ω (x, u)

= −W̃f Zf (x)− W̃gSg (x) u− E (ε) ẋd
+Wf Zf (x)+WgSg (x) u+ ξ (x, u) (11)

where the parameter errors W̃f , W̃g are defined as

W ∗f = Wf − W̃f

W ∗g = Wg − W̃g

Thus the tracking control problem is to find the appropriate
control and update laws to drive the solution of (11) to a small
neighborhood of the origin.

In order to find a control law, which would fulfill our goal
and guarantee the stability, the following Lyapunov function
is proposed:

V =
1
2
eTET (ε)Pe+

1
2
tr
{
W̃ T
f W̃f

}
+

1
2
tr{W̃ T

g W̃g} (12)

where matrix P =
[
P11 εP12
PT12 P22

]
satisfies

E(ε)TP = PTE(ε) > 0 (13)

Differentiating (12) with respect to time we have

V̇ = eTPTE(ε)ė+ tr
{
W̃ T
f
˙̃Wf

}
+ tr

{
W̃ T
g
˙̃Wg

}
= eTPT {−W̃f Zf (x)− W̃gSg(x)u− E(ε)ẋd
+Wf Zf (x)+WgSg(x)u+ ξ (x, u)}

+tr{W̃ T
f
˙̃Wf } + tr

{
W̃ T
g
˙̃Wg

}
(14)

If we choose the update laws

Ẇf = ePZTf (x)− σ1Wf (15)

Ẇg = ePSTg (x)u− σ2Wg (16)

where σ1 and σ2 are design parameter. Substituting (15) and
(16) into (14), it follows that

V̇ = −eTPT W̃f Zf (x)− eTPT W̃gSg(x)− eTPTE(ε)ẋd
+eTPTWf Zf (x)+ eTPTWgSg(x)u+ eTPT ξ (x, u)

+tr
{
W̃f

T
[
ePST (x)− σ1Wf

]}
+tr

{
W̃g

T
[
ePST (x)u− σ2Wf

]}
= −eTPTE(ε)ẋd + eTPTWf Zf (x)+ eTPT ξ (x, u)

+eTPTWgSg(x)u− σ1tr
{
W T
f W̃f

}
− σ2tr

{
W T
g W̃g

}
(17)

Choosing the control law

u = u1 + u2 + u3 (18)

with

u1 =
STg (x)W

T
g E(ε)ẋd

1+ ‖Wg‖
2‖Sg(x)‖2

u2 =
STg (x)W

T
g E(ε)ẋdWf Zf (x)

λ2
[
1+ ‖Wg‖

2‖Sg(x)‖2
]

u3 = [WgSg(x)]†
{
−αE(ε)e−

1
2
(1+ k)PT e

}
where † denotes the Moore-Penrose pseudoinverse, then we
can get

eTPWgSg(x)[u1 + u2 + u3]

= eTPWgSg(x)x

×
STg (x)W

T
g E(ε)ẋd

1+ ‖Wg‖
2‖Sg(x)‖2

+eTPWgSg(x)
STg (x)W

T
g E(ε)ẋdWf Zf (x)

λ2
[
1+ ‖Wg‖

2‖Sg(x)‖2
]

+eTPWgSg(x)[WgSg(x)]†{−αE(ε)

−
1
2
(1+ k)PT e} (19)
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Since

‖Wf ‖
2
‖Sf (x)‖2

1+ ‖Wf ‖
2‖Sf (x)‖2

≤ 1

we have

eTWgSg(x)[u1 + u2 + u3]

≤ eTPE(ε)ẋd +
1
λ2
eTPWf Zf (x)

−αeTPE(ε)e−
1
2
(1+ k) |e|2 ‖P‖2 (20)

Using the facts that

tr{W T
f W̃f } =

1
2
‖Wf ‖ +

1
2
‖W̃f ‖ −

1
2
‖W ∗f ‖

2]

tr{W T
g W̃g} =

1
2
‖Wg‖ +

1
2
‖W̃g‖ −

1
2
‖W ∗g ‖

2]

equation (17) can be rewritten

V̇ = −eTPTE(ε)ẋd + eTPTWf Zf (x)+ eTPTWgSg(x)u

+eTPT ξ (x, u)− σ tr
{
W T
f W̃f

}
− σ1tr

{
W T
g W̃g

}
≤ −eTPTE(ε)ẋd + eTPTWf Zf (x)+

1
2
|e|2 ‖P‖2

+
1
2
|ξ (x, u)|2 + eTPE(ε)ẋd +

1
λ2
eTPWf Zf (x)

