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ABSTRACT To overcome the premature convergence caused by the ill-distribution of solutions in the basic
Gaussian estimation of distribution algorithm (GEDA), this paper explores a novel GEDA variant with
random walk strategies, namely RW-GEDA. In RW-GEDA, the weighted maximum likelihood estimation
method is used to estimate the Gaussian distribution. The new candidates are sampled using a shifted
mean to enhance exploration performance. When the algorithm stagnates, two random walk strategies,
namely, Gaussian random walk and Lévy walk, are activated to enrich the population diversity. Moreover,
RW-GEDA is executed in an Eigen coordinate framework to promote the evolution towards the dominant
region. The performance of RW-GEDA is evaluated by using the CEC 2014 test suite and compared with
other top algorithms from different communities as well as promising GEDA extensions. The statistical
results demonstrate the competitive performance of our proposed RW-GEDA in terms of efficiency and
accuracy. In addition, RW-GEDA is applied to solve the optimal missile guidance handover problem. To fill
the gap in solving this problem, a novel missile guidance advantage model is established, and the optimal
missile guidance handover is determined by optimizing the control variables of unmanned combat aerial
vehicles. The validity and practicability of the problem model as well as the accuracy and efficiency of
RW-GEDA are demonstrated by the experimental results.

INDEX TERMS Gaussian estimation of distribution algorithm, CEC 2014, numerical optimization, air
combat, UCAV.

I. INTRODUCTION
The characteristics of real-world optimization problems are
multimodal, nonconvex, disconnected and oscillated, which
make traditional gradient-based algorithms difficult to opti-
mize.With rapid improvements in computation ability, evolu-
tionary computing has demonstrated tremendous progress in
the field of real-numerical optimization over the past decades,
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and is increasingly regarded as the most efficient way to
address these NP hard problems.

Evolutionary computing techniques mostly involve meta-
heuristic optimization algorithms and are applied in various
fields. In recent years, a new class of optimization algorithms,
called estimation of distribution algorithm (EDA) [1], has
rapidly developed in the field of evolutionary computing and
has been widely applied to solve real-world problems [2]–[4].
Although the EDA is a type of evolutionary algorithm,
there are significant differences between the EDA and tra-
ditional methods. In traditional evolutionary algorithms, the
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population represents a set of solutions for the optimiza-
tion problem, and each individual in the population has a
corresponding fitness value. Selection, crossover and muta-
tion operations are used to simulate the operation of natural
evolution, and the problem is solved iteratively. The EDA
does not have traditional crossover and mutation evolution
operations but instead uses the learning and sampling of prob-
abilistic models. An EDA describes the spatial distribution
of the superior candidate solutions through a probabilistic
model and establishes a descriptive solution from the macro
perspective of the group with statistical learning. The prob-
ability distribution models in EDA can identify the features
of promising solutions and determine the location of better
solutions to evolve the population. Generally, EDAs can be
divided into discrete EDAs and continuous EDAs, which are
used in different types of problems. This paper considers
the single-objective optimization of continuous problems by
using a Gaussian probability model in which the variables
follows a Gaussian distribution. According to the variable
dependencies, the Gaussian EDA (GEDA) can be further
categorized into three groups, including univariate GEDA
[5], bivariate GEDA [6], and multivariate GEDA [1], among
whichmultivariate GEDA shows competitive performance on
most types of problems.

For GEDA, both the distribution scope and evolutionary
direction have important roles in the efficiency. At the begin-
ning of this field of research, scholars found that the variances
that determine the search scope would shrink rapidly in the
later stage of optimization, which led to the algorithm falling
into a local optimum. Therefore, Grahl et al. [7] proposed
correlation-triggered adaptive variance scaling (CT-AVS) to
overcome the disadvantages of the original adaptive variance
scaling (AVS) which may decrease the convergence speed
when the solved problems do not require scaling. Similarly,
Cai et al. [8] proposed another method, cross-entropy adap-
tive variance scaling (CE-AVS), to overcome imprecise struc-
ture learning. The eigenvalues of the estimated covariance
matrix were studied byDong andYao [9] to change the search
scope. Moreover, Liu et al. [10] combined principal com-
ponent analysis (PCA) with GEDA. The Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [11] is a promis-
ing GEDA with rank-1 and rank-µ updating. Nevertheless,
it has a complex framework and less capability for ill-shaped
multimodal problems.

Further research has revealed that the efficiency of GEDA
depends not only on the size of the variance, but also the evo-
lutionary directions. Bosman et al. [12] advised that prema-
ture convergence is more likely to occur if the search direction
does not have intervention because the main search direction
tends to become perpendicular to the fitness improvement
direction. Their team introduced the standard deviation ratio
(SDR) [13] and anticipated mean shift (AMS) [12] strate-
gies for the EDA and provided the well-known AMaLGaM
algorithm with a combination of AVS, SDR, and AMS [14].
In recent work, Ren et al. [15] proposed using an improved
anticipated mean shift (AMS) technique to shift the mean

value of the selected solutions to efficiently adjust the search
scope and the direction. Another GEDA variants explored
by them is EDA2[16], using an archive that can save more
promising solutions to adjust the evolution direction. Their
recent research [17] also proposed a novel variances adjust-
ment technique, which has the advantage of tuning the vari-
ances and main search direction of GEDA simultaneously.

Another limitation of GEDA is that the distribution of the
solution space is easily over fitted when learning the proba-
bility model during the evolutionary process. As Yuan [18]
noted, diversity maintenance plays a key role in the suc-
cess of EDAs. To overcome this defect, Liang et al. [19]
proposed an inferior solution repairing (ISR) operator using
remedy inferior solutions to the obtain the covariance matrix.
Xu [20] combined the EDA with a chaos perturbation strat-
egy to improve the local search ability. Chen et al. [21]
presented a fast-interactive estimation of distribution algo-
rithm (IEDA) using the domain knowledge of a personalized
search. Fang et al. [22] developed a mean shift strategy
in the EDA. Auger and Hansen [23] developed a restart
CMA-ES with increasing population size (IPOP-CMAES).
Karshenas et al. [24] studied the use of regularized model
learning in GEDA. Santana et al. [25] improved on the
EDA using new selection strategies. Two studies [26], [27]
adopted Copula theory and a probabilistic graphical model,
respectively, instead of the Gaussian model to establish the
distribution. The techniques of detecting promising areas [28]
and niching [29], [30] were introduced to improve the perfor-
mance of EDAs in solving multimodal problems.

The above reviewed works that aimed at improving the
performance of GEDA mainly focus on three aspects: the
scaling of distribution variances, intervention of the evolu-
tionary direction and maintaining population diversity. Most
research has improved the exploration capability of GEDA
from one or two aspects. However, the current probabil-
ity model improvement methods are not sufficient to avoid
premature convergence, especially for complex multimodal
problems. Additionally, the validation of their work is insuf-
ficient without a comparison with the current top algorithms.
On other hand, most of the above GEDA variants request
a large population size to maintain the exploration perfor-
mance. In each iteration, only a few superior solutions are
utilized to update the covariance matrix, and the rest are aban-
doned which causes computation waste. Moreover, a large
population size leads to fewer iterations, and thus, the con-
vergence performance may be poor with limited function
evaluations.

