
Received February 26, 2019, accepted March 18, 2019, date of publication March 29, 2019, date of current version April 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2908226

A Super Point Detection Algorithm Under
Sliding Time Windows Based on
Rough and Linear Estimators
JIE XU 1, WEI DING2, QIUSHI GONG2, XIAOYAN HU 2, (Member, IEEE), AND HAIQING YU2
1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China

Corresponding author: Jie Xu (xujieip@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 61602114.

ABSTRACT Detecting super points from high-speed networks can effectively help to monitor networks,
which is a hot topic in network fields. Most existing algorithms are carried out under discrete time windows
and the results are in a certain percentage of omission. In this paper, the phenomenon of missed super points
detection in discrete time windows is analyzed based on real-world traffic. Then a new algorithm, which
detects the super points under sliding time windows, is proposed. Our algorithm uses a lightweight estimator
to identify candidate super points and a linear estimator to filter super points. The lightweight estimator is
fast, and the linear estimator has high accuracy. Both the lightweight estimator and the linear estimator
adopt a data structure, called distance recorder, to support sliding time windows. Moreover, our algorithm
is also a parallel algorithm. On the basis of thoroughly discussing the mathematic principles and operation
steps of our algorithm, two groups of real-world traffic from a 40-Gb/s high-speed network are applied in
the experiments which running on a graphic processing unit (GPU). The experiments are conducted under
discrete time windows and sliding time windows separately. The former results show that our algorithm is
superior to other existing algorithms in the comprehensive performance, and the latter results indicate that
our algorithm can run steadily under sliding time windows.

INDEX TERMS Cardinality estimation, GPU, sliding time window, super points detection.

I. INTRODUCTION
Attribute measurement is the basis of network management
and security [1]. Suppose there are two core networks,
denoted as ANet and BNet. ANet and BNet communicate with
each other through an edge router (ER). For a host ‘‘aip’’
in ANet, the cardinality of aip is the number of hosts in BNet
communicatingwith it in a certain period [2]. Host cardinality
is an important attribute in the field of network management
and measurement [3]. In a specified period, if the cardinality
of aip is no smaller than a predefined threshold θ , aip is called
a super point [4]. Furthermore, this period is called a time
window.

Super point is a kind of particular host which is associ-
ated with many network events, such as network servers [5],
Distributed Denial of Service (DDoS) [6], scanning [7] etc.
Because super points only account for a small part of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuan Zhang.

total hosts, monitoring super points is an efficient way to
manage the large-scale network [8]. Super points detection
is a hot research field and many algorithms [9], [10], [11] are
proposed in recent years.

A time window could be a discrete time window or a slid-
ing timewindow [12]. Under sliding timewindows, the detec-
tion result is more accurate and the delay is smaller than
that under discrete time windows. However, the existing algo-
rithms [9], [10], [11] can not run under sliding time windows,
because they can not save the state of the previous period.
Moreover, the existing algorithms only detect the super point
at the end of the time window and take a long time for the
detection. Due to the continual super point detection under
sliding timewindows, the existing algorithms also fail tomeet
the processing time requirement.

To solve the above problems, this paper presents a sliding
time window super point detection algorithm, named as slid-
ing rough and linear algorithm (SRLA). SRLA can preserve
the host state of previous period. Moreover, SRLA takes less

43414
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7553-3467
https://orcid.org/0000-0002-4172-1977

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

than 0.6% of super point cardinality estimation time of other
algorithms. Because under the sliding time window, super
point detection is more frequent than that under the discrete
time window, the small super point cardinality estimation
time of SRLA ensures the success running under sliding time
windows in real time.

The advantages of SRLA come from two novel estima-
tors proposed in this paper: sliding rough estimator (SRE)
and sliding linear estimator (SLE). Both SRE and SLE use
distance recorder (DR), a counter that can record the state
of the host under the sliding time window, to save the state
of the host. So SRLA can run under sliding time windows.
SRE and SLE have different speed and accuracy. SRE is
a lightweight algorithm. It occupies less memory and runs
fast. Therefore, SRE can determine whether a host is a super
point when scanning a network packet. SRLA uses SRE to
generate a candidate super point list when scanning network
packets, which significantly reduces the super point detection
time. SLE estimates the cardinality of a given host accurately.
At the end of a time window, SRLA uses SLE to estimate
the cardinality of candidate super point and removes those
whose estimated cardinalities are lower than the threshold.
SLE guarantees the high accuracy of SRLA. Because of the
fast detection speed of SRE and the high accuracy of SLE ,
the speed and accuracy of SRLA are better than the previous
algorithms. What’s more, SRLA can run under sliding time
windows.

The development of computing platform, especial graphic
process unit (GPU), provides a better environment [13] for
super point cardinality estimation under sliding time win-
dows. This paper makes full use of the parallel computing
ability of GPU to handle high-speed network traffic in real
time. Some of the work in this paper has been published
at the 20th International Conferences on High Performance
Computing and Communications in 2018 [14].

The main contributions of this paper are listed below:
1) Devise a lightweight estimator and a high accuracy

estimator. These two estimators can maintain the state
of previous period and run under the sliding time
window.

2) Propose a super point cardinality estimation algorithm
under the sliding time window, which uses a fixed quan-
tity of the lightweight estimator and the high accuracy
estimator. This algorithm has the fastest super point
detection speed and is the only one which can run under
the sliding time window.

3) Deploy super point detection algorithms on GPU to
handle high-speed network traffic parallel and eval-
uate the performance of these algorithms on a real-
world 40 Gigabits per second (Gbps) network under
the discrete time window and the sliding time window
respectively.

In section II, we introduce the related works. In section III,
two novel sliding time window cardinality estimators are
described in detail. Section IV demonstrates SRLA in detail.
How to deploy SRLA on GPU and numerical results on a

real-world 40 Gbps network are shown in section V. The
paper is concluded in the final section.

II. RELATED WORK
For convenience, suppose the input data is the stream of IP
pair tuples like < aip, bip > where aip is a host in ANet and
bip is a host in BNet.
The statistical method, which consumes a large and vari-

able amount of memory, stores every distinct opposite host to
calculate aip’s cardinality [15]. The accurate result provides
a baseline to measure the performance of other algorithms.
But the inefficiency of this method prevents it from being
deployed for real-time network monitor [16],

Estimating-based methods [17] are proposed to improve
the processing speed and reduce the memory consumption.
These methods are based on cardinality estimator.

Whang et al. [18] proposes a classical algorithm, Linear
Estimator (LE), to estimate the number of distinct elements
(the cardinality of hosts) from a data stream (IP pair stream).
LE contains g′ bits which are initialized to 0 at the beginning.
It randomly hashes [19] every element to a bit and sets the bit
to 1. After scanning all elements in a time window, LE esti-
mates the distinct elements number according to equation (1).
In equation (1), n0 is the number of ‘0’ bits. Themathematical
theorem of LE has been described in detail in [18].

Est = −g′ ∗ ln(
n0
g′
) (1)

Calculating the cardinality of aip is to count its distinct oppo-
site hosts’ number. Hence LE is an excellent method to detect
super points.

Since large quantity of hosts may appear in a time window,
assigning LE for every host will be inefficient [20]. There-
fore, the detection of all super points and the estimation of
their cardinalities are hot research topics. Several represen-
tative algorithms have been proposed [9], [10], [11], and we
refer to this kind of algorithms as estimating algorithm. Esti-
mating algorithm uses a fixed length of memory to estimate
host cardinality, and contains three procedures:
1) Scan every IP pair and record cardinality information in

a special data structure;
2) Detect super points and give a candidate list;
3) Estimate the cardinality of every host in the candidate

list and remove those whose cardinalities are smaller
than the threshold.

All these algorithms’ primary structures consist of sev-
eral LE . The differences of these algorithms are how to map
aip to LE and how to identify super points.
Wang et al. [9] proposes double connection degree

sketch (DCDS) to detect super point based on the Chinese
remainder theorem (CRT) [21]. DCDS contains an array
of LE . Each host is mapped to different LE and the super point
is restored byCRT . But theCRT contains complex operations
and limits the speed ofDCDS. Liu et al. [10] proposes vector
bloom filter algorithm (VBFA) to detect super point according
to the principle of bloom filter. VBFA maps every host to

VOLUME 7, 2019 43415

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

different LE by extracting sub bits from the IP address of
the host and restores super point by combining sub bits of
IP address. There are no complex operation in VBFA. Hence
VBFA scans packets quickly.

Unlike DCDS and VBFA, the grand spread estima-
tor (GSE), proposes by Shin et al. [11], uses a fixed length
bit pool as the primary structure. Every aip has a virtual
estimator with g′ bits extracted from the bit pool. The virtual
estimator is updated like LE . At the end of a time window,
aip’s cardinality is estimated according to the number of zero
bits in its virtual estimator and the fraction of zero bits in
the bit pool. The accuracy of this algorithm is affected by the
length of bit pool and the number of distinct IP pairs in a time
window. GSE is the first algorithm which uses GPU [22] to
estimate cardinalities.