−αeTPE(ε)e−
1
2
(1+ k) |e|2 ‖P‖2

−σ1tr
{
W T
f W̃f

}
− σ2tr

{
W T
g W̃g

}
≤ −αeTPE(ε)e+

(
1+

1
λ2

)
eTPTWf Zf (x)

−
1
2
k |e|2 ‖P‖2 −

σ1

2

∥∥Wf
∥∥2 − σ2

2

∥∥Wg
∥∥2

−
σ1

2

∥∥∥W̃f

∥∥∥2 − σ2
2

∥∥∥W̃g

∥∥∥2
+
σ1

2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗f ∥∥∥2 + 1
2
|ξ (x, u)|2 (21)

According to properties of neural network universal
approximation, we have∣∣Zf (x)∣∣ ≤ l (22)

where l > 0 known constants number of nodes neural
network. Choose the design constant

λ2 ≥
l

√
2k1σ1 − l

(23)

where

σ1 >
l2

2k1
(24)

l(1+
1
λ2

) ≤ 2

√
k1σ1
2

(25)

Then, we obtain

V̇ ≤ −αeTPE(ε)e+ l(1+
1
λ2

) |e| ‖P‖|Wf ‖

−
1
2
k |e|2 ‖P‖2 −

σ1

2
‖Wf ‖

2
−
σ1

2
‖W̃ 2

f ‖
2

−
σ2

2
‖Wg‖

2
−
σ2

2
‖W̃g‖

2
+
σ1

2

∥∥Wf
∗
∥∥2

+
σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
|ω (x, u)|2

≤ −αeTPE(ε)e+ 2

√
k1σ1
2
|e| ‖P‖|Wf ‖

−
1
2
k |e|2 ‖P‖2 −

σ1

2
‖Wf ‖

2
−
σ1

2
‖W̃ 2

f ‖
2

−
σ2

2
‖Wg‖

2
−
σ2

2
‖W̃g‖

2
+
σ1

2

∥∥Wf
∗
∥∥2

+
σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
|ω (x, u)|2 (26)

V̇ ≤ −αeTPE(ε)e−
1
2
k |e|2 ‖P‖2 + k1 |e|2 ‖p‖2

−{k1 |e|2 ‖p‖2 − 2

√
k1σ1
2
|e| ‖P‖‖Wf ‖ +

σ1

2
‖Wf ‖

2
}

−
σ1

2
‖W̃ 2

f ‖
2
−
σ2

2
||W̃g‖

2

+
σ1

2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
|ω (x, u)|2 (27)

If we choose

k
2
− k1 > 0 (28)

V̇ can be rewritten as

V̇ ≤ −αeTPE(ε)e−
σ1

2
‖W̃ 2

f ‖
2
−
σ2

2
||W̃g‖

2

+
σ1

2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
|ω (x, u)|2 (29)

Let

c = min{α,
σ1

2
,
σ2

2
} (30)

d =
σ1

2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
|ω (x, u)|2 (31)

Then (30) can be written as

V̇ ≤ −cV + d (32)

Remark 3: By selecting suitable design parameters
P, σ1, λ2, α, k , the performance of the proposed architecture
is controlled. However, more research is required to under-
stand in which way the system performance is affected. Some
insight on this interesting and important subject is provided
in the simulation section.

The main results are summarized by the following
theorem.
Theorem 1 : Consider the closed-loop uncertain singularly

perturbed plant (1), controller (18), adaptive updating laws
(15) and (16). Under the conditions that Assumptions 1-4 are
satisfied and the design parameters satisfy the conditions
(13), (22), (23), (26) and (27), all signals in the closed-loop
singularly perturbed system remain bounded, and the tracking
error can be made arbitrarily small by choose parameters
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appropriately and increasing the approximation accuracy of
the neural networks.

