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ABSTRACT In order to improve the accuracy of emotional recognition by end-to-end automatic learning of
emotional features in spatial and temporal dimensions of electroencephalogram (EEG), an EEG emotional
feature learning and classification method using deep convolution neural network (CNN) was proposed
based on temporal features, frequential features, and their combinations of EEG signals in DEAP dataset.
The shallow machine learning models including bagging tree (BT), support vector machine (SVM), linear
discriminant analysis (LDA), and Bayesian linear discriminant analysis (BLDA) models and deep CNN
models were used to make emotional binary classification experiments on DEAP datasets in valence and
arousal dimensions. The experimental results showed that the deep CNN models which require no feature
engineering achieved the best recognition performance on temporal and frequency combined features in
both valence and arousal dimensions, which is 3.58% higher than the performance of the best traditional
BT classifier in valence dimension and 3.29% higher than that of BT classifier in arousal dimension.

INDEX TERMS EEG, emotion recognition, convolution neural network, combined features, deep learning.

I. INTRODUCTION
With the development of deep learning and artificial intel-
ligence technology, emotion recognition has a broad appli-
cation prospect in the field of human-computer interaction,
which has been widely concerned by researchers [1]. Emo-
tion recognition based on text, speech, facial expression and
posture are appearing one after another, but these meth-
ods are subjective and cannot guarantee the authenticity
of emotion. Physiological and psychological Studies have
shown that changes in physiological signals tend to be much
closer to people’s real emotions than facial expressions, pos-
tures or voice [2]. However, the measured physiological sig-
nals such as EOG, ECG and EMG are still indirect reactions
caused by emotions, which have the deficiency of lack of the
reasonable evaluation criteria and low emotional recognition
accuracy [3]. According to neurophysiology and psychology
research, electroencephalogram (EEG) can not only reflect
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the various brain electrical activity and the functional state
of the brain, but also can reflect the effective information of
the human emotional state [4] and the generation or activity
of emotion is closely related to the activity of the cerebral
cortex [5]. In recent years, EEG signals have been gradually
introduced into the field of emotion recognition because of
their strong objectivity and high accuracy of classification [6].

Emotion recognition has achieved good classification
results using the traditional machine learning classifiers.
Kumar et al. [7] used linear kernel least squares sup-
port vector machine (LS-SVM) and back-propagation arti-
ficial neural network (ANN) to perform binary emotion
recognition and achieved accuracy of 61.17% and 64.84%
on valence and arousal emotional dimension respectively.
Atkinson and Campos [8] combined the efficient feature
selection method and the kernel-based SVM classifier to
make emotion classification on the standard EEG Dataset,
and gained the accuracy of 73.06% and 73.14% on valence
and arousal dimensions. Chen et al. [9] proposed an EEG
feature extraction algorithm based on the combination ofData
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space adaptation (DSA) and Common spatial patterns (CSP)
to alleviate the performance degradation of emotional clas-
sification caused by fluctuation and difference of day-to-day
EEG signals from 12 subjects in 5 consecutive days.

The improvement of computer processing speed and com-
puting ability makes it possible to design and implement
deep learning networks. Deep Belief Network (DBN) [10],
Convolutional Neural Network (CNN) [11], [12], Long/
Short-Term Memory (LSTM) [13] Network and other deep
networkmodels have achieved excellent performance in com-
puter vision, speech recognition and natural language pro-
cessing. With the advancement of EEG signal acquisition
technology, it becomes easier to obtain large-scale EEG data
recordings and deep learningmodels are gradually used in the
field of EEG-based emotion classification and recognition.

Suwicha et al. [14] applied a PCA-based principal com-
ponent covariate adaptive transformation algorithm to extract
the discriminant energy spectral density features of EEG
signals and proposed a deep learning network based on
Stacked Autoencoder to make emotion classification in
valence and arousal dimensions, which classification accu-
racy was improved by 5.55% and 6.53% than that of tra-
ditional SVM and Naive Bayesian classifier respectively.
Stober et al. [15] discussed the application of deep con-
volution automatic encoder in capturing the invariance of
EEG data among different subjects in emotion classifica-
tion task. Alhagry et al. [16] proposed a LSTM-based deep
recursive neural network (RNN) which could automatically
learn the features from the original EEG signals and then
classify these features using a dense-layer classifier. The
average subject-independent classification accuracy of this
method in arousal, valence and likeness dimensions on
DEAP dataset [17] was 85.65%, 85.45% and 87.99% respec-
tively, which was much higher compared with the traditional
method. Soleymani et al. [18] proposed a method to detect
the emotional state of the subjects from their EEG signals
and facial expressions in real time by using LSTM-RNN
and continuous conditional random field (CCRF) algorithm
and obtain better performance. Tripathi et al. [19] used deep
convolutional neural network to classify DEAP data sets
on valence and arousal emotional dimensions with accu-
racy of 75.58% and 73.28% respectively. Li et al. [20]
used stacked auto encoder (SAE) and LSTM based recurrent
neural network (RNN) to make emotion classification on
mixed physiological signals including EEG with an accu-
racy of 79.26%. Salama et al. [21] proposed the application
of 3D convolutional neural network (3D-CNN) in emotion
recognition on multichannel EEG data and obtained the accu-
racy of 87.44% and 88.49%on valence and arousal dimension
respectively.