All of these super point detection algorithms cannot work
under the sliding time window. The primary reason is that
they cannot record the appearance time of different hosts.
The second reason is that they spend too much time on super
points reconstruction to work in real time under the sliding
time window. SRLA proposed in this paper will solve these
two problems.

III. CARDINALITY ESTIMATOR UNDER
SLIDING TIME WINDOWS
LE is widely used by super point detection algorithms
because of its high estimation accuracy [23]. The time com-
plexity of the cardinality estimation is O(g′). Paper [18] also
shows that the accuracy of LE is related to g′, that is, the larger
the g′ is, the higher the accuracy of LE will be.
Since the super point is only a small fraction of all

hosts [24], there is no need to evaluate the cardinality of
every host that appears. It is a common train of thought for
super point detection algorithms to select super point without
estimate every host’s cardinality [25]. Existing algorithms use
LE to detect super points and estimate their cardinalities at the
same time. In the practice of super point detection, LE cannot
meet the accuracy and real-time requirements simultaneously
because of its high operational complexity [26]. Additionally,
since all these algorithms cannot preserve previous informa-
tion, they cannot be adopted under sliding time windows.

In this section, we will try to solve this problem with a
rough estimator derived from an optimal estimating algo-
rithm [27]. By modifying the rough estimator, we can find
these hosts whichmay exceed the threshold effectively. At the
end of a time window, only cardinalities of candidate super
points found by rough estimator will be estimated by a high
accuracy estimator, linear estimator. By introducing a novel
structure, Distance Recorder (DR), the sliding rough estima-
tor (SRE) and the sliding linear estimator (SLE) are proposed
to detect and estimate super points’ cardinalities under sliding
time windows. SRE detects candidate super points quickly
by scanning each IP pair < aip, bip >, and SLE estimates
the cardinalities of these candidate super points with high
accuracy at the end of each time slice. Time slice is the
basic unit of time in this paper. A time window consists of

one or several time slices. In the latter section, we propose
an algorithm that can simultaneously estimate several hosts’
cardinalities and detect candidate super points with a fixed
amount of memory based on SRE and SLE proposed in this
section.

Estimating the cardinality of a single aip is the basis for
super point detection and cardinality estimation. This section
will describe the procedure of estimating the cardinality of a
single host under the sliding time window.

In the first place, we discuss the difference between the
discrete time window and the sliding time window.

A. DISCRETE TIME WINDOW AND
SLIDING TIME WINDOW
A time window moves forward one time slice a time. A dis-
crete time window consists of only one time slice. But a slid-
ing time window may contain several time slices. FIGURE 1
demonstrates their difference by an example. In FIGURE 1,
the size of a time window is 300 seconds and the observing
period is 600 seconds. Under discrete timewindows, there are
only two time windows: DW1 and DW2. On the other hand,
the sliding time window moves forward one second a time,
there are 301 sliding time windows, from SW1 to SW301.
Obviously, detection result under the sliding time window is
better than that under discrete time windows at the cost of
additional estimation procedures. LetW (t, k) represent a time
window containing k continuous time slices which starting
from time slice t . The last time slice ofW (t, k), i.e. time slice
t + k − 1, is the current time slice.

FIGURE 1. Sliding time windows and discrete time windows.

Suppose there is a data stream, denoted by ST . ST =<
bip1, bip2, bip3, bip4, · · · , bipi, · · · >, where bipi is an
IP address in BNet . For a host ‘‘aip’’ in ANet , the ST here is
the data stream composed of its opposite hosts. Each bip in ST
belongs to a time slice. Let ST (t, k) represent the sub stream
of ST in the time windowW (t, k). The cardinality of ST (t, k)
is the number of distinct bip in ST (t, k) and is represented
by |ST (t, k)|.

There are the following two problems under discrete time
windows:
1) False negative. Affected by the starting point of the time

window, algorithm under discrete time windows can’t

43416 VOLUME 7, 2019

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

detect super points which span the boundary of two time
windows [28].

2) Detection latency. Algorithm under discrete time win-
dows won’t detect super points until the end of the time
window [29].

Both of these weaknesses come from the moving step of
the discrete timewindow [30]. The larger the size of a discrete
time window is, the more false negative rate and higher detec-
tion latency will occur. Therefore, we use the sliding time
window to copewith these problems by adopting fine-grained
moving steps [31]: the size of steps is sufficiently small so
that the process can be viewed as a continuously sliding time
window as suggested by its name. But detecting super points
under the sliding time window is more difficult considering
the intense observing frequency [32]. What’s more, to work
under the sliding time window, an algorithm must preserve
hosts’ state of a previous period [33].

To measure the loss rate of the discrete time window,
we captured a one-hour traffic at the edge of Nanjing main
node (POP Nanjing) of China Education and Research Net-
work (CERNET) from 13:00 to 14:00, Mar. 8th, 2018 [34].
This traffic is also one of the experiment data and its detailed
feature is listed in section V.

TABLE 1. Statistic result of discrete time windows vs. sliding time
windows.

The statistical results of 10 minutes observing period,
under discrete time windows and sliding time windows as
shown in FIGURE 1, are listed in TABLE 1. The threshold θ
is set as 1024. Data in column ‘‘DWSP’’ are the size of
the union of the super points detected from two discrete
time windows (DW1 and DW2 in FIGURE 1). Data in col-
umn ‘‘SWSP’’ are the size of the union of the super points
detected from 301 sliding time windows (SW1 to SW301 in
FIGURE 1). As shown in the table, more than 14 super points
are lost in every observing period. Hence, it is necessary to
adopt sliding time windows for high accuracy [35]. In the
following part we will introduce a rough estimator under
discrete timewindows and sliding timewindows respectively.

B. ROUGH ESTIMATOR
Kane et al. [27] presents a general rough estimation algo-
rithm, denoted as RE0, to estimate the cardinality of any data
stream. By applying this algorithm, |ST (t, 1)| can be roughly

estimated using only g integers (for IP address of version 4,
g = 8, and each integer is 5 bits).RE0 uses g integers to record
the least significant bits of hashed elements in the data stream.
Let REI represent these g integers. REI [i] represents the i-th
integer of REI . Each integer in REI is initialized to 0. The
definition of the least significant bit used in RE0 is provided
below:
Definition 1 (Least Significant Bit): Given an integer i,

BIT (i) represents the binary format of i. The least significant
bit of i is the position the first bit ‘1’ in BIT (i) starting from
the right, denoted by LSB(i).

For example, LSB(3) = 0, LSB(40) = 3, because
the binary numbers of 3 and 40 are ‘‘11’’ and ‘‘101000’’
respectively. Let H (x, n,A) represent a hash function that
can randomly map an integer x to a number between 0 and
n − 1 according to random seed parameter A [19], where
n is an positive integer. For each bip in ST (t, 1), RE0
maps ‘‘bip’’ randomly to an integer between 0 and 232 − 1
using the hash function H (bip, 232,A0) with random seed
parameter A0. The hash function H (bip, g,A1) with random
seed parameter A1 is used to map ‘‘bip’’ to an integer of
REI , i.e. REI [H (bip, g,A1)]. REI [H (bip, g,A1)] is used to
hold the maximum least significant bit of H (bip, 232,A0),
that is, REI [H (bip, g,A1)] = max(REI [H (bip, g,A1)],
LSB(H (bip, 232,A0))). After scanning all the elements in a
time window, RE0 estimates the cardinality based on REI .
Let T (r ′) indicate the number of elements inREI whose value
are no smaller than r ′ (r ′ is an integer). If T (r ′) ≥ g ∗ ρ and
T (r ′ + 1) < g ∗ ρ, the estimating cardinality, denoted by C ′,
is given by formula (2), where ρ = 0.99 ∗ (1− e−

1
3).

C ′ = 2r
′

∗ g (2)

The lemma 4 of paper [27] proves that the probability ofC ′

belonging to [|ST (t, 1)|, 4∗|ST (t, 1)|] is 1−O(1g). RE0 needs
to record the least significant bits of each hashed element.
But in the super point detection process, we only need to
determine whether the cardinality is higher than the specified
threshold θ . A threshold of the lowest significant bit, denoted
by τ , can be determined according to θ . In equation (2), τ is
the value of r ′ when C ′ is the threshold θ . Equation (3) shows
how to calculate τ according to θ .