In this work, we propose a novel modified GEDA from the
above three aspects with two random walk strategies, named
RW-GEDA. First, a weighted maximum likelihood estima-
tion method is used to improve the quality of the estimated
mean and generate a covariance matrix. Moreover, a shifted
mean integrating the information from the whole and the indi-
vidual is utilized in sampling new population to enhance the
exploration performance. If the algorithm stagnates, then the
two random walk strategies, i.e., Gaussian random walk and
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Lévy walk, are activated to enrich the population diversity.
Additionally, the sample process is executed in an eigen coor-
dinates framework to promote the evolution towards the dom-
inant region. The performance of RW-GEDA with a smaller
population size is benchmarked using the CEC 2014 test
suite, and the experimental results are compared with some
promising GEDA variants as well as other state-of-the-art
algorithms from different communities. Moreover, the pro-
posed RW-GEDA is applied to solve a complex real-world
optimization problem, an optimal missile guidance handover
problem for multi-UCAV in over-the-horizon (OTH) air com-
bat. To address this complex real-time engineering problem,
a novel missile guidance advantage model and missile guid-
ance assignmentmodel are established. Finally, the feasibility
of the problem model and the performance of RW-GEDA are
analyzed based on experimental results.

This rest of our paper is organized as follows: The mathe-
matical presentation of the proposed RW-GEDA is described
in Section 2. In Section 3, numerical experiments of the
CEC 2014 test are presented, and the statistical results
are discussed. RW-GEDA is applied in solving an optimal
missile guidance handover problem in Section 4. Finally,
Section 5 offers the main conclusions of this work and notes
directions for future study.

II. PROPOSED RW-GEDA
A. REVIEW OF THE BASIC GEDA
As a model-based evolutionary algorithm, GEDA assumes
that the optimal solutions obey a Gaussian probability dis-
tribution, and uses the probability distribution estimated from
the superior solutions in the current generation to sample new
candidates, thus driving the evolution of the algorithm. The
basic steps of GEDA are described as follows.

Step 1. Set the algorithm parameters and initialize the
population.
Step 2. Evaluate the current solutions according to the
objective function.
Step 3. Select superior solutions to estimate the Gaussian
probability distribution model.
Step 4. Sample the new population according to the
Gaussian probability distribution model and evolve the
algorithm.
Thus, for the continuous GEDA with an n degree of free-

dom column vector x, the joint probability density function
of the Gaussian probability distribution model can be param-
eterized by the mean µ and the covariance matrix C as

G(µ,C)=
(2π)−π/2

(detC)
exp

(
−(X−µ)T (C)−1 (X−µ) /2

)
(1)

where

µ =
1
|S|

|S|∑
i=1

si, si ∈ S and S ⊂ X (2)

C =
1
|S|

|S|∑
i=1

(si − µ) (si − µ)T (3)

FIGURE 1. The change of probability density ellipsoid in basic GEDA.

The symbol S in (2) and (3) represents the set of select
superior solution vectors. The new candidate for the ith solu-
tion is sampled in each iteration by

xi = µ+ yi, yi ∼ N (0,C) (4)

The basic GEDA suffers from two deficiencies [17]: 1)
The variance in each degree decreases rapidly with the iter-
ations of the algorithm; 2) The evolution direction tends to
be perpendicular to the descent direction of the objective
function value. These two defects are illustrated in Fig. 1. The
equiprobability density surface of the population generated
following the multivariate Gaussian distribution is a super
ellipsoid. The eigenvector of C corresponds to the direction
of the ellipsoid axis; and the eigenvalue ofC equals the square
of the length of each axis, as shown in Fig. 1. The excellent
solutions selected by GEDA in each iteration are mainly
distributed in the semi-ellipsoid formed by the original prob-
ability density ellipsoid cut by the objective function isoline.
The long axis of the semi-ellipsoid is parallel to the objective
function isoline; accordingly, the long axis of the newly esti-
mated probability density ellipsoid is parallel to the objective
function isoline, that is, it tends to be perpendicular to the
improved direction of the objective function. On the other
hand, there are more samples near the center of the original
probability density ellipsoid in the semi-ellipsoid and fewer
samples far from the center, and thus, the newly estimated
distribution will shrink naturally according to these samples.
This characteristic of the traditional GEDA greatly reduces
the search efficiency of the algorithm, leading to premature
convergence even in the sloping region.

Thus, we propose our RW-GEDA with a modification of
the ill-shaped distribution focusing on three aspects: esti-
mated distribution amending, evolutionary directions adjust-
ment and population diversity enrichment. More details are
presented in the next subsection.

B. MATHEMATICAL PRESENTATION OF RW-GEDA
In the traditional GEDA, the mean value is typically cal-
culated using the maximum likelihood estimation (MLE)
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method [1] as shown in (2). In our RW-GEDA, we utilize a
weighted MLE to emphasize those promising solutions.

µ =

|S|∑
i=1

ωisi, si ∈ S and S ⊂ X (5)

where

ωi = ln (|S| + 1) /

 |S|∑
i=1

(ln (|S| + 1)− ln (i))

 (6)

The weight coefficients are arranged in descending order:
ω1 > ω2 >. . .> ω|S|. The select superior solution vectors
are also arranged from the most fitted to the least consistent
with the weight coefficients. The weighted MLE can make
the estimated mean closer to those promising solutions and
improve its quality. The size of set S is diverse in different
studies. In our work, the first half of the superior solutions
are considered to estimate the distribution, which means

|S| = NP · τ, τ = 0.5 (7)

where NP indicates the population size. The covariance
matrix calculated using the weighted mean has the same
form as (3).

In the traditional GEDA, only select superior solutions
participate in the estimation of the distribution. The infor-
mation of the other inferior solutions is neglected, which
causes computation waste. Additionally, the performance of
GEDA is highly associated with its mean value and covari-
ance matrix as shown in (4). Thus, a shifted mean containing
the overall distribution information and individual informa-
tion is employed to diversify the distribution and make full
use of the population information. Considering the quality
differences between the superior solutions and the inferior
solutions, the forms of the shifted mean are different. First,
the population is sorted based on their fitness to distinguish
the superior and inferior solutions.

Prank (i) = (NP− rank (f (xi))+ 1) /NP (8)

If Prank (i) >0.5, the ith solution xiis considered a superior
solution and selected in set S, otherwise, xiis regarded as an
inferior solution. For a superior solution, its shifted mean is
denoted as

µS = (1− r) · xi + r · µ, r ∼ U (0, 1) (9)

This shifted mean is a random weighting of the estimated
mean and individual to enrich the distribution diversity.
However, it is quite different for an inferior solution as
shown in (10).

µS,j = µj + r ·
(
µj − xi,j

)
, r ∼ U (0, 1) (10)

where j denotes the jth dimension. As shown in Fig. 1,
the estimatedmean is more fitted than an inferior solution and
locates closer to the optimal solution. Thus, a vector from an
inferior solution to the estimated mean is a descent direction
of the objective function value and can be utilized to repair the

FIGURE 2. Different distribution of the shifted mean for an inferior
solution in two coordinate systems.

inferior solution. Thus, the new candidate for each solution is
sampled using its corresponding shifted mean as

xi = µS + yi, yi ∼ N (0,C) (11)

To promote the evolution towards the dominant region,
we execute the sampling in an eigen coordinates framework.
The eigen coordinates system is obtained by rotating the nor-
mal coordinates system using the eigendirectionmatrixB that
is derived from the eigenvalue decomposition of covariance
matrix C.