Deep learning models can automatically end-to-end learn
the abstract features from large scale raw samples, avoiding
the engineering of feature extraction and feature selection.
However, in the field of EEG signal recognition and classifi-
cation, large-scale labeled EEG datasets are limited andmany
EEG-based BCI (Brain Computer Interface) applications

often require high real-time performance. The application
of deep learning models on EEG signals is just beginning,
and the related performance still needs to be verified. There-
fore, we selected to work on DEAP dataset [17] which
includes large-scale EEG signals and emotion tags, extracted
the time-domain, frequency-domain feature and their com-
bined features associate to emotional dynamics, and made
emotion classification on these features using deep convo-
lutional neural network in the way like that in the field of
computer vision. We took some state-of-the-art traditional
machine learning classifiers as baselines which included Sup-
port Vector Machine (SVM), Bagging tree (BT), linear dis-
criminative analysis (LDA) and Bayesian linear discriminant
analysis (BLDA) models. The classification performance of
our proposed deep CNN models was compared with those
of baseline classifiers to verify the deep CNN models based
on the combined features in time and frequency domain had
higher performance on EEG emotion recognition.

The content of the paper was organized as follows, we first
introduced the DEAP dataset, the data preprocessing method
and details on how EEG features are extracted and combined.
Next, we elaborated the EEG-based emotion classification
models including the shallow machine learning classifiers,
our proposed deep CNN models and the deconvolutional
networks for hidden feature visualization. Then, we pre-
sented and analyzed the testing experiments and results, made
comparison and discussion with the state-of-the-art shallow
classifiers. Conclusion were provided in the end.

II. EEG DATASET AND FEATURE EXTRACTION
A. DEAP DATASET AND DATA PRE-PROCESSING
The experiment was carried on the DEAP dataset [17] devel-
oped by a team of researchers at Queen Mary University of
London, which is a large open source dataset containing mul-
tiple physiological signals with emotional evaluations. In its
data collection experiment, the induced EEG, ECG, EMG
and other bioelectrical signals were detected and recorded
while 32 subjects were watching 40 trials of music videos
with different emotional tendencies for about 1 minute for
each video. The subjects then rated the videos on a scale
of 1-9 in terms of Arousal, Valence, Liking, Dominance
and Familiarity. The rating value from small to large indi-
cated that each index was from negative to positive, from
weak to strong, respectively. The 40 stimulus videos included
20 high valence/arousal stimuli and 20 low valence/arousal
stimuli. In this paper, we applied the first 32-channel EEG
signals in DEAP dataset which had been pre-processed by
down sampling to 128 Hz, band-pass filtering to 4-45 Hz,
common average referencing and ocular artifacts removing
by blind source separation algorithms. The duration of the
denoised EEG signals in each trail is 63-s, including 60-s
watching video and 3-s before watching, which have a total
of 8,064 readings for each channel.

This paper extracted the 60-s EEG signals (7680 read-
ings) induced by watching video in each trial and removed
the 3s baseline signals before watching video to correct
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the changes of stimulus-independent signals and acquire the
stimulus-related dynamics. Then in the time domain, the 60-s
EEG signals was segmented into sixty 1-s epochs. The total
number of EEG epochs from 40 trials of each subject was
40∗60 = 2400, and the dimension of this dataset was 128
(time points) ∗ 32 (channels)∗1∗2400 (epochs). Based on the
emotional rating value of each video in the range of 1-9 in
arousal and valence domain, the median 5 was used as the
threshold to divide the rating value into two categories: more
than 5 labeled with 1 meaning high arousal/valence, less
than or equal to 5 labeledwith 0meaning low arousal/valence.
Finally, the label data with dimension of 1∗2400 correspond-
ing to EEG signals was obtained. The dataset was then bal-
anced to ensure that the number of two classes of labels
and samples are equal, so as to reduce the impact of sam-
ple imbalance between classes on classification results and
improve the normalization ability of classification models.
For example, there were 1440 EEG samples with high arousal
labels and 960 samples with low arousal labels for the fifth
subject’s dataset. We randomly extracted 960 samples from
high labeled samples according to the number of low labeled
samples, so that the number of two types of labels and corre-
sponding EEG samples in each dataset was equal. Then we
randomly extracted 30% of high arousal/ valence labels and
30% of low arousal/valence labels and their corresponding
EEG samples as test data, the rest 70% labels and EEG
samples were used as the training data, and it had been proved
by experiments that such partitioning of cross-validation set
could achieve better classification performance and better
generalization. In this way, a 10-fold cross validation dataset
of raw EEG data was constructed for each subject, which
would be used to make feature extraction, train and test the
shallow classifiers and our proposed deep CNN models as
following methods.