τ = log2(
θ

g
) (3)

Only hashed elements whose least significant bit are no
smaller than τ should be recorded. The rough estimator pro-
posed in this paper, denoted as RE , is based on this idea.
RE uses g bits instead of g integers of RE0. Hence REI in
RE0 becomes a string of bits with length g, denoted as rough
estimator bits (REB). Every bit in REB is initialized to 0.
Let REB[i] indicate the i-th bit in it. The weight of REB,
denoted by |RE|, represents the number of 1 bits in REB.
Therefore, RE can be used to determine whether the number
of distinct elements in the data stream ST (t, 1) is higher than
the threshold. It contains two procedures: updating REB by
bip and checking if aip’s cardinality is bigger than threshold

VOLUME 7, 2019 43417

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

by REB. The Boolean function description of RE is given
below.
RE_Update(bip):

1) Hash bip to a random value b′ between 0 and 232− 1 by
H (bip, 232,A0) ;

2) Calculate the least significant bit of b′, LSB(b′);
3) If LSB(b′) is smaller than τ , return.
4) Hash bip to an integer i by H (bip, g,A1);
5) Set the i-th bit of REB, REB[i];

RE_IsSP() :check if aip’s cardinality is bigger than θ ;

1) Get the number of bit ‘1’ in REB, store it to n1;
2) If n1 is no smaller than ρ ∗ g, return TRUE, else return

FALSE.

If an aip’s cardinality is no smaller than θ , RE_IsSP()
detects it out with high probability. The theorems that support
RE are provided below.
Lemma 1: Assumes that there are α different balls and g

different boxes (α ≥ g). Throw all the balls into these boxes
randomly. Let AN (α, g) indicate that there is at least one ball
in each box. Then AN (α, g) = gα−

∑g−1
i=1 ∗C

i
g∗AN (α, i) and

AN (α, 1) = 1.
Proof: There are total gα different cases throwing balls.

When there is only one box, there is only one way to throw
balls, throwing all the balls into the single box. When just
i boxes are none empty, there are C i

g ∗ AN (α, i) cases, and
1 ≤ i ≤ g. Subtract these cases that at least one box is empty
from gÎś. And we will get the cases that all boxes are none
empty, that is, AN (α, g) = gα −

∑g−1
i=1 ∗C

i
g ∗ AN (α, i). �

Theorem 1: Throw α balls into g boxes. Let g1 represent
the number of none empty boxes and FN (α, g, g1) represent
the number of cases that there are g1 none empty boxes
in g boxes. Then FN (α, g, g1) = Cg1

g ∗ AN (α, g1) and
1 ≤ g1 ≤ g.

Proof: The remaining g − g1 boxes are empty. Choose
g − g1 empty boxes from g boxes. There are Cg1

g selection
methods. Each case has AN (α, g1) different methods to throw
these balls. So the total situation is Cg1

g ∗ AN (α, g1). �
ST (t, 1) can be regarded as a set of balls, andREB is treated

as a set of boxes in theorem 1. Since RE uses a hash function
to sample data in ST (t, 1), not every element in ST (t, 1)
updates a bit in REB. Suppose that there exist α different
elements in ST (t, 1) updatingREB. The probability of |RE| =
g1, denoted by Pw{α, g, g1}, is given in equation (4).

Pw{α, g, g1} =
FN (α, g, g1)

gα
(4)

Each element in ST (t, 1) has the probability of 1
2τ updating

REB. Let Pbip{|ST (t, 1)|, τ, α} represent the probability that
there are α different elements in ST (t, 1) updating REB.
Equation (5) shows how to calculate Pbip{|ST (t, 1)|, τ, α}
from |ST (t, 1)|.

Pbip{|ST (t, 1)|, τ, α}=Cα|ST (t,1)| ∗ (
1
2τ

)α ∗ (1−
1
2τ

)|ST (t,1)|−α

(5)

Combining equations (4) and (5), we can get the probability
of there are g1 bits of REB being ‘1’ after scanning ST (t, 1),
denoted by Ps{|ST (t, 1)|, g, τ, g1}. Equation (6) shows how
to calculate Ps{|ST (t, 1)|, g, τ, g1}.

Ps{|ST (t, 1)|, g, τ, g1}

=

|ST (t,1)|∑
α=g1

Pbip{|ST (t, 1)|, τ, α} ∗ Pw{α, g, g1} (6)

The probability that at least n bits are set in windowW (t, 1),
denoted by P+s {|ST (t, 1)|, g, τ, n}, can be derived from for-
mula (6), as shown in equation (7).

P+s {|ST (t, 1)|, g, τ, n} =
g∑

g1=n

Ps{|ST (t, 1)|, g, τ, g1} (7)

Assuming that |ST (t, 1)| = θ = 1024, then the number
of different elements in ST (t, 1) updating REB is expected
to be 8. When g=8, a super point is identified by RE with
probability more than 99.9576% according to equation (7).
Comparing with RE0 [27], RE occupies one-fifth of RE0’s
memory. RE updates REB for only about 1

127 elements in
ST (t, 1) when θ = 1024 with memory access operations of
only 1

127 of RE0. However, RE only works under the discrete
time window. The sliding rough estimator to be described in
the next section enables RE to work under the sliding time
window by adopting a powerful counter.

C. SLIDING ROUGH ESTIMATOR
The rough estimator RE can estimate whether the number
of distinct elements in a window exceeds the threshold. This
section makes the corresponding adjustment so that it can be
applied under the sliding time window. The adjusted estima-
tor is called Sliding Rough Estimator (SRE).

Any two adjacent sliding time windows with k time slices
have k − 1 overlapping time slices. For an element bip in
the data stream, it may appear multiple times in different
time slices. How to judge if bip appears in the current time
window is the problem that must be faced under the sliding
time window. In this paper we use a data structure called
Distance Recorder (DR) to solve this problem.
DR is a counter consisting of z bits and it records the dis-

tance between the time slice of the last occurrence of bip and
the current time slice, marked as dr(bip). And consequently
dr(bip) being 0 suggests that bip appears in the current time
slice. Each time the window slides, the ‘‘+1’’ operation is
performed onDR. When dr(bip) ∈ [0, k−1] (less than k), bip
appears in the sliding time windowW (t, k). When dr(bip) =
2z − 1, the distance of bip is more than k from the current
time slice, that is, bip does not appear in the current window.
k is the number of time slices within the sliding time window,
with a maximum value no bigger than 2z − 1. When z = 1,
then k = 1 and the sliding time window becomes a discrete
time window, that is, DR can also be used for discrete time
windows.

43418 VOLUME 7, 2019

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

The initial value of the dr(bip) is 2z − 1. DR has four
main operations listed as follows (bip1 and bip2 represent two
different elements in the data stream):
1) DRinit(dr(bip1)): set every bit of dr(bip1) to 1;
2) DRset(dr(bip1)): set every bit of dr(bip1) to 0;
3) DRslide(dr(bip1)): preserve the value of dr(bip1) when

the time window sliding; If the value of dr(bip1) is
smaller than 2z − 1, increase dr(bip1) by 1;

4) DRjoin(dr(bip1), dr(bip2)): return a new DR whose
value is the maximum of dr(bip1) and dr(bip2);

DRinit(dr(bip1)) is used to initialize dr(bip1) at the begin-
ning of the algorithm;DRset(dr(bip1)) is used to process ele-
ments that appear in the current time slice;DRslide(dr(bip1))
updates the value of dr(bip1) when the window slides; mul-
tiple DR can be combined into a new DR using the DRjoin
operation.
The above operations of DR guarantee that DR can main-

tain the correct distance value. The method of calculating the
cardinality of ST (t, k) by the statistical approach is to assign
a DR to each distinct element. At the end of each time slice,
|ST (t, k)| is accurately calculated by counting the number of
DR whose values are less than k . However, the memory and
computing cost of this method is significant. For instance,
when the elements in ST are IPv4 addresses, each element
requires 32 + z bits: 32 bits for the IP address and z bits
for the DR. The data stream in each time window needs
|ST (t, k)| ∗ (32 + z)/8 bytes. When |ST (t, k)| is large, it is
also a complex task to quickly locate every DR from the
large memory. Therefore, this statistical method can only be
applied to small-scale networks, or to get the standard result
off-line for evaluating the accuracy of other algorithms.

In this paper, we design an estimator based on RE : Slid-
ing Rough Estimator (SRE). SRE is a memory optimization
algorithm that uses only g DR to determine whether |ST (t, k)|
exceeds a specified threshold.
SRE uses DR instead of the bit in RE . Hence the bit string

REB becomes DR array, sliding rough DR array (SRDR). Let
SRDR[i] represent the i-thDR in SRDR. When the element of
ST (t, k) is IPv4 address, g is set to 8 [27].
DR preserves the time information of different elements

appearing in ST (t, k). It judges whether each element appears
in the current time window W (t, k) according to the value
of DR. DR less than k corresponds to bit 1 in the REB. Hence
the weight of the SRE, denoted as |SRE|k , is the number of
DR whose values less than k in the SRDR. All DR in SRDR
are initialized to 2z − 1 at the beginning of the algorithm.
Let SRE(aip) represent the SRE used by aip. Similar to RE ,

SRE includes two parts: updating SRDR of SRE(aip) based
on bip and determining whether aip exceeds the threshold
based on SRDR. For every bip in a time slice, SRE firstly uses
Algorithm 1 to check if bipmeets the requirement of updating
SRDR. If SRE_IsRecord(bip) returns true, then SRE updates
SRDR by Algorithm 2. At the end of a time window, SRE
determines if aip is a candidate super point by Algorithm 3.
SRE uses DRset operation when updating a DR. DRset

operation sets the value of DR to 0, indicating that the bip

Algorithm 1 SRE_IsRecord
Input: bip
Output: IsRecord
1: b′← H (bip, 232,A0)
2: if LSB(b′) < log2(θ/g) then
3: IsRecord ← False
4: else
5: IsRecord ← True
6: end if
7: Return IsRecord