C = BDBT (12)

In (12), D=diag(λ1, λ2, . . . ,λdim). λi is the ith eigenvalue
and ‘dim’ means the degrees of freedom of the variables
(dimensions of the problem). B=( υ1, υ2,. . . , υdim) is the
eigendirection matrix in which the eigendirection vectors
correspond to the axial directions of the probability density
ellipsoid. The vectors in eigen coordinates are accessed as{

µ(E) = BTµ

x(E)i = BTxi
(13)

Thus, the sampling in the eigen coordinate framework is
presented as

µ
(E)
S =(1− r) · x

(E)
i +r · µ

(E), r ∼ U (0, 1)
If Prank (i) > 0.5

µ
(E)
S,j =µ

(E)
j +r ·

(
µ
(E)
j − x

(E)
i,j

)
, r ∼ U (0, 1) else

(14)

x(E)i = µ
(E)
S + Dzi, zi ∼ N (0, I) (15)

The eigen coordinates can release the relationship between
different axes in normal coordinates. As denoted in (14),
the mean shift is operated on whole vectors for a supe-
rior solution, so it possesses rotation invariance. However,
the mean shift for an inferior solution is operated for each
dimension of the solution vector, thus leading to a difference
between the two coordinate systems, as illustrated in Fig. 2.
The distribution of an obtained shifted mean is closer to the
dominant region in eigen coordinates than that in normal
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coordinates, which can benefit the convergence of the algo-
rithm. The efficiency of the eigen coordinate framework is
discussed in the next section.

The above improvements are based on the covariance
matrix which may lead to a sharp decline in the population
diversity at a later stage. A new search tool must be devel-
oped that is dependent on the covariance matrix to enrich
the population diversity and reshape the ill-distribution of
the solutions. In our RW-GEDA, we employ random walk
strategies to enhance the exploration performance when the
algorithm falls into stagnation. Random walk strategies are
probabilistic models that involve strong simplifications of
real animal movements [31], and have been widely used in
many modern evolution algorithms, such as the grey wolf
optimizer (GWO) [32], [33], cognitive behavior optimization
algorithm (COA) [34], virus colony search (VCS) [35], and
hummingbirds optimization algorithm (HOA) [36], to per-
form random exploration. Gaussian random walk and Lévy
flight are the two main random walk strategies that have been
shown to be surprisingly efficient for random searches in
unknown circumstances and have been successfully adjusted
to a wide range of empirical data. However, these two strate-
gies have different characteristics.

Gaussian random walk follows a Gaussian distribution,
which is by far the most popular because many physical vari-
ables, including light intensity, errors or uncertainty in mea-
surements, as well as many other processes, obey Gaussian
distribution. It can make full use of the local solution space
to generate promising candidates in the area of interest and
is employed as an efficient way to improve the exploitation
performance of the algorithm. In RW-GEDA, a disturbed
Gaussian randomwalk strategy in the eigen coordinate frame-
work is carried out guidance from the best solution.

x(E)i = Gaussian
(
x(E)Best, σ

)
+ r1 · x

(E)
Best

−r2 · x
(E)
i , r1, r2 ∼ U (0, 1) (16)

σ =

∣∣∣x(E)Best − x(E)i

∣∣∣ (17)

where xBestindicates the best solution obtained thus far. Sim-
ilar to (10), because the variance in the Gaussian distribution
is related to the coordinate difference in each dimension,
the distributions of sampling in different coordinate systems
are quite different. As shown in Fig. 3, the distribution scope
in eigen coordinates is more acceptable than that in normal
coordinates.

Unlike Gaussian random walk, Lévy walk is a random
procedure and has a random step determined based on another
important distribution that is the so-called Lévy distribu-
tion [37]. It is regarded as the most efficient method to
explore the nondestructive space [38]. Moreover, Lévy walk
is widely used as a predation behavior among the natural
organisms, such as macaques, sharks and modern hunter
gatherers. According to one study [39], Lévy walk is the
optimal exploration behavior to search for randomly dis-
tributed objects. In this regard, it is advantageous to improve

FIGURE 3. Different distribution obtained from Gaussian random walk in
two coordinate systems.

the ability of RW-GEDA to explore the search space. Lévy
walk typically generates random steps from the individual
location. However, in our RW-GEDA, Lévy walk is carried
out with a center of the current optimal solution to perform
a local exploration, which can help balance the exploration
and development performance of the algorithm. According
to the Mantegna strategy [40], the new candidate generated
following the Lévy walk can be calculated using

x(E)i = x(E)Best + α ⊗ Lévy (s)⊗
(
x(E)Best − x(E)i

)
(18)

With regard to (18), s = µ/|υ|1/β denotes the step size, and
α is the scale factor and in the range of [-1, 1]. The values
of β have significance in determining the shape of the Lévy
distribution [41], [42]. Longer jump steps are generated with
a smaller β value; otherwise, a larger β value can generate
smaller jump steps. In this study, we set α = 0.05, and
β = 0.5 to help generate longer jumps to avoid stagnation.
µ and υ are parameters that obey the following two different
normal distributions, N (0,σµ) and N (0,σν):σµ =

(
0(1+β) sin(πβ)

0((1+β)/2)β2(β−1)/2

)1/β
συ = 1

(19)

When the algorithm stagnates, the population no longer uses
the estimated distribution for sampling, but rather each indi-
vidual in the population randomly uses one of the two random
walk strategies to generate new individuals. After obtaining
the new candidate in the eigen coordinate system, it is still
necessary to rotate it into the normal coordinates system to
calculate its fitness value.

xi = Bx(E)i (20)

In RW-GEDA, we set a criterion judging the stagnation of the
population, i.e., if the mean fitness value of the first half of
the promising solutions remains unchanged, the algorithm is
regarded as having stagnated, and the random walk strategy

43302 VOLUME 7, 2019



X. Wang et al.: Gaussian Estimation of Distribution Algorithm

Algorithm 1 The Procedure of RW-GEDA
1: Initialize population NPand τ = 0.5;
2: Set FEs= 0, generate initial population Xrandomly;
3: Evaluate population;FEs=FEs+NP;
4: Update the best solution xBest obtained so far;
5: Output f (xbest ) if FEs≥MaxFEs, end the algorithm; else
6: Estimate weighted mean µ, covariance matrix C according to first NP·τ solutions by (3), (5), (6) and (7);
7: Calculate the decomposition of covariance matrix Cby (12)
8: For each solution xi

Rotate xi to eigen coordinates and obtain x(E)i by (13)
If algorithm stagnates
x(E)i is updated using Gaussian random walk or
Lévy walk randomly by (16) or (18),

otherwise,
Calculate Prank (i),
x(E)i is updated using estimated distribution by
(14) and (15),
end if;

Rotate new x(E)i to normal coordinates by (20),
Calculate f (xi),
FEs=FEs+1,
End for.

9: Go to step 3.

will be activated.

if
1
|S|

|S|∑
i=1

f (si (t + 1))

=
1
|S|

|S|∑
i=1

f (si (t)) , algorithmstagnates

The elitism strategy is widely used in evolution algorithms
to guarantee the global convergence performance [43]. In our
proposed RW-GEDA, a greedy elitism strategy is employed
to select the best population from the sire generation and the
filial generation. This mechanism can preserve more promis-
ing solutions which benefits estimating the distribution. The
pseudo code of the proposed RW-GEDA is described below.