Proof: Construct the Lyapunov candidate function

V =
1
2
eTET (ε)Pe+

1
2
trW̃ T

f W̃f +
1
2
tr(W̃ T

g W̃
T
g ) (33)

Calculating the time derivative of V along (18), (15),
and (16) yields

V̇ ≤ −αeTPE(ε)e+
(
1+

1
λ2

)
eTPTWf Zf (x)

−
1
2
k |e|2 ‖P‖2 −

σ1

2

∥∥Wf
∥∥2 − σ2

2

∥∥Wg
∥∥2 − σ1

2

∥∥∥W̃f

∥∥∥2
−
σ2

2

∥∥∥W̃g

∥∥∥2 + σ1
2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗f ∥∥∥2 + 1
2
|ξ (x, u)|2

(34)

From (22)–(25), (28) and (34), the following inequality
follows

V̇ ≤ −αeTPE(ε)e−
σ1

2
‖W̃ 2

f ‖
2
−
σ2

2
||W̃g‖

2

+
σ1

2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
|ω (x, u)|2 (35)

Define new variables as follows

c = min{α,
σ1

2
,
σ2

2
}

d =
σ1

2

∥∥Wf
∗
∥∥2 + σ2

2

∥∥∥W ∗g ∥∥∥2 + 1
2
ξ̄0

Then, (35)can be rewritten as

V̇ ≤ −cV + d (36)

Applying Lemma 1 and based on (36), we can get

V ≤ e−ctV (0)+
d
c
(1− e−ct )

Based on the procedure above, we can conclude that the
tracking error e are bounded for all t ≥ 0, and will asymp-
totically converge to a compact set. This implies that the
close-loop system is semiglobally uniformly bounded.
Remark 4: The adaptive control laws for normal non-

linear systems have been proposed by many researchers
[31]–[34], however, these do not consider the singular per-
turbation parameter ε, ε is usually very small, which usually
leads to ill-conditioned numerical problem. In this paper,
the adaptive neural network tracking controller is designed
based on the Lyapunonv function method. The novel adaptive
laws including singular perturbation parameter ε are designed
to avoid the ill-conditioned numerical problems. Moreover,
neural networks are utilized to approximate the unknown
nonlinear functions, but each networks node is subject to both
slow and fast dynamics in this paper.
Remark 5: Neural network-based adaptive identification

and control for such kind of singularly perturbed nonlin-
ear system with unknown functions has been studied in
[36], [37], [39]. However, tracking control problem of sin-
gularly perturbed systems with unknown functions has been
rarely considered [40], which prompts the research work of

this paper. Compared with the results in [40], the proposed
method in this paper is free of identification procedure and the
number of parameters to be tuned is less, which will reduce
the computational burden.

IV. SIMULATION STUDY
In this section, two simulation examples are given to demon-
strate the effectiveness of the proposed control technique.

A. EXAMPLE1
To demonstrate the effectiveness of the proposed adaptive
neural networks tracking control algorithm. We consider the
following nonlinear system:[

1 0
0 ε

] [
ẋ1
ẋ2

]
=

[
−x21 − x1x2
4x1x2 − x2

]
+

[
0.25 0
0 0.2

]
u (37)

where x = [x1, x2]T ∈ R2, initial condition for the states
are chose as x(0) = [0, 0]T , singular perturbation parameter
ε = 0.001, u ∈ R2 is the control input. The objective
is to design an adaptive controller for the system (1) such
that: 1) the state x follow the desired reference signals are
xd = [0.5sin(0.5t), 0.3cos(2t)]T ; 2) the boundedness of all
the signals in he closed-loop system is guaranteed. According
to the above design method, the controller is defined as

u =
GE(ε)ẋd
1+ ‖G‖2

+
GTE(ε)ẋd
λ2(1+ G)

+G−1(−αE(ε)e−
1
2
(1+ k)PT e) (38)

where e = x − xd and G =
[
0.25 0
0 0.2

]
, the adaption law is

given as follows:

Ẇf = ePZTf − σ1Wf (39)

In the simulation studies, the centers and widths are
selected on a regular lattice in the respective compact sets.
The neural network contains 100 nodes with the centers ςi
evenly spaced in [−1, 1]× [−0.5, 0.5], and widths µi = 0.02
where the input variable of the neural network is given as
x = [x1, x2]T . Initial value of the adaptation law is shown
as Wf (0) = 0. The design parameters are selected as P =[
1 ε

1 1

]
, σ1 = 10, λ2 = 0.5, α = 0.1, k = 100.