Algorithm 2 SRE_Update
Input: SRE(aip), bip
1: i← H (bip, g,A1)
2: srdr ← point to the SRDR of SRE(aip)
3: DRset(srdr[i]);

Algorithm 3 SRE_IsSP
Input: SRE(aip)
Output: IsSP
1: |SRE|k ← 0
2: srdr ← point to the SRDR of SRE(aip)
3: for i ∈ [0, g− 1] do
4: if srdr[i] < k then
5: |SRE|k ++
6: end if
7: end for
8: if |SRE|k < 0.99 ∗ (1− e−

1
3) ∗ g then

9: IsSP← False
10: else
11: IsSP← True
12: end if
13: Return IsSP

appears in the current time slice. When the boundary of the
window is reached and the super point detection is completed,
all the DR are proceeded by the DRslide() function.
SRE is simple, fast and memory economic. However, as a

lightweight estimator, it can only estimate whether the cardi-
nality is greater than the threshold in real-time when scanning
the data stream. It cannot give an accurate estimation of
the cardinality. For this reason, a more precise estimator is
needed. This task is solved by sliding linear estimator which
is introduced in the following section.

D. SLIDING LINEAR ESTIMATOR
When SRE determines that the value of |ST (t, k)| is greater
than or equal to θ , it is necessary to accurately estimate the
value of |ST (t, k)|, which is performed by the sliding linear
estimator (SLE) proposed in this section. By SLE , mistakes
containing in SRE can be eliminated.

This work is based on the modification of the classical
linear estimator LE . The core idea of SLE is to replace the
g′ bits in LE with g′ DR. The g′ DR used by SLE is called

VOLUME 7, 2019 43419

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

Algorithm 4 SLE_Update
Input: SLE(aip), bip
1: i← H (bip, g′,AL)
2: sldr ← point to the SLDR of SLE(aip)
3: DRset(sldr[i])
4: Return

the sliding linear DR array (SLDR). Each DR in SLDR is
initialized to 2z− 1 at the beginning of the algorithm. Unlike
SRE, for each bip in ST (t, k), SLE randomly maps it to one
DR in SLDR using the hash function H (bip, g′,AL) with
random seed parameter AL and sets the value of the DR to
zero.

At the end of each time slice, the cardinality of ST (t, k)
can be estimated by the weight of SLE. The weight of SLE,
denoted by |SLE|k , is the number of DR whose value is less
than k in SLDR. k is the number of time slices in a sliding
time window. |SLE|k corresponds to the number of ‘1’ bits
in LE . SLE estimates the cardinality of |ST (t, k)| based on
formula (8).

|ST (t, k)| = −g′ ∗ ln(
g′ − |SLE|k

g′
) (8)

Using SLE to estimate the cardinality of aip also includes
two parts: scanning opposite hosts and cardinality estimation.
Let SLE(aip) represent the SLE used by aip. Algorithm 4
describes how to use bip to update the SLDR of SLE(aip).
According to [18], the accuracy of SLE is related to the

size of g′. The larger the g′ is, the higher the accuracy rate
will be. On the contrary, larger g′ will also require longer
time to compute |SLE|k . Therefore, SLE is only suitable for
estimating cardinalities of candidate super points at the end
of each time slice.

IV. SUPER POINTS DETECTION AND
CARDINALITIES ESTIMATION
An SRE or SLE can estimate the cardinality of a single aip
in the sliding time window. However, a one-to-one SRE/SLE
allocation would be impractical when the quantity of aip
in an ANet is so large that the memory consumption is
unacceptable. For this reason, a new SRE and SLE based
super point estimation algorithm, sliding rough and linear
algorithm (SRLA), is provided in this section. Like other
algorithms, SRLA uses a fixed amount of memory to detect
super points and estimate their cardinalities.

A. SLIDING ESTIMATOR ARRAY AND
SUPER POINT DETECTION
Since SRE only uses 8 DR to judge whether a host (with
a IPv4 address) is a candidate super point, it is fast and
memory efficient. Using SRE and SLE together can estimate
the cardinalities of candidate super points more quickly and
accurately. A combination of SRE and SLE is called Sliding
Estimator and is recorded as SE ′.

Although a large-scale network contains a huge amount
of aip, most of them cannot become super points and hence
it is unreasonable and impractical to assign an SE ′ to each
aip. If an SE ′ can be used by multiple aip simultaneously,
a fixed amount of memory can be used to complete the
cardinality estimation. For example, we can assign a vector
consisting of v′ SE ′, and each aip is randomly mapped to
a SE ′ in this vector. The SE ′ vector is marked as SEV ′ and
shown in FIGURE 2. For an aip, its cardinality is estimated
by its corresponding SE in the vector. This method is called
vector estimation method. This method uses a fixed amount
of memory and it may lead to overestimating. For example,
suppose that aip1 and aip2 are mapped to the same SE ′.
When the sum cardinality of aip1 and aip2 is greater than the
threshold, both aip1 and aip2 will be judged as super points
regardless of their individual cardinalities.

FIGURE 2. Sliding estimator vector.

The estimating error of SEV ′ is caused by multiple aip
using the same SE ′. Suppose SEV ′ has v′ SE ′, the probability
that any two aipmap to the same SE ′ is p1 = 1/v′. If SEV ′ is
divided into two vectors SEV ′1 and SEV

′

2, the number of SE ′

of each vector is v′/2. But different mapping functions are
used, then estimating error would be decreased. In this case,
the probability of any two aipmapping to the same SE ′ is 2/v′

for both SEV ′1 and SEV
′

2, because different mapping functions
are used. The probability that they all map to the same SE ′ in
SEV ′1 and SEV

′

2 is p2 = (2v′)
2
=

4
v′2
, and when v′ > 4, p2 <

p1. In practice, the value of v′ is more than 210. Obviously,
this method can effectively reduce estimating errors.
SRLA is derived by the idea. The SE ′ vector is transformed

into an SE ′ array of u rows and v columns to estimate the
cardinalities of all candidate super points. The SE ′ array is
called sliding estimator array (SEA′) as shown in FIGURE 3.
Each row randomly selects an SE ′ to record the cardinality of
an aip. At the end of a time window, the u SE ′ corresponding
to aip will be merged, and the cardinality of aip will be
estimated according to the merged SE ′. Since each row in the
SEA′ uses different mapping functions, the probability that
any two aipmap to the same SE ′ in all of these u rows is (1v)

u.
SRLA is based on sliding estimator array SEA′. When scan-

ning an IP pair< aip, bip >, SRLA selects the corresponding
SE ′ in each row by aip, updates the selected SE ′ with bip.
If aip is judged as a candidate super point by SRE , it will be

43420 VOLUME 7, 2019

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

FIGURE 3. Sliding estimator array.

added into a candidate super point list (CSIP). When reaching
the time window boundary, SRLA filters super points from
the candidate super point list by estimating their cardinalities
using SLE . The working process of SRLA is as follows:
1). Initialise all data structures;
2). Read IP pair < aip, bip >;
3). If not reach the end of a time window, go to step 6);
4). Scan the list of candidate super points CSIP, calculate

the cardinality of each candidate super point according
to SLE, filter out the super points;

5). Maintain all DR in SEA′ by using DRslide() (see
section III). According to the updated SEA′, estimate the
cardinality of each candidate super point in CSIP, and
remove those candidate super points whose cardinality is
below the threshold from CSIP. The purpose of this step
is to generate a list of candidate super points for the next
time window.

6). Select one SE from each row of SEA′ according to aip.
This step uses u different hash functions to map aip
randomly to different SE ′ in each row.

7). Update the SLE and SRE in these u SE ′ found in step 6) by
SRE_Update() and SLE_Update() (see section III) with
bip as the parameter.

8). If the SRE is updated, merge these SRE in u SE ′ to
determine whether the aip is a candidate super point.
If aip is a candidate super point, it will be inserted into
CSIP.

9). Go to step 2).
In step 8), SRLA adds these aip satisfying the candidate

super point condition to CSIP. CSIP is used to record the aip
whose cardinality may be higher than the threshold. At the
end of the time slice, SLE is used to estimate the cardinality
of each candidate super point and filter out the super points.
SRLAmainly consists of three parts: firstly, update the core

data structure (step 6)-8)). Secondly, estimate cardinality at
the end of a time window(step 4)). Finally, maintain the state
of the primary data structure and update the CSIP (step 5))
when the window slides. The details are discussed below.