III. NUMERICAL EXPERIMENT USING
CEC 2014 BENCHMARKS
Along with the rapid development of optimization algo-
rithms, modern benchmarks have also been developed to
be more challengeable and are employed to evaluate the
performance of novel algorithms. Different from the classic
benchmarks whose global optimum can be easily obtained,
these modern versions are always asymmetrical, shifted
and rotated with ill-shaped distributions, and the different
properties around the multiple local optimums make these
participants difficult to deal with. Thus, a continuous uncon-
strained numerical benchmark set, the CEC 2014 test suite,
is employed to evaluate the performance of our proposed
RW-GEDA in comparison with other state-of-the-art algo-
rithms. The CEC 2014 test suite consists of 30 benchmarks

that can be categorized into four groups: F1 to F3 are uni-
modal functions, and F4 to F16 are multimodal functions,
which are all nonseparable; F17 to F22 are hybrid functions
whose variables are randomly divided into subcomponents
with different basic functions, which make it more difficult
to reach the global optimum; and F23 to F30 are the most
complex composition functions whose basic functions are
generated in a random sequence. More details about these
30 benchmarks are provided in [44]. In general, the com-
plexity of these four groups is gradually increasing, thus
leading to greater difficulty faced by the algorithms dur-
ing optimization. As recommended by the proposer of the
CEC 2014 test suite, each benchmark is evaluated with max
function evaluations (MaxFEs) equal to D×10,000. D is the
dimensionality of the test suite and set equal to 30 in this
work. For convenience, the same search range is defined for
all functions: [−100, 100]D. To reduce the randomness, 51
runs are executed independently for each benchmark. The
solution results of the algorithm are recorded using an error
measure, defined as f (xBest)-f (x∗), where xBest is the best
solution obtained by the algorithm in an experiment and x∗

is the global optimum of the test function. Additionally, the
optimum is obtained if the error is less than 1e-08.

As asserted in [45], there are three indispensable criteria
that must be addressed to propose a new real-parameter opti-
mization method: a comparison with state-of-the-art methods
from different communities is always requested; a standard
comparison methodology is advisable, including complete
modern test functions and the same running conditions;
and the advantages that the new proposal exhibits must
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be specified. Thus, to demonstrate the efficiency of our
proposal, we proved two group comparisons with differ-
ent competitors. In the first group, five other state-of-the-
art algorithms from different communities are incorporated
to make comparisons, including L-SHADE [46], AAVS-
EDA [17], VCS [35], COA [34] and BLPSO5 [47]. In the
second group, five promising GEDAs are utilized as competi-
tors, i.e., EMNAg[1], AMaLGaM [14], IPOP-CMAES [23],
EDA2[16] and ISR-EDA [19]. Finally, we added a third com-
parison to reveal the efficiency of the different components in
our modification.

A. COMPARISON OF RW-GEDA WITH STATE-OF-THE-ART
ALGORITHMS FROM DIFFERENT COMMUNITIES
The participants in this competition are top representatives
in their own families. L-SHADE was the winner of the CEC
2014 competition. In contrast to the original differential evo-
lution (DE) algorithm, L-SHADE combines SHADE with
adaptive F and CR, and it reduces its population size during
the optimization process. Its variants have achieved great
success in different competitions (SPS-L-SHADE-EIG [48]
in CEC 2015, LSHADE-EpSin [49] in CEC 2016, LSHADE-
SPACMA [50] and LSHADE-cnEpSin [51] in CEC 2017).
Since 2014, L-SHADE has been regarded as a point of ref-
erence when designing novel algorithms and contributing to
the real-parameter optimization field. AAVS-EDA is one of
the most advanced GEDA versions. It utilizes the AAVS to
adjust the size of variances by detecting the fitness land-
scape. Its outperformance has been verified using the CEC
2014 testbed. VCS is a hybrid CMA-ES with a combination
of theGaussian randomwalk andDE strategy, and its superior
performance has been proven by a comparison with several
other algorithms using 30DCEC 2014 benchmarks. COA is a
novel developed ABC variant with a use of Gaussian random
walk and Lévy walk, and outperforms several other popular
algorithms on the 30D CEC2014 test suite. BLPSO5 is a
powerful modified PSO algorithm based on a biogeography-
based learning strategy. It is evaluated on CEC 2014 bench-
marks and exhibits promising performance compared with
other well-organized PSO algorithms.

TABLE 1. Parameter settings of six algorithms.

To make a fair comparison, all six algorithms are run
51 independent times for each benchmark for the 30D test
with the restricted MaxFEs 30×10,000. The parameter set-
tings of each algorithm including the proper population size
are set as in their original research and tabulated in Table 1.

The sources of the MATLAB codes of these six algorithms
are provided in Appendix A. Specifically, all experiments are
performed on a computer with a 2.80 GHz Intel (R) Core
(TM) i7-7700HQ processor and 8GB of RAM. MATLAB
2018a is used for this programming.

The simulation results obtained by RW-GEDA are pro-
vided in Appendix B to be a reference for other studies. The
statistical results containing the mean and standard devia-
tion (SD) are provided in Tables 2. The bold data are consid-
ered the best solution according to the derived mean value.
In this test, for unimodal functions F1 to F3, the global
optimum can be achieved by RW-GEDA, L-SHADE and
AAVS-EDA in each run, which demonstrates the efficiency
of these three algorithms in solving ill-conditioned func-
tions. In dealing with the multimodal function experiment,
RW-GEDA exhibits a promising performance among these
six algorithms with the best scores on F4, F5, F6, F7, F12,
F14 and F15; L-SHADE outperforms others in F4, F7, F8,
F10 and F16; and AAVS-EDA performs competitively on F7,
F9 and F13. For hybrid functions, our proposed RW-GEDA
can obtain the best solutions for F17 and F19. L-SHADE
ranks top on F21 and F22, and AAVS-EDA gains the first
rank on F18 and F20. The results are different for composition
functions F23 to F30, where RW-GEDA, VCS and COA are
the three best outperforming algorithms. Each of them ranks
first on five benchmarks, i.e., F23, F24, F25, F26 and F30 for
RW-GEDA and F23, F24, F25, F27, F28 for VCS and COA.
However, the other three algorithms, L-SHADE, AAVS-EDA
and BLPSO5, have poor performance on these eight com-
plex benchmarks. Overall, our proposed RW-GEDA achieved
best performance on more than half of the benchmarks with
different characteristics in the CEC 2014 test, which demon-
strates the efficacy of our method in solving different types of
problems.

To make more comprehensive comparisons in a statistical
manner, a Wilcoxon signed rank test and a Friedman test
with an associated post hoc test are carried out. The results
of the Wilcoxon signed rank test are provided in Table 3.
This manner reveals the performance differences of a pair
of compared algorithms and ranks them according to their
rankings, which are subsequently aggregated according to
their sign. In Table 3, symbol ‘R+’ presents the sign for
RW-GEDA and ‘R−’ for the other competitor. If the p-value
is less than the significance level (α = 0.05), then the
hypothesis is not supported which means a difference exists
between the two algorithms. Additionally, in the last rows
of Appendix B2, ‘+’means that RW-GEDA is superior to
the competitor, whereas ‘-’indicates poorer performance; and
the ‘≈’ sign means that the performance of the algorithm
is statistically similar to that of our proposal. According to
the last row, RW-GEDA offers competitive performance to
L-SHADE and AAVS-EDA in this test, and outperforms
other three algorithms.

To determine the difference in multiple algorithms,
the Friedman test is applied based on the derived mean
values. A lower rank means a greater outperformance of
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TABLE 2. Comparison of the statistical results derived from six state-of-the-art algorithms for cec 2014 benchmarks in 30D test.