From Figs.1-4, it is clear that the simulation results which
are achieve by employing the controller (38) to the systems
(37). The tracking trajectories of xi and ydi, i = 1, 2 are
illustrated in Figs. 1-2 and the goof tracking performances
can be observed. The controllers u1 and u2 are diagrammed
in Fig.3. The trajectories of adaptation laws ‖Wf 1‖, i = 1, 2
are set in Fig.4. Form Figs.3-4, it can be seen that ui and
Wfi, i = 1, 2 are bounded. Form these simulation figures,
we can see that all the signals in the closed-loop system are
bounded.
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FIGURE 1. Trajectories of x1, xd1, and e1.

FIGURE 2. Trajectories of x2, xd2, and e2.

FIGURE 3. Trajectories of the control inputs u1 and u2.

B. EXAMPLE2
To demonstrate the potential application of the control
schemes for practical systems, we consider a nonlinear cir-
cuit [35] illustrated in Fig.5. The νc − IR characteristics of
the resistor is IR = 1

5ν
3
c −

1
5νc. Applying the Kirchoff law,

we obtain the state equation

LİL = −ILR− νc + u(t)

C ν̇c(t) = IL −
1
5
(ν3c − νc)+ αu(t) (40)

where ε = C, α = 0.5,R = 2� and L = 0.1H . Let x(t) =
L · IL and z(t) = νc. The state equation (40) can be written by

FIGURE 4. Trajectories of ‖Wf 1‖ and ‖Wf 2‖.

FIGURE 5. An electric circuit with parasitic capacitor and nonlinear
resistor.

the following singularly perturbed nonlinear system

ẋ(t) = −20x(t)− z(t)+ u(t)

εż(t) = 10x(t)− 0.2(z2(t)− 1)z(t)+ 0.5u(t)

which can be rewritten as

E(ε)
[
ẋ1
ẋ2

]
=

[
−20x21 − x2

10x1 − 0.2(x22 − 1)x2

]
+

[
1 0
0 0.5

]
u (41)

where E(ε) =
[
1 0
0 ε

]
, x = [x1, x2]T ∈ R2, initial con-

dition for the states are chose as x(0) = [0, 0]T , singular
perturbation parameter ε = 0.001, u ∈ R2 is the control
input. The control objective is to design an adaptive controller
for the system (41) such that: 1) the tracking objective is
to make the state x follow the desired reference signals are
xd = [0.5sin(0.5t), 0.3cos(2t)]T ; 2) the boundedness of all
the signals in the closed-loop system is guaranteed.

In the simulation studies, the centers and widths are
selected on a regular lattice in the respective compact sets.
The neural network contain 100 nodes with the centers ςi
evenly spaced in [−1, 1]× [−0.5, 0.5], and widths µi = 0.02
where the input variable of the neural network is given as
X = [x1, x2]T . The initial value of the adaptation law is
shown as Wf (0) = 0. The design parameters are selected as

P =
[
1 ε

1 1

]
, σ1 = 8, λ2 = 0.25, α = 0.5, k = 100.
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FIGURE 6. Trajectories of x1, xd1, and e1.

FIGURE 7. Trajectories of x1, xd1, and e1.

FIGURE 8. Trajectories of the control inputs u1 and u2.

Fig.8 show the simulation results which are obtained
by applying the control controller u to the system (37).
Figs.6-7 show the tracking trajectories of system and it can
be seen that a good tracking performances is achieved as
well as the tracking error of systems state converges to a
small neighborhood of zero. The trajectories of the control
signals and the adaptation laws are diagrammed in Figs.8-9.
It is obvious that they are bounded. Therefore, it can be
concluded from these figures that all the signals in the closed-
loop system are bounded.

FIGURE 9. Trajectories of ‖Wf 1‖ and ‖Wf 2‖.

Remark 6: The specified references are xd = [0.5sin(0.5t),
0.3cos(2t)]T . Notice that the reference trajectories are chosen
to maintain different time scale.

V. CONCLUSION
This paper has investigated the problem of adaptive neural
network tracking control for a class of uncertain singularly
perturbed nonlinear systems. Due to the presence of the
singular perturbation parameter ε, which is a very ’small’
parameter, the control design problem of singularly perturbed
systems is a difficult task. By designing an adaptive neural
network control and introducing a novel Lyapunonv function,
the stability of the closed-loop systems has been proven. The
approach can be used to copewithmore general type of singu-
larly perturbed systems compared with the existed works on
singularly perturbed systems. It can be seen from simulation
results that a good control performance is achieved.
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