B. UPDATE PRIMARY DATA STRUCTURE
SRLA updates the SRE and SLE corresponding to aip when
the IP pair < aip, bip > arrives. When this updating process

causes the cardinality of aip to exceed the threshold, aip
will enter CSIP. But there may still be multiple aip-related
IP pairs before the end of the time window. The problem is
that aip will re-enter CSIP, which will lead to excessive aip
in CSIP. Such redundancy is unreasonable and a burden to
meet the real-time requirements. To cope with this dilemma,
the duplicate candidate super points checking is necessary
when adding a candidate super point to CSIP.
This operation is done using the principle of the bloom

filter. The method is to add a candidate super point indicator,
denoted as SI , in SE ′. SI consists of 16 bits. We call the
modified structure SE , as shown in FIGURE 4.

FIGURE 4. Sliding estimator with super points indicator.

A SE contains not only one SRE and one SLE, but also
an SI . SI is used to indicate whether an aip has been detected
as a candidate super point in a time window. SI [i] denotes the
i-th bit in SI . When an aip is firstly detected as a candidate
super point, a bit in SI is set to 1. The bit is determined
by a random hash function with aip as its parameter, which
maps aip randomly to an integer between 0 and 15. The
hash function H (aip, 16,As) with random seed parameter As
satisfies the requirements. The last four bits of aip can also
be used as a hashed value directly since the last four bits
of IP address itself has high randomness [36], which can
improve the speed of the algorithm. If an aip corresponds to
a bit of 1 in all its corresponding SI , it means that the aip
is already in CSIP and does not need to be re-added. At the
end of a time window, when the CSIP is updated, the SI of
candidate super points is updated at the same time. SRLA
uses the array of SE composed of u rows and v columns,
recorded as SEA. SRLA updates SEA andCSIPwhen scanning
IP pairs, i.e. steps 6) to 8) in section IV-A. The pseudo-code
is described in Algorithm 5. In the i-th row, aip is mapped
to a SE by hash function H (aip, v,ARi) with random seed
parameter ARi. Let SRE[i, j], SLE[i, j] and SI [i, j] represent
the SRE , SLE and SI of the SE in the i-th row, j-th column
of SEA.

The purpose of merging SI and SRE is to eliminate the
impact of mapping multiple aip to the same SE and restore
the real SRE. Neither the updating operation nor the merg-
ing operation involve complex calculation. All IP pairs in
a time slice are processed according to the above opera-
tions. When the time slice boundary is reached, CSIP con-
tains candidate super points in the sliding time window.
Using the more accurate estimator SLE, we get cardinali-
ties of candidate super points in CSIP. How the cardinal-
ity is estimated is the problem to be discussed in the next
section.

VOLUME 7, 2019 43421

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

Algorithm 5 ScanIPpair
Input: < aip, bip >
1: for i ∈ [0, u− 1] do
2: SLE_Update(SLE[i,H (aip, v,ARi)], bip)
3: end for
4: if SRE_IsRecord(bip) is FALSE then
5: Return
6: end if
7: for i ∈ [0, u− 1] do
8: SRE_Update(SRE[i,H (aip, v,ARi)], bip)
9: end for
10: USI ← a new SI with every bit equal to 1
11: for i ∈ [0, u− 1] do
12: USI ← USI&SI [i,H (aip, v,ARi)]
13: end for
14: siidx ← last 4 bits of aip
15: if USI [siidx] == 1 then
16: Return
17: end if
18: URE ← a new SRE with every DR equal to 0
19: for i ∈ [0, u− 1] do
20: srdr ← SRDR of SRE[i,H (aip, v,ARi)]
21: for j ∈ [0, g− 1] do
22: dr ← srdr[j]
23: URE[j]← DRjoin(URE[j], dr)
24: end for
25: end for
26: if SRE_IsSP(URE) then
27: siidx ← last 4 bits of aip
28: insert aip into CSIP
29: for i ∈ [0, u− 1] do
30: SI [i,H (aip, v,ARi)][siidx]← 1
31: end for
32: end if

C. ESTIMATE CARDINALITIES OF
CANDIDATE SUPER POINTS
This section discusses how to use SLE to estimate cardinal-
ities of candidate super points in CSIP at the end of a time
window. The estimation is based on equation (8). What needs
to be solved is how to merge these u SLE corresponding to a
candidate super point in the most reasonable way.

After scanning the IP pairs in time slice t , if the value of any
DR in SEA is less than k , the DR is set by DRset() operation
in time windowW (t − k + 1, k). At this time, the DR is said
to be active in the time window W (t − k + 1, k).
To reduce the impact of sharing SE , u SE are utilized

together to record and estimate the cardinality of each aip.
Using the union SLE , denoted as ULE , to reduce the over-
estimation of cardinality. For an aip, its ULE , denoted as
ULE(aip), is acquired by merging its corresponding u SLE
in SEA. However, when a time slice contains sufficiently
large number of IP pairs, some DR in the ULE will be active
because they aremapped by other aip. Unlike SRE, SLE needs

to perform more precise calculations. In the ULE(aip), these
false active DR, which become active not because of aip,
should be eliminated as much as possible.

Let |LDR(i)|k denote the number of active DR in all SLE
in the i-th row of SEA. Since SEA maps aip randomly to
different SLE and bip randomly to DR in a SLE, the distri-
bution of active DR can be considered uniform. In the i-th
row, the probability that a DR of SLE is active is PSLEDR (i) =
|LDR(i)|k
g′∗v . |LDR(i)|k is obtained by scanning all SLE in the i-th

row. Select one SLE from each row in the SEA and merge
these u SLE by the DRjoin() operation to get ULE . Let Psu
represent the probability that a DR in ULE is active. Psu can
be calculated according to the following formula.

Psu =
u−1∏
i=0

PSLEDR (i) (9)

Let |ULE(aip)|′k denote the number of active DR in
ULE(aip) which are active due to aip. Let |ULE(aip)|k denote
the number of all active DR in ULE(aip). |ULE(aip)|k can be
obtained by counting the active DR in ULE . But |ULE(aip)|k
contains the number of false active DR. By estimating the
number of these false active DR and removing them from
|ULE(aip)|k , we can get the estimated value of |ULE(aip)|′k .
Obviously, it is more reasonable to estimate the cardinality of
aip with |ULE(aip)|′k .
Let OP(aip, t, k) represent the set of opposite host of aip

inW (t, k) and |OP(aip, t, k)| represent the number of distinct
host in OP(aip, t, k), i.e. the cardinality of aip. According to
formula (8), we acquire the following equation.

|ULE(aip)|′k = g′ − g′ ∗ e
−
|OP(aip,t,k)|

g′ (10)

Because in ULE(aip), the remaining g′ − |ULE|′k DR
are false active with the probability of Psu, |ULE(aip)|′k is
estimated by the following equation:

|ULE(aip)|′k = |ULE(aip)|k − (g′ − |ULE(aip)|′k) ∗ Psu

(11)

By combining formulas (10) and (11), we can get the
equation (12) for estimating the cardinality of aip.

|OP(aip, t, k)|′ = −g′ ∗ ln(
g′ − |ULE(aip)|k
g′ ∗ (1− Psu)

) (12)

SRLA uses equation (12) to estimate the cardinalities of
candidate super points in CSIP. The formula improves the
accuracy of cardinality estimation by removing the number
of false active DR in ULE . Using this method to remove
the noise in ULE can improve the average accuracy of the
estimation results.

After estimate the cardinalities of candidate super points,
SEA should be updated for the next time window as shown in
the next section.

43422 VOLUME 7, 2019

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

D. UPDATE DATA STRUCTURE AT THE
BOUNDARY OF A TIME WINDOW
To run in the sliding time window, SRLA must incrementally
update SEA instead of reinitializing all SE every time the
window slides forward. After estimating cardinalities, SRLA
needs to update all SI , DR and CSIP before scanning the IP
pairs in the next time slice, that is, step 5) of SRLA in the
section IV-A.
DR is updated by the DRslide() operation in section III.

After updating DR, the cardinalities of some aip in CSIP
decreases. So CSIP is updated based on the updated SEA
to remove candidate hosts that are no longer determined as
candidate super points by SRE. And SI needs to be reset
according to the new CSIP. The specific update steps are as
follows:
1) Increase all DR in SEA by 1;
2) Set all SI in SEA to 0;
3) Update CSIP and SI by SRE in the updated SEA: if a

candidate super point is no longer judged as a super point
by SRE , delete it from CSIP; else set bits of SI which is
related with this candidate super point.

SRLA detect super points and estimate their cardinalities
as described before. SRLA is also a parallel algorithm. In the
next section, we shows how to deploy SLRA on GPU to deal
with 40 Gbps traffic in real-time.

V. EXPERIMENTAL RESULTS
To verify the performance of SRLA, this paper experiments
on real-world high-speed core network trace collected at the
network boundary of Nanjing node of CERNET [34]. The
experimental data contain two IP traces, which are collected
on October 23, 2017, and March 8, 2018, respectively. They
are both one-hour IP traces starting from 13:00 to 14:00 and
currently available for download on the IPtas website [34].
The average values of basic information of these two traffics
under a 5-minute discrete time window is shown in TABLE 2.
In TABLE 2, ‘‘#ANet IP’’ and ‘‘#BNet IP’’ denote the aver-
age number of distinct IP addresses forANet andBNet in each
window respectively; ‘‘#Flow’’ denotes the average number
of distinct IP pairs. The threshold value of the super point
is 1024, and ‘‘#Super points’’ denotes the average number
of super points. As can be seen from the table, the super
point accounts for only 0.0422% of the total number of hosts
in ANet .