B. EEG FEATURE EXTRACTION
In this paper, EEG features were extracted from time
domain and frequency domain respectively. The ampli-
tude at each time point of the pre-processed EEG data
was taken as the original time domain feature which was
called RAW feature. The RAW feature was then normal-
ized by channels which was called NORM feature. Both
RAW and NORM features had the same size of 128(time
points)∗32(channels)∗1∗ epochs. In frequency domain, EEG
signals always contain much information of rhythm fre-
quency band. Many researches of neuroscience and psychol-
ogy showed that five frequency bands of Delta (1Hz∼ 4Hz),
Theta (4Hz ∼ 8Hz), Alpha (8Hz ∼ 13Hz), Beta (13Hz ∼
30Hz) and Gamma (above 30Hz ∼ 47Hz) in EEG signals
were closely related to emotional and other psychological
activities [22]. So, on these five frequency bands and the
whole band (4-45Hz), we separately applied the fast Fourier
algorithm to extract 64 power spectral density (PSD) features
by sliding 0.5s Hamming window with 0.25s step along
1s EEG epoch on each channel. The experimental results
showed that the PSD feature in the whole frequency band

had better classification performance than those in the other
sub-frequency bands, so we took the PSD feature with size
of 64(features points) ∗32 (channels)∗1∗ epochs in the whole
frequency band as the typical frequency domain feature and
called it FREQ feature for short. Because the combination
of time domain and frequency domain features includes both
global time and local frequency dynamics, it can better cap-
ture the emotional correlation in time and frequency domain
synchronously. Therefore, we proposed to combine the RAW
and NORM features in time domain with FREQ features
separately and got the combined features which were called
FREQRAW feature and FREQNORM feature. Before the
combination, the RAWandNORM features were firstly down
sampled to 64Hz to have the same sizewith the FREQ feature,
and then was combined with FREQ feature separately by
concatenating them in the third dimension, which made the
size of the combined FREQRAW or FREQNORM feature
was 64(feature points)∗32(channels)∗1∗ epochs. In the fol-
lowing experiments, we mainly dealt with these five types of
EEG features including RAW, NORM, FREQ, FREQRAW
and FREQNORM.

III. EEG-BASED EMOTION CLASSIFICATION MODELS
A. SHALLOW MACHINE LEARNING MODELS
In the DEAP Dataset, the participants’ evaluation of each
video was based on two-dimensional affective model of
valence and arousal, and the rating values of these two indexes
were all consecutive numbers from 1-9, representing the
tendency from negative to positive, from weak to strong.
Therefore, we chose to classify human emotion-related EEG
data in valence and arousal dimensions. The valence index
reflects the level of people’s feeling of pleasure, the higher
the valence, the more positive and happier, and the lower
the valence, the more negative and sadder. The arousal index
reflects the intensity of people’s feeling, the higher the
arousal, the more obvious and stronger the feeling, and the
lower the arousal, the more implicit and weaker the feeling.
We took four kinds of traditional shallow machine learning
models including BT, LDA, BLDA and SVM which had
shown good performance in our previous EEG-based emotion
recognition study [23] as the benchmark to carry out binary
emotion classification experiments.

Bagging Tree (BT) is a kind of supervised classification
algorithm which combines a group of weak decision tree
classifiers into a strong classifier through the iteration. Given
a group of samples and each sample has a set of attributes and
a predetermined category. In each iteration, 70% samples are
randomly selected to form the sub training set Dt to train the
tth weak classifier and then put these samples back to repeat
the same iteration 100 times. Finally, the category voted most
by these 100 weak classifiers is chosen as the final classifi-
cation result by voting. The purpose of linear discriminant
analysis is to aggregate homogeneous samples and disperse
heterogeneous samples. The Bayesian linear discriminant
analysis (BLDA) algorithm calculates the posteriori proba-
bility and error probability of each sample and classifies the
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sample by estimating the maximum posteriori probability to
minimize the expected loss. The core idea of the Support
vector machine is to determine an optimal hyperplane, so that
the samples fall in either side of the hyperplane and the
distance between the sample and the hyperplane should be
as large as possible. The SVM classifier can not only get the
classification result with low error rate, but also make good
classification decision on the test data out of the training set.
In this paper, we applied the linear kernel function for SVM
model for binary classification experiments.