TABLE 3. The results of the wilcoxon signed ranks test based on the solutions derived from six algorithms for each benchmark in 30d test with
51 independent runs (α = 0.05).

TABLE 4. Mean ranks derived from the friedman test with a = 0.05.

the algorithm. The mean ranks of six competitors derived
from the Friedman test are provided in Table 4. It can be seen
that our proposed RW-GEDA ranks first with little advantage

ahead of L-SHADE, followed by the other algorithms
in the following order: AAVS-EDA, VCS, BLPSO5 and
COA. The chi-square with 5 DOFs is 35.2705 and the
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TABLE 5. Mean time cost derived from six algorithms (second).

p-value is 1.3287e-06, less than the significance level
α = 0.05, which indicates significant differences among
these six techniques. To evaluate the superiority of our pro-
posal, an Iman-Davenport test with a post hoc test is carried
out. Iman-Davenport test[52] is a less conservative alterna-
tive, with statistics distributed according to the F-distribution
with (k-1) and (k-1)(N -1) degrees of freedom.

F2
F =

(N − 1) χ2
F

N (K − 1)− χ2
F

(21)

In (21), K denotes the number of competitors and equals
6 in this test. N indicates the 30 CEC2014 benchmarks. Thus,
the DOFs of the F-distribution are 5 and 145 in Iman-
Davenport test. The associated post hoc test used in our study
is the Nemenyi test [53], which uses a critical difference (CD)
value to evaluate the difference between six algorithms based
on their mean ranks derived from the Friedman test. The CD
is evaluated as

CD = qα
√
k (k + 1) /6N (22)

The critical value qa can be obtained from a statistical table of
the F-distribution. In this test,qais 2.2768 and the CD equals
1.0997 with a significance level α = 0.05. The differences
among RW-GEDA and the other five algorithms are illus-
trated in Fig. 4. The similar-performing algorithms are con-
nected using the CD value. As shown in Fig. 4, RW-GEDA
has no significant difference from L-SHADE or AAVE-EDA,
but dominates the other three algorithms. As a novel GEDA
variant, the proposed RW-GEDA with novel modifications
exhibits superior performance on the CEC 2014 test suite
compared to various types of state-of-the-art algorithms.

FIGURE 4. Algorithm multiple comparisons; the algorithms are connected
using the CD value with less difference.

Computational cost is another key issue when evaluating
the success of an optimization algorithm. The average time
costs for all competitors in CEC 2014 test with 30D are
presented in Table 5. To more represent the difference in the
time consumption of different algorithms more intuitively, a
radar plot based on the ranks of the time cost is presented
in Fig. 5. The smaller the circle is, the more efficient the
algorithm. L-SHADE requires less time in this test. Our pro-
posed RW-GEDA has a similar time cost to AAVS-EDA, but
is more efficient thanVCS, COAor BLPSO5. Comparedwith
AAVS-EDA, our RW-GEDA can obtain better performance
with a smaller population size, which can help the algorithm
converge in solving a real-time optimization problem with a
limitation of fewer MaxFEs. From the above analysis, our
RW-GEDA exhibits promising performance on the 30D CEC
2014 test in terms of the efficiency and accuracy.

B. COMPARISON OF RW-GEDA WITH
PROMISING GEDA VARIANTS
In this subsection, we employ five others representative
GEDA variants as competitors to verify the efficiency of
our proposal. EMNAg is the basic GEDA and used as the
standard. AMaLGaM improves the basic GEDA by using
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TABLE 6. Comparison of the statistical results derived from six geda algorithms for cec 2014 benchmarks in 30d test.

FIGURE 5. Ranks of mean time cost obtained from six algorithms.

amean shift strategy and an adaptive variance scaling strategy
and is one of the most superior EDAs at present. IPOP-
CMAES is argued to be the most successful GEDA, though
it was first proposed fourteen years ago [45]. EDA2 is a
recently developed GEDA using an archive to restore more
superior solutions to rectify the ill-shaped distribution and

successfully reduce the population size. ISR-EDA uses a
repair strategy to enhance the performance of neglected infe-
rior solutions. We directly select experimental data from the
open literatures for this comparison, instead of performing
new simulation experiments. The results derived from RW-
GEDA and these five competitors are shown in Table 6. For
the first type of benchmarks F1 to F3, all competitors except
EMNAg can obtain the optimum in each run, confirming
that these well-established GEDA variants can successfully
modify the ill-shaped distribution compared with the basic
EMNAg in solving ill-conditioned functions. For the mul-
timodal benchmarks, RW-GEDA ranks first on F4, F5, F6,
F7, F12 and F14, which demonstrates its efficacy in solv-
ing such problems. IPOP-CMAES also shows its outperfor-
mance with the best results on six functions, F4, F7, F8, F9,
F15 and F16. For the hybrid testbed, EDA2 exhibits its superi-
ority on most of the six benchmarks except for F19. However,
our RW-GEDA performs best for the last eight composition
functions. The last row of Table 5 presents overall pairwise
comparisons of RW-GEDA and other GEDAs based on the
mean value, where ‘+’ indicates that RW-GEDA surpasses
the compared algorithm, ‘-’ indicates worse performance, and
‘≈’ denotes that the performance of the competitor is similar
to that of RW-GEDA. RW-GEDA obviously outperforms all

VOLUME 7, 2019 43307



X. Wang et al.: Gaussian Estimation of Distribution Algorithm

TABLE 7. Mean ranks derived from friedman test for six gedas with α = 0.05.

FIGURE 6. Algorithm multiple comparisons; the algorithms are connected
using the CD value with less difference.

the competitors as indicated by the large number of ‘+’
symbols.

To demonstrate the differences among these six GEDAs
in a statistical method, the Friedman test and the post hoc test
are performed as presented in Table 7 and Fig. 6, respectively.
Since we can obtain only the mean and SD in the open
literature, we no longer use the Wilcoxon signed rank test to
compare the algorithms in pairs on each benchmark. In the
Friedman test, our RW-GEDA ranks on top with a p-value
equal to 4.9668e-12. The DOF of this post hoc test is the same
as that of the test in the previous subsection. Thus, the CD
value is equal to 1.0997 as well. As illustrated in Fig. 6, all
five GEDA variants have less significant difference in this
test but far outperform than the basic EMNAg. The proposed
RW-GEDAwith a novel searchmechanism can perform com-
petitively compared with those promising GEDA variants,
which verifies the efficiency of our modification.

C. ALGORITHM COMPONENTS ANALYSIS
As described in Section 2, our modification mainly consists
of four parts: 1) a weighted MLE to estimate the distribu-
tion; 2) a shifted mean to diversify the distribution; 3) two
random walk strategies to enrich the population diversity;
4) an eigen coordinates framework to adjust the evolution
directions. In this subsection, we perform an experiment
to reveal the influence of different modifications on the
performance of RW-GEDA. Thus, we propose four novel
RW-GEDA variants removing corresponding modifications;
i.e., Algorithm 1 uses the normal MLE to estimate the distri-
bution, Algorithm 2 employs the estimatedmeanwith no shift
to sample new candidates, Algorithm 3 removes the random
walk strategies, and Algorithm 4 is executed in the normal
coordinate framework. Table 8 provides the statistical results
derived from each version for 30D problems from the CEC
2014 test with the same population size of 12D. The last row
provides themean rank of these five algorithms obtained from
the Friedman test (α = 0.05) based on the mean values. The
lower the ranking of the algorithm is, the greater the impact
of the missing part on the performance of the algorithm.
It is obvious that overall, RW-GEDA ranks top. Algorithm 2
ranks last, which proves the significant effect of mean shift

strategy on the performance of the algorithm. The random
walk strategies show great influence on the algorithm as well
for the Algorithm 3 ranks fourth. Thus, the best performance
of RW-GEDA can only be achieved by integrating the four
parts of the modifications.