TABLE 2. Traffic summary.

The experiment consists of three parts:
1) Test the influence of different combinations of u, v

and g′;

2) Compare the performance of the SRLA with other algo-
rithms under discrete time windows,

3) Run SRLA under sliding time windows.

In the experiment part, the standard answer is obtained
based on the accurate statistical algorithm. Because SRLA can
run in parallel conveniently, all the experiments in this paper
are carried out on a PC with a GPU(Nvidia Titan XP, 12 GB
memory). We describe how to deploy SRLA in GPU firstly.

A. DEPLOY ON GPU
When scanning IP pairs, SRLA only sets some bits of SEA to
1 or sets some DR to 0 and the results are the same regardless
of the sequence of execution. Therefore, large amount of IP
pairs can be processed simultaneously by updating SEA and
DR via multiple threads [37].
GPU is a particular device with rich computing units and

high memory throughput [38]. Although CPUs may have
slight advantages over GPUs in terms of single computing
core [39], the highly concentrated processing units grant GPU
significantly more computing power than CPU, especially
when processing parallel computing tasks of single instruc-
tion stream and multiple data streams [40]. The primary data
structure SEA used by SRLA can be accessed or modified
by multiple threads at the same time, and each thread uses
the same algorithm to process different IP address pairs.
Obviously SRLA is suitable for GPU implementation [41].
But since the GPU can only access its dedicatedmemory [42],
IP address pairs need to be stored in thememory pool and then
copied to GPU memory.
SEA is allocated on GPU’s global memory [43]. Two

buffers of the same size are allocated on the server and the
GPU separately for storing IP pairs. When the buffer on the
server is full, the stored IP pairs are copied to theGPU’s buffer
through the PCIe bus [44]. The number of IP pairs stored in
the buffer determines the number of threads to be initiated
in the GPU. After the IP pair buffer replication is completed,
the GPU starts a processing thread for each IP pair. Each of
these threads runs the steps 6) to 8) of SRLA as described in
section IV-A.

The set of experimental traffic is saved on the local hard
disk. In the experiments, the IP pairs are read from the hard
disk file into the server buffer. If the algorithm needs to run in
real-time network environment, two or more IP pair buffers
can be reserved on the server side to save real-time network
traffic, and hence to prevent IP pairs overflow caused by the
sudden increase of packets. After processing all IP pairs in a
time slice, the GPU adopts another set of threads to calculate
the cardinalities of candidate super points in CSIP by step 4)
in section IV-A. After cardinalities estimation, SEA and CSIP
need to be updated to maintain their states in the next time
window. Updating of SEA and CSIP (step 5) in section IV-A)
can also be done in parallel with different threads in the GPU.

In the latter analysis, ScanT is used to indicate the time of
updating SEA according to IP pairs in a time slice, that is,
the time of scanning IP pairs. EstT represents the time of

VOLUME 7, 2019 43423

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

cardinality estimation. SEAT and CSIPT stand for the time
of updating SEA and CSIP after cardinalities estimation at
the end of a time window. SliceT denotes the length of a
time slice. In a time slice, the total running time of SRLA
is the sum of ScanT , EstT , SEAT and CSIPT , which is
recorded as AllT . AllT must be less than SliceT to estimate
cardinalities of super points in real time. In this experiment,
ScanT , EstT , SEAT and CSIPT are the running time on
GPU. Without special notification, the unit of running time is
milliseconds (ms).

B. THE INFLUENCE OF PARAMETERS ON SRLA
The parameter setting of the SEA will affect the performance
of SRLA. This experiment compares the effects of different
u, v and g′ on SRLA and selects the reasonable parameters
for the following experiments regarding accuracy, memory
occupancy and estimation time. This experiment is done
under the discrete time window.

Under the discrete time window, the parameters of SRLA
are set as follows: the length of each time slice SliceT is set
to 300 seconds, the number of time slices k is set to 1 in each
window, and the number of bits in each DR (z) is set to 1.
Each traffic is divided into 12 discrete time windows.

Firstly, the accuracy of the algorithm is measured by the
false positive rate (FPR) and the false negative rate (FNR).
Definition 2 (FPR/FNR): For a segment of traffic contain-

ingN super points, letN ′ represent the number of super points
detected by an estimation algorithm. In the N ′ detected super
points, there are N+hosts are not super points, and there are
N− super points not detected out by the estimation algorithm.
ThenFPR is the ratio ofN+ toN ;FNR is the ratio ofN− toN .
FPR is inversely proportional to FNR. Therefore, this

paper uses the sum of FPR and FNR, recorded as the total
error rate (FTR), to compare the accuracy of an estimation
algorithm.

FIGURE 5 and 6 show the average accuracy of SRLA of
two traffics under 12 discrete time windows using different
parameter combinations.

FIGURE 5. Average accuracy of traffic 1.

As can be seen from these two figures, when v is 65536 or
131072 and u is 4 or 5, the FTR of SRLA is lower than that
of u and v with other values. High accuracy is a necessary

FIGURE 6. Average accuracy of traffic 2.

condition for SRLA algorithm to run successfully. To select
the parameters that can make SRLA obtain high accuracy,
we list the combinations of parameters whose average FTR
is less than 3% in both set of traffic in TABLE 3.

TABLE 3. Running result of SRLA under different parameters.

As can be seen from TABLE 3, there are nine combinations
of parameter that can make FTR less than 3% in both traffics.
TABLE 3 also lists the memory occupied by SRLA (column
‘‘Memory’’), the average total error rate (column ‘‘FTR’’)
and the average estimation time (column ‘‘EstT’’) of the two
traffic, in which ‘‘Memory’’ refers to the memory occupied
by the SEA.

The data in TABLE 3 are arranged in order of memory
occupancy in descending order. Since obviously less mem-
ory consumption by SRLA is preferable, we make a further
analysis of the first three lines, which do not exceed 200 MB
of memory. TABLE 4 lists the ratio of FTR, Memory, and
EstT to the first row (FTR ratio, Memory ratio, and EstT
ratio). As can be seen from this table, EstT increases grad-
ually with the increase of memory. Compared with the first
line, the memory of the second line increases by 25% while
the FTR decreases by 7.86%. The memory of the third line
increased by 48.85%, but the FTR decreased by only 8.78%,
only 0.92% more than the second line.

Based on the above analysis of accuracy, EstT , and mem-
ory occupancy, in the following experiments, v, u, and g′

are set to 13172, 5, and 2048 respectively. Under this com-
bination of parameters, the average result of SRLA running
in 24 discrete time windows is shown in TABLE 5.

43424 VOLUME 7, 2019

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

TABLE 4. Ratio of different combinations of parameter.

TABLE 5. The performance of SRLA with selected parameters.

C. COMPARING RESULTS UNDER
DISCRETE TIME WINDOWS
To evaluate the performance of SRLA under discrete time
windows, this paper compares it with double connec-
tion degree sketch (DCDS) [9], vector bloom filter algo-
rithm (VBFA) [10], and grand spread estimator (GSE) [11].
TABLE 6 shows the average results of different algorithms
under two traffics (there are total 24 discrete time windows).
In TABLE 6, ‘‘SW’’ indicates whether the algorithm can run
in a sliding time window.

TABLE 6. Performance of different algorithms.

As can be seen from TABLE 6, SRLA has the highest
accuracy and occupies only half of the memory of other
algorithms. From the runtime analysis, SRLA uses the least
total time AllT . Moreover, the EstT of SRLA is only 0.519%
to 0.166% of the EstT of other algorithms. Since SRLA
generates a list of candidate super points when scanning IP
pairs, which reduces the number of hosts that need to estimate
the cardinality, its EstT is smaller than other algorithms’.
EstT plays an essential role under sliding time windows. Fast
super point cardinality estimating is a necessary condition
for the algorithm to run under sliding time windows because
under the sliding time window, cardinality estimation and
super point detection will be more frequent. If EstT is large,
on the other hand, it will affect the efficiency of the algorithm
and even make the algorithm unable to deploy in real time.
Besides, among these algorithms, SRLA is also the only one
that can run in sliding time windows.

D. EXPERIMENTS UNDER SLIDING TIME WINDOWS
For the sliding time window experiments, SliceT is set to
1 second and k is 300. When k is 300, the number of bits

of DR (z) could be as small as ceil(log2(300)) = 9 bits.
To make the operation of DR simple, in this experiment,
DR occupies continuous bytes, that is, z is set to 16. In this
experiment, the error rate and running time of SRLA are tested
under sliding timewindows. In each traffic, the window slides
from W (0, 300) to W (3300, 300), i.e. each traffic contains
3301 time windows and each time window is 5 minutes.

TABLE 7 lists the maximum, minimum, average, and vari-
ance of error rate (FNR, FPR, FTR) in two traffic (each traffic
has 3301 time windows) under sliding time windows. ‘‘All
traffics’’ denotes the union of all time windows in the two
traffic, with a total of 6602 time windows. Under the sliding
time window, since each traffic contains a large number of
time windows, we list the variance of SRLA results, which
can be used to observe the fluctuation of results in different
time windows.

TABLE 7. False rate under sliding time windows.

Under sliding time windows, the average FTR of SRLA is
2.3114%, which is close to the error rate of discrete time
windows (2.523%). It shows that SRLA can obtain a higher
accuracy under sliding time windows than that under discrete
time windows. SRLA also needs to update SEA and CSIP at
the end of each time window, compared with running under
discrete time windows. Consequently, under the sliding time
window, the running time of SRLA also includes SEAT and
CSIPT . TABLE 8 lists the maximum, minimum, average,
and variance of running time (ScanT , EstT , SEAT , CSIPT)
in 6602 time windows (the union of time windows in two
traffics) under sliding time windows.
ScanT in the sliding time window is smaller than that in

discrete time windows. The reason is that SRLA can update
SEA incrementally under sliding time windows. Each time
window only needs to scan IP pairs in one time slice (1 sec-
ond), and the time slice length under the sliding time window
is smaller than the time slice length under discrete time
windows (300 seconds). The maximum AllT used by SRLA
in each time slice is only 109.3656 milliseconds, which is
less than the length of one time slice (1 second). Hence SRLA
can run continuously on GPU in real time. And SRLA runs
smoothly in each timewindow. The variances in tables 7 and 8
represent the fluctuations of SRLA over different time win-
dows. The smaller the variance is, the lower the fluctuation
of the results of the algorithm is, and the more stable the
SRLA stays. In the two traffics (6602 time windows in total),
the variance of FTR of SRLA is only 0.3576. It shows that
SRLA detects the super points with an error rate closing

VOLUME 7, 2019 43425

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

to 2.3114%. The variance of AllT is only 4.295. The variance
ofCSIPT is even less than 10−5 (the values in TABLE 8 arrive
accurately decimally hind 4, hence variance of CSIPT is 0 in
TABLE 8). The experiments show that SRLA can output
accurate results with a stable running time under sliding time
windows.

TABLE 8. Running time under sliding time windows.

VI. CONCLUSION
Real-time acquisition of super point information is a valu-
able task in the field of network management and network
security, hence the related research work has been continu-
ing. Incremental updating and low estimation time are two
difficulties. The SRLA algorithm proposed in this paper solves
this problem for the first time. SRLA uses a new data struc-
ture DR to incrementally record the cardinality. Its structural
characteristics enable it to be implemented under the sliding
time window conditions. Another feature of SRLA is that it
designs a lightweight cardinality estimator SRE . SRE takes
up less memory and has fast processing speed. Hence it can
detect candidate super points under the condition of satisfying
the real-time requirement when scanning IP pairs. When
reaching the time window boundary, SLE , which has higher
accuracy, is used to estimate the cardinality of each candidate
super point. SRLA is also a parallel algorithm. When running
on GPU, SRLA can detect the super points in a 40 Gbps
high-speed network in real time under sliding time windows.
In the further work, we will analyze the super point found
by SRLA and study its application in network security and
management.

REFERENCES
[1] H. Guo, Z. Yang, L. Zhang, J. Zhu, and Y. Zou, ‘‘Joint coopera-

tive beamforming and jamming for physical-layer security of decode-
and-forward relay networks,’’ IEEE Access, vol. 5, pp. 19620–19630,
2017.

[2] S. Chen, Y. Qiao, S. Chen, and J. Li, ‘‘Estimating the cardinality of a
mobile peer-to-peer network,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 9,
pp. 359–368, Sep. 2013.

[3] D. Yin, L. Zhang, and K. Yang, ‘‘A DDoS attack detection and mitigation
with software-defined Internet of things framework,’’ IEEE Access, vol. 6,
pp. 24694–24705, 2018.

[4] W. Liu, W. Qu, G. Jian, and L. Keqiu, ‘‘A novel data streaming method
detecting superpoints,’’ in Proc. IEEE INFOCOM WKSHPS, Apr. 2011,
pp. 1042–1047.

[5] A. T. Liem, I. Hwang, A. Nikoukar, C.-Z. Yang, M. S. Ab-Rahman,
and C. Lu, ‘‘P2P live-streaming application-aware architecture for QoS
enhancement in the EPON,’’ IEEE Syst. J., vol. 12, no. 1, pp. 648–658,
Mar. 2018.

[6] Y. Cao, Y. Gao, R. Tan, Q. Han, and Z. Liu, ‘‘Understanding internet DDoS
mitigation from academic and industrial perspectives,’’ IEEE Access,
vol. 6, pp. 66641–66648, 2018.

[7] H. Peng, Z. Sun, X. Zhao, S. Tan, and Z. Sun, ‘‘A detection method
for anomaly flow in software defined network,’’ IEEE Access, vol. 6,
pp. 27809–27817, 2018.

[8] K. Sood, S. Yu, Y. Xiang, and H. Cheng, ‘‘A general QoS aware flow-
balancing and resource management scheme in distributed software-
defined networks,’’ IEEE Access, vol. 4, pp. 7176–7185, 2016.

[9] P. Wang, X. Guan, T. Qin, and Q. Huang, ‘‘A data streaming method for
monitoring host connection degrees of high-speed links,’’ IEEE Trans. Inf.
Forensics Security, vol. 6, no. 3, pp. 1086–1098, Sep. 2011.

[10] W. Liu, W. Qu, J. Gong, and K. Li, ‘‘Detection of superpoints using a
vector bloom filter,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 3,
pp. 514–527, Mar. 2016.

[11] S.-H. Shin, E.-J. Im, and M. Yoon, ‘‘A grand spread estimator
using a graphics processing unit,’’ J. Parallel Distrib. Comput.,
vol. 74, no. 2, pp. 2039–2047, 2014. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0743731513002189

[12] M. Datar, A. Gionis, P. Indyk, and R. Motwani, ‘‘Maintaining stream
statistics over sliding windows,’’ SIAM J. Comput., vol. 31, no. 6,
pp. 1794–1813, 2002.

[13] W. Lin, X. Xiao, X. Xie, and X. Li, ‘‘Network motif discovery: A GPU
approach,’’ IEEE Trans. Knowl. Data Eng., vol. 29, no. 3, pp. 513–528,
Mar. 2017.

[14] J. Xu, W. Ding, J. Gong, X. Hu, and S. Sun, ‘‘SRLA: A real time sliding
time window super point cardinality estimation algorithm for high speed
network based on GPU,’’ in Proc. IEEE 20th Int. Conf. High Perform.
Comput. Commun., Jun. 2018, pp. 942–947.

[15] S. Mori, A. Sato, and K. Yoshida, ‘‘Enhancing performance of cardinal-
ity analysis by packet filtering,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN),
Jan. 2016, pp. 23–28.

[16] C. T. Nguyen, T. T. Hoang, and V. X. Phan, ‘‘A simple method for anony-
mous tag cardinality estimation in RFID systems with false detection,’’ in
Proc. 4th NAFOSTED Conf. Inf. Comput. Sci., Nov. 2017, pp. 101–104.

[17] Q. Xiao et al., ‘‘Cardinality estimation for elephant flows: A compact solu-
tion based on virtual register sharing,’’ IEEE/ACM Trans. Netw., vol. 25,
no. 6, pp. 3738–3752, Dec. 2017.

[18] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, ‘‘A linear-time
probabilistic counting algorithm for database applications,’’ ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[19] L. Huang, Q. Yang, and W. Zheng, ‘‘Online hashing,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2309–2322, Jun. 2018.

[20] Y. Liu, W. Chen, and Y. Guan, ‘‘Identifying high-cardinality hosts from
network-wide traffic measurements,’’ IEEE Trans. Dependable Secure
Comput., vol. 13, no. 5, pp. 547–558, Sep./Oct. 2016.

[21] B. Silva and G. Fraidenraich, ‘‘Performance analysis of the classic and
robust chinese remainder theorems in pulsed Doppler radars,’’ IEEE Trans.
Signal Process., vol. 66, no. 18, pp. 4898–4903, Sep. 2018.

[22] H. Chen, J. Sun, L. He, K. Li, and H. Tan, ‘‘BAG:Managing GPU as buffer
cache in operating systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 6, pp. 1393–1402, Jun. 2014.

[23] X. Zhou, W. Liu, Z. Li, and W. Gao, ‘‘A continuous virtual vector-
based algorithm for measuring cardinality distribution,’’ in Proc. IAAA,
Aug. 2014. pp. 43–53.

[24] E. Alasadi and H. Al-Raweshidy, ‘‘OLC: Open-level control plane archi-
tecture for providing better scalability in an SDN network,’’ IEEE Access,
vol. 6, pp. 34567–34581, 2018.