IV. MULTI-UCAV OPTIMAL MISSILE GUIDANCE
HANDOVER BASED ON RW-GEDA
The application of a real-world optimization problem is the
aim and outcome when developing optimization methods.
In this section, we employ RW-GEDA to solve the multi-
UCAV dynamic missiles guidance handover problem in OTH
air combat. UCAV has been widely used in combat in recent
years due to its advantages of ‘‘zero casualties’’, high maneu-
verability and low visibility. Moreover, multi-UCAV coop-
erative operation can better adapt to the complexity and
diversity of air combat tasks in the current networked environ-
ment, and meet the tactical requirements of situation sharing,
task coordination and cooperative attack.

In modern warfare, the combined missile guidance mode,
i.e., ‘‘inertial guidance + instruction correction midcourse
guidance + active homing terminal guidance’’ is generally
adopted for a medium/long range air-to-air missile in OTH
air combat, but this guidance mode is highly dependent on
the guidance from UCAV. If the UCAV is attacked or its
communication link is disturbed, it must forfeit the missile
guidance, thus leading to the loss of the target. However,
with the condition of multi-UCAV cooperative operation,
the guidance power handover among the collaborators can
maintain the optimal guidance of the missile. More specif-
ically, a multi-UCAV formation enters the combat airspace
following the command and guidance of the ground com-
mand center, and information sharing is realized through data
links among the formation. If the enemy targets are detected,
each target is allocated to a UCAV according to their relative
situation information. When the distance between the UCAV
and its assigned target satisfy the missile attacking area, the
missile is launched. During the midcourse guidance of the
missile, the UCAV is requested to illuminate the target by
radar to provide guidance command to missile, which may
lead to it being discovered and attacked by enemy aircraft.
If this UCAV is threatened by the enemy, it may abandon
the guidance to ensure survival. In this case, the guidance
power should be handed over to another UCAV that may
have the best guidance superiority. Therefore, the study
of the dynamic missile guidance handover of multi-UCAV
can greatly improve not only the damage performance and
overall air combat effectiveness, but also the flexibility of
tactics.
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TABLE 8. Comparison of the performance derived from different rw-geda versions.

Few existing studies have been proposed to solve this real-
time optimization problem. Diao et al. [54], [55] solved the
abnormal abrupt change in missile overload that is merged in
the process of handover. Their other work [56] proposed the
concept of the missile guidance advantage and established a
cooperative decision-making model, but they did not solve
the missile guidance handover as an optimization process.
Fei et al. [57] utilized a particle swarm auction hybrid algo-
rithm to solve the missile guidance handover problem with a
simple situation model. Based on their work, a more detailed
guidance advantage model is established by Zhou et al. [58],
whereas they solved this problem as a binary optimization
and did not specify the motion states of the UCAVs during
the process.

This problem is a continuous dynamic programming prob-
lem, which is typically solved using the rolling horizon
method. To maintain the maximum guidance advantage
of a UCAV at the sampling point or to obtain the opti-
mal attacking state of a UCAV relative to the target at
sampling, it is necessary to optimize the UCAV’s motion
state in the sampling time domain, that is, to optimize the
control variables in the UCAV’s motion model. In other
words, the focus of our research is not the optimal guidance
assignment at a certain sample point, but maintaining the
maximum guidance advantage throughout the entire attack

process, which is closer to the actual combat situation, con-
tributes to the autonomous combat of UCAV, and fills in
the gap in this aspect of the research. Thus, in our study,
we employ RW-GEDA to optimize the continuous motions
of UCAVs to maintain the optimal missile guidance advan-
tages during the combat process. The contribution of our
work and difference from previous studies are illustrated
in Fig. 7.

First, the mathematical model for solving this problem is
described below.

A. MATHEMATICAL MODEL OF OPTIMAL
MISSILE GUIDANCE HANDOVER
1) UCAV PLANE MOTION MODEL
In OTH air combat, the influence of the horizontal distance
on the situation is far greater than that of the altitude. Thus,
a simplified plane motion model with a fixed altitude is
reasonable and is applied to simulate the motion of the enemy
target and UCAV described as follows:

ẋi = vi cosψi
ẏi = vi sinψi
ψ̇i = g tanφi/vi

(23)

where (xi, yi) indicates the plane location of the ith UCAV;
vi represents its velocity, ψi and φi are the heading angle and
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FIGURE 7. The main novelty of our research on missile guidance problem.

rolling angle, respectively; and g denotes the gravitational
acceleration. In OTH air combat, the velocity is usually at its
maximum value to rapidly approach the enemy; thus, for the
ith UCAV, the state variables consist of (xi, yi, vmax, ψi); and
the only control variable is the rolling angle φi. Considering
the UCAV performance limitation, the rolling angle should
satisfy its dynamic constraints.

|φi| ≤ φmax (24)

2) SITUATION ADVANTAGE MODELS
To evaluate the states of the UCAVs at sampling points,
it is necessary to construct a situation advantage model for
evaluation. The missile guidance advantage is related to the
situations among the UCAVs, missiles and targets. First,
the target situation advantage models related to the states of
the UCAV and target, including the following a), b) and c)
parts, are established in this subsection.

FIGURE 8. Relative situation of UCAV to target.

The relative situation of the UCAV to the target is illus-
trated in Fig. 8. LOC indicates the line-of-sight. D is the dis-
tance between the UCAV and target. Vu, Vt and Vr represent

the UCAV velocity, target velocity and relative velocity,
respectively. QA, Qa and Qr indicate the UCAV aspect angle,
target approaching angle and the angle between Vr and LOC.
In this model, the radar detection area, missile attacking
area and missile non-escaping area are used to divide dif-
ferent advantageous regions. As shown in Fig. 8, Rrmax,
Rmmax andRkmaxare denoted as the maximum radius of the
radar detection area, missile attacking area and missile non-
escaping area. When the OTH air combat is simplified as
plane motion, the situation advantage is usually evaluated
from three aspects: angle situation, distance situation and
velocity situation. Previous studies [59]–[61] established the
independent multiple situation models. In practice, there are
strong interconnections among these situations, which were
typically neglected in those studies.

a: ANGLE SITUATION ADVANTAGE
In OTH air combat, the angle advantage of the UCAV should
be maintained to track the target effectively and avoid being
attacked. For the aspect angle QA, the angle situation will
be worse with a larger QA, which will lead to a greater off-
axis missile angle, thus leading to a short range of attacking
area. However, a large range of attacking areawill be obtained
with a greater Qa. Thus, the advantages of aspect angle and
approaching angle are described with the consideration of the
maximum radar detection angle (qr), maximum missile off-
axis angle (qm), maximum angle of non-escaping zone and
relative position.

ηQA

=



0.2− 0.2 · (QA − qr ) / (180◦ − qr ) ,
qr ≤ QA

0.6− 0.4 · (QA − qm) / (qr − qm) ,
qm ≤ QA < qr

0.9− 0.3 · (QA − qk) / (qm − qk) ,
qk ≤ QA < qm

1− 0.1 · QA/qk ,QA < qk

(25)

ηQa

=


0.3+ 0.7 (180◦ − qr − Qa) / (180◦ − qr ) ,

Qa ≤ 180◦ − qr
0.3− 0.3 (qr + Qa − 180◦) /qr , 180◦ − qr < Qa

(26)

The influences of the aspect angle and approaching angle
have a strong relationship with the angle situation advantage,
so the angle situation model is established as

ηQ = ηQAηQa (27)

The variation of ηQ with QA and Qa is illustrated in Fig. 9.

b: DISTANCE SITUATION ADVANTAGE
The missile attacking area is closely related to the target
conditions, especially its approaching angleQa. Generally,
the actual boundary of the missile attacking area varies
with the approaching angle; i.e., the maximum boundary is
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FIGURE 9. Angle situation variation; qr= 80◦, qm= 45◦, qk= 30◦.

FIGURE 10. Distance situation variation; Rr = 120km, Rm = 90km,
Rk = 60km.

obtained with the maximum relative speed at the head-on
attack, the second is at the side attack, and the minimum is
at the tail chase. Based on these characteristics, the distance
situation advantage model is denoted as

ηD

=


l0.5e−D/Rr , Rr ≤ D
0.5e−(D−cRm)/(Rr−cRm), cRm ≤ D < Rr
2−(D−cRkmax)/(cRm−cRkmax), cRkmax ≤ D < cRm
1,D < cRkmax

(28)

where

c = e0.5·(Qa−180
◦)/180◦ (29)

The influence of Qaon the distance is graphically shown
in Fig. 10.

c: VELOCITY SITUATION ADVANTAGE
In contrast to previous studies on the air combat situation,
only the influence of the relative velocity on the air com-
bat situation is considered. As shown in Fig. 11, if the
UCAV occupies an angle situation advantage, the distance D
between the UCAV and the target is expected to decrease.
Thus, the angle between their relative velocity vector and the
LOS direction, which is indicated as Qr in Fig. 11, should be

FIGURE 11. Velocity situation variation.

FIGURE 12. Relative situation of UCAV and missile.

greater than 90◦. Otherwise, Qr is expected to be less than
90◦ to increase their relative distance. Based on this result,
the velocity situation advantage by using the arctan function
is established as

ηV = 0.5+ 2 · sgn
(
ηQ − 0.5

)
·arc tan

((
Qr − 90◦

)
/90◦

)
/180◦ (30)

In (30), sgn(·) is a sign function, which is equal to 1 if the
UCAV occupies an angle situation advantage (ηQ >0.5), 0 in
equilibrium, and -1with an inferior angle situation (ηQ <0.5).
The variation in the velocity situation is shown in Fig. 11.

Considering the coupling of the angle and distance situ-
ation in air combat, the overall situation advantage of the
UCAV to the target is expressed as

ηT = 0.7 · ηQηD + 0.3 · ηV (31)

d: MISSILE GUIDANCE ADVANTAGE
The relative situation of the UCAV and the missile is shown
in Fig. 12. During the process of the missile midcourse guid-
ance, the UCAV not only needs to keep the target tracked, but
also needs to deliver the guidance command to the missile.
To complete the missile guidance, the relative position of the
UCAV and guided missile must satisfy the following three
constraints:
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FIGURE 13. Missile guidance situation variation; qr = 80◦; qrm = 60◦.

1) The missile must be located within the maximum
search angle (qr) of the radar of the UCAV.

2) The UCAVmust be located within the maximumwork-
ing angle (qrm) of the tail antenna of the missile.

3) The missile must not exceed the maximum guidance
distance (Rrmax) of the UCAV radar.

Thus, the missile angle situation advantage is introduced
by using a linear weighted normalization method and its
variation is shown in Fig. 13.

ηq

=


1− 0.5 · (qA/qr + qa/qrm) ,

0 ≤ qA < qr, 0 ≤ qa < qrm
0, else

(32)

The missile distance advantage will decrease as the dis-
tance between the missile and the guidance UCAV decreases,
which can be modeled as

ηDm =

{
e−3·Dm/Rrmax , Dm < Rrmax

0, else
(33)

When all of the above three constraints are satisfied,
the UCAV can guide the missile. Therefore, the situation
advantage of the UCAV to the missile is adopted to integrate
the angle situation and distance situation.

ηM = ηqηDm (34)

3) GUIDANCE ADVANTAGE OF THE UCAV
FOR THE MISSILE AND TARGET
Combining the UCAV situation advantages for the missile
and target, the synthetic guidance advantage of the UCAV can
be obtained as

η = ηTηM (35)

B. MISSILES GUIDANCE HANDOVER STRATEGY
Assume there are N UCAVs and M targets (N ≥ M ) in air
space. According to the initial target situation advantage of
UCAVs relative to targets, the first superiorM UCAV launch
missiles toM targets and the ith missile attacks the ith target.
Thus, Mmissiles need to be guided. The guidance advantage
matrix is indicated as η(M×N ), and its element ηi,j denotes the
guidance advantage of the jth UCAV to the ith missile and

FIGURE 14. Flow chart of the problem optimization.

ith target, which can be calculated by using (34). The goal
of the missile guidance handover is to find a set of missile
assignment solutions x to maximize the guidance advantage.

Fη = max
N∑
i=1

M∑
j=1

xi,j · ηi,j, xi,j ∈ {0, 1} (36)

It should be noted that this paper focuses on investigating the
influence of UCAV maneuver decisions on missile guidance
assignment. Thus, the maximum guidance advantage func-
tion is related to the control variables u, and the objective
function (36) can be denoted as

Fη (u) = max
N∑
i=1

M∑
j=1

xi,j · ηi,j (u) , xi,j ∈ {0, 1} ,

u = [φ1, φ2, . . . , φN ] (37)

Additionally, there are several constraints during the missile
guidance process. Each UCAV can guide only one missile;
thus, different missiles have different guidance UCAVs.

M∑
j=1

xi,j = 1

N∑
i=1

xi,j = 1

N∑
i=1

M∑
j=1

xi,j = M

(38)

In our model, the value of xis determined by an ergodic
method to obtain the optimal assignment plan more quickly.
At the same time, because the target maneuvering may lead
to a decrease of missile guidance advantage, the remaining
(N −M ) UCAVs, which do not participate in the missile
guidance directly, choose the missiles according to their
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maximum guidance advantage to make maneuver decisions
and enhance the robustness of the guidance advantage. A flow
chart of the solution is shown below.