[25] J. Erman and K. Ramakrishnan, ‘‘Understanding the super-sized traffic of
the super bowl,’’ in Proc. Conf. Internet Meas. Conf.New York, NY, USA:
ACM, Aug. 2013, pp. 353–360. doi: 10.1145/2504730.2504770.

[26] W. Liu, C. Liu, and S. Guo, ‘‘A hash-based algorithm for measur-
ing cardinality distribution in network traffic,’’ Int. J. Auton. Adapt.
Commun. Syst., vol. 9, nos. 1–2, pp. 136–148, Mar. 2016. doi:
10.1504/IJAACS.2016.075387.

[27] D. M. Kane, J. Nelson, and D. P. Woodruff, ‘‘An optimal algorithm for
the distinct elements problem,’’ in Proc. 19th ACM SIGMOD-SIGACT-
SIGART Symp. Princ. Database Syst. New York, NY, USA: ACM,
Aug. 2010, pp. 41–52. doi: 10.1145/1807085.1807094.

[28] M. G. Khoshkholgh, V. C. M. Leung, and K. G. Shin, ‘‘Fast and accu-
rate cardinality estimation in cellular-based wireless communications,’’
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2015,
pp. 1119–1123.

[29] B. Li, Y. He, and W. Liu, ‘‘Towards constant-time cardinality estimation
for large-scale RFID systems,’’ in Proc. 44th Int. Conf. Parallel Process.,
Sep. 2015, pp. 809–818.

43426 VOLUME 7, 2019

http://dx.doi.org/10.1145/2504730.2504770
http://dx.doi.org/10.1504/IJAACS.2016.075387
http://dx.doi.org/10.1145/1807085.1807094

J. Xu et al.: Super Point Detection Algorithm Under Sliding Time Windows Based on Rough and Linear Estimators

[30] Y. Zheng, X. Wang, D. Yang, and S. Ding, ‘‘An efficient RFID tag cardi-
nality estimation protocol based on bit detection,’’ in Proc. IEEE 17th Int.
Conf. Commun. Technol. (ICCT), Oct. 2017, pp. 602–606.

[31] J. Xu, W. Ding, J. Gong, X. Hu, and J. Liu, ‘‘High speed network super
points detection based on sliding time window by GPU,’’ in Proc. IEEE
Int. Symp. Parallel Distrib. Process. with Appl., Dec. 2017, pp. 566–573.

[32] J. Shan, J. Luo, G. Ni, Z. Wu, and W. Duan, ‘‘CVS: Fast cardi-
nality estimation for large-scale data streams over sliding windows,’’
Neurocomputing, vol. 194, pp. 107–116, Jun. 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231216002320

[33] J. Shan, Y. Fu, G. Ni, J. Luo, and Z. Wu, ‘‘Fast counting the cardinality of
flows for big traffic over sliding windows,’’ Frontiers Comput. Sci., vol. 11,
no. 1, pp. 119–129, Feb. 2017. doi: 10.1007/s11704-016-6053-x.

[34] CERNET. (2017). China Education and Research Network. [Online].
Available: http://iptas.edu.cn/src/system.php

[35] Y. Zhou, Y. Zhou, S. Chen, and Y. Zhang, ‘‘Per-flow counting for big
network data stream over sliding windows,’’ in Proc. IEEE/ACM 25th Int.
Symp. Qual. Service (IWQoS), Jun. 2017, pp. 1–10.

[36] L. Zhang, Q. Deng, Y. Su, and Y. Hu, ‘‘A box-covering-based routing
algorithm for large-scale SDNs,’’ IEEE Access, vol. 5, pp. 4048–4056,
2017.

[37] Y. Suzuki, Y. Fujii, T. Azumi, N. Nishio, and S. Kato, ‘‘Real-time GPU
resource management with loadable kernel modules,’’ IEEE Trans. Paral-
lel Distrib. Syst., vol. 28, no. 6, pp. 1715–1727, Jun. 2017.

[38] J. Mielikainen, E. Price, B. Huang, H. A. Huang, and T. Lee, ‘‘Gpu
compute unified device architecture (cuda)-based parallelization of the
rrtmg shortwave rapid radiative transfer model,’’ IEEE J. Sel. Topics Appl.
Earth Observat. Remote Sens., vol. 9, no. 2, pp. 921–931, Feb. 2016.

[39] A. Vilches, A. Navarro, R. Asenjo, F. Corbera, R. Gran, andM. J. Garzarán,
‘‘Mapping streaming applications on commodity multi-CPU and GPU
on-chip processors,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4,
pp. 1099–1115, Apr. 2016.

[40] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, ‘‘Communi-
cation and load balancing optimization for finite element electromagnetic
simulations using multi-GPU workstation,’’ IEEE Trans. Microw. Theory
Techn., vol. 65, no. 8, pp. 2661–2671, Aug. 2017.

[41] D. Foley and J. Danskin, ‘‘Ultra-performance pascal GPU and NVLink
interconnect,’’ IEEE Micro, vol. 37, no. 2, pp. 7–17, Mar./Apr. 2017.

[42] G. Chen, X. Shen, B. Wu, and D. Li, ‘‘Optimizing data placement on
GPUmemory: A portable approach,’’ IEEE Trans. Comput., vol. 66, no. 3,
pp. 473–487, Mar. 2017.

[43] S. Mittal, ‘‘A survey of techniques for architecting and managing GPU
register file,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 1, pp. 16–28,
Jan. 2017.

[44] G. Chen, B. Wu, D. Li, and X. Shen, ‘‘Enabling portable optimizations of
data placement on GPU,’’ IEEEMicro, vol. 35, no. 4, pp. 16–24, Jul. 2015.

JIE XU received the B.S. degree in international
trade and economy from Jiangsu Normal Uni-
versity, Jiangsu, China, in 2011, and the M.S.
degree in computer science and technology from
Yangzhou University, Jiangsu, China, in 2014.
He is currently pursuing the Ph.D. degree in com-
puter science and technology with Southeast Uni-
versity, Jiangsu. His research interests include data
mining, supercomputing, distributed computing,
and networking security.

WEI DING received the B.S. degree in com-
puter science from Nanjing University, Nanjing,
China, in 1982, and the M.S. degree in system
engineering and the Ph.D. degree in computer
science and technology from Southeast Univer-
sity, Nanjing, in 1987 and 1995, respectively,
where she is currently a Professor with the School
of Cyber Science and Engineering. Her research
interests include network management and net-
work security.

QIUSHI GONG received the B.S. degree in
electrical engineering from Southeast University,
Nanjing, China, in 2010, theM.S. degree in electri-
cal engineering from the University of Science and
Technology of China, Hefei, China, in 2013, and
the Ph.D. degree in communication engineering
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2018. He is currently a Lecturer with
the School of Cyber Science and Engineering,
Southeast University. He is working on the trans-

mission and security of fine-grained scalable video coding.

XIAOYAN HU (M’18) received the Ph.D. degree
in computer architecture from Southeast Univer-
sity, Nanjing, China, in 2015. She visited the
NetSec Laboratory, Colorado State University,
a research group working on NDN, from 2010 to
2012. She is currently an Assistant Professor with
the School of Cyber Science and Engineering and
the School of Computer Science and Engineer-
ing, Southeast University. Her research interests
include future network architecture and network
security.

HAIQING YU received the bachelor’s degree in
management from the School of Economics and
Management, Changchun University of Science
and Technology, Changchun, Jilin, in 2014. He is
currently pursuing a master’s degree in computer
technology with the School of Cyber Security,
Southeast University, Nanjing, China. His research
interests include network measurement and net-
workmanagement, and intelligent detection of net-
work attacks and defenses.

VOLUME 7, 2019 43427

http://dx.doi.org/10.1007/s11704-016-6053-x

	INTRODUCTION
	RELATED WORK
	CARDINALITY ESTIMATOR UNDER SLIDING TIME WINDOWS
	DISCRETE TIME WINDOW AND SLIDING TIME WINDOW
	ROUGH ESTIMATOR
	SLIDING ROUGH ESTIMATOR
	SLIDING LINEAR ESTIMATOR

	SUPER POINTS DETECTION AND CARDINALITIES ESTIMATION
	SLIDING ESTIMATOR ARRAY AND SUPER POINT DETECTION
	UPDATE PRIMARY DATA STRUCTURE
	ESTIMATE CARDINALITIES OF CANDIDATE SUPER POINTS
	UPDATE DATA STRUCTURE AT THE BOUNDARY OF A TIME WINDOW

	EXPERIMENTAL RESULTS
	DEPLOY ON GPU
	THE INFLUENCE OF PARAMETERS ON SRLA
	COMPARING RESULTS UNDER DISCRETE TIME WINDOWS
	EXPERIMENTS UNDER SLIDING TIME WINDOWS

	CONCLUSION
	REFERENCES
	Biographies
	JIE XU
	WEI DING
	QIUSHI GONG
	XIAOYAN HU
	HAIQING YU