C. EXPERIMENTAL RESULTS AND ANALYSIS
As a real-time optimization process, the rolling horizon
method is used with a sampling time equal to 1 s. This means
that the UCAV formation needs to complete the maneuver
decision and guidance handover in a time domain. Suppose
that there are five UCAVs that attack three targets. The initial
states of the five UCAVs are (0 m, 4000 m, 300 m/s, 90◦),
(5000 m, 0 m, 300 m/s, 60◦), (10000 m, −4000 m, 300 m/s,
45◦), (15000 m, −8000 m, 30 m/s, 30◦) and (20000 m,
−12000 m, 300 m/s, 0◦). The initial states of the three targets
are (60000 m, 45000 m, 250 m/s, 180◦), (65000 m, 40000 m,
250 m/s, 180◦) and (70000 m, 35000 m, 250 m/s, 180◦). All
three targets perform turning maneuvers with stable rolling
angles equal to 45◦, 36◦ and 30◦, respectively. The other
parameters are set as follows: maximum rolling angle of
UCAV |φmax| = 72◦,maximum radar search angle of UCAV
qr = 80◦; maximum missile attacking angle qm = 45◦;
maximum angle of missile non-escaping zone qk = 30◦;
maximum angle of missile tail radar qrm = 60◦; maximum
radar working distance of the UCAV Rr = 120,000m; max-
imum missile attacking distance Rm = 90,000m; maximum
distance of missile non-escaping zone Rk = 60,000m. The
velocity of the missile is set to 800 m/s, and the motion of
the missile follows a proportional navigation method with the
proportional coefficient k = 5.
To assess the performance of RW-GEDA in solving this

complex real-time optimization problem, VCS, GWO [62]
and AAVS-EDA are employed as competitors. VCS exhibits
it promising performance in engineering design. GWO has
become the most popular algorithm in its source journal and
widely applied in engineering optimization. AAVS-EDA is
one of the successful GEDA variants. To make a fair com-
parison, the parameters of the four algorithms are set as: the
dimensionality is D = 5, the population size of RW-GEDA
is NP= 12D = 60, and these of other three techniques are
20, 60 and 120, respectively, and the maximum function
evaluations MaxFEs= 4800. The total simulation time is 55s;
to reduce the randomness, all experiments are performed
10 times independently.

Fig. 15(a) provides a horizontal view of the air combat sit-
uation in the simulation time. At the initial time of optimiza-
tion, the situation matrix ηT (M×N )of the UCAVs to targets
calculated by using (31) is

FIGURE 15. Optimal missile guidance handover obtained from RW-GEDA.
(a) Horizontal view. (b) Control variables. (c) Missile1 guidance
advantage. (d) Missile2 guidance advantage. (e) Missile3 guidance
advantage. (f) Missiles guidance assignments. (g) Comparison of the
missiles guidance advantages.
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FIGURE 15. (Continued.) Optimal missile guidance handover obtained
from RW-GEDA. (a) Horizontal view. (b) Control variables.
(c) Missile1 guidance advantage. (d) Missile2 guidance advantage.
(e) Missile3 guidance advantage. (f) Missiles guidance assignments.
(g) Comparison of the missiles guidance advantages.

Under the initial conditions, the targets are located in the
UCAVs missile attack area. According to the rule of target
assignment, missile1 is launched by UCAV5 to attack tar-
get1, missile2 is launched by UCAV4 to attack target2, and
missile3 is launched by UCAV1 to attack target3. Although
UCAV2 and UCAV3 do not participate in the missile guid-
ance, they also possess the assigned targets to occupy greater
situation advantages, i.e., UCAV2 to missile1-target1 and
UCAV3 to missile1-target1.

During the guidance process, each UCAV searches for
the best situation by optimizing its control variables, and
the missile trajectories in different colors that correspond
to the colors of the UCAVs, as shown in Fig, 15(a), indicate
that the guidance handover is executed in each sampling time
and that the missile is guided optimally by different UCAVs.

FIGURE 16. Statistical performance comparison. (a) Mean advantage
comparison. (b) Computational cost comparison.

Through the optimization of the control variable, each UCAV
moves towards its assigned target. Fig. 15(b) presents the
variations of the control variables of each UCAV in the sim-
ulation. All variables satisfy the constraint so that the opti-
mization results are feasible and reliable.

The guidance advantages of UCAVs for different mis-
siles are shown in Figs. 15(c), 15(d) and 15(e). The guid-
ance advantages of UCAVs to three missiles will vary with
the air combat situation, which may lead to an UCAV not
maintaining the optimal guidance advantage to its assigned
missile. As shown in Fig. 15(c), missile1 is launched by
UCAV5, and thus, UCAV5 takes the best guidance advan-
tage at the beginning. Due to the maneuvering of target1,
the guidance advantage of UCAV5 gradually decreases and
UCAV3 obtains the best guidance advantage from 30 s to 46 s.
From 47 s, UCAV4 possesses the best guidance advantage
of missile1. The guidance UCAVs for missile2 and mis-
sile3 are also selected according to the maximum guidance
advantages. These changes of guidance handover are visible
using different colors on the missiles trajectories as shown
in Fig. 15(a). Moreover, in Figs. 15(d) and 15(e), a situation
where the guidance advantage of theUCAV to themissile is 0.
This is because that the UCAV is located outside the working
scope of the missile’s tail antenna.

On basis of the maximum guidance advantage, the allo-
cated guidance UCAV for each missile at different times is
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presented in Fig. 15(f); a comparison of the best guidance
advantages with handover is provided in Fig. 15(g). It can be
seen that UCAVs can achieve a greater situation advantage
with guidance handover than without handover.

To verify the efficiency of our proposed method, GWO,
VCS and AAVS-EDA are employed as competitors. For each
algorithm, 10 independent runs are performed to reduce ran-
domness. The average missile guidance advantages obtained
from 10 operations is statistically compared in Fig. 16(a).
RW-GEDA obtains better optimization results than the other
three competitors.Additionally, in this real-time optimiza-
tion problem, the time consumption is another important
evaluation indicator. A comparison of the mean time cost
is provided in Fig. 16(b). RW-GEDA displays similar per-
formance to GWO and AAVS-EDA in terms of the com-
putational cost, and outperforms VCS. Although there are
slight differences between the optimization results of the
four algorithms, the optimization time that each algorithm
requires satisfies the constraints of a sampling time of 1 s.
Overall, the optimizing capacity of RW-GEDA is competitive
compared with those of the other three competitors, verify-
ing the superiority and stability of RW-GEDA in the search
process.

V. CONCLUSION
In this study, we develop a novel GEDA extension with novel
search mechanisms. Our proposed RW-GEDA is tested by
using CEC 2014 benchmarks with a comparison of other
state-of-the-art competitive algorithms from different com-
munities. The statistical results show excellent performance
of our proposal in terms of the convergence accuracy and
computational efficiency.

To solve the optimal missile guidance handover problem of
multiple UCAVs in OTH air combat, we describe our novel
mathematical models, and RW-GEDA is applied to solve
the problem. The simulation results show that UCAVs can
maintain better guidance advantages in the combat process
through guidance handover, thus verifying the validity of
the established model. Moreover, RW-GEDA can solve this
problem effectively and competitively compared with other
popular algorithms.

As a novel development of the current GEDA, our RW-
GEDA has fewer tuning parameters and less parameter sen-
sitiveness in solving different problems. However, the lim-
itation in our RW-GEDA is its greater computational cost.
In future studies, it is necessary to reduce the calculation
and decomposition of the covariance matrix by hybrid other
efficient tools.

APPENDIX
A. SOURCES OF MATLAB CODES FOR THE ALGORITHMS
PARTICIPATING IN SECTION 3
RW-GEDA:

From Cor. Author Wang: wxf825421673@163.com.
L-SHADE:
http://www.pudn.com/Download/item/id/2840416.html.

AAVS-EDA:
From Author Liang: liangyongsheng@stu.xjtu.edu.cn.
VCS:
From Cor. Author Li: modern_lee@163.com.
COA:
From Cor. Author Li: modern_lee@163.com.
BLPSO5:
https://ww2.mathworks.cn/matlabcentral/fileexchange/

64074-biogeography-based-learning-particle-swarm-
optimization?s_tid= srchtitle.

B. STATISTICAL RESULTS OF THE MEAN ERROR VALUES
DERIVED FROM RW-GEDA FOR THE 30D CEC2014 TEST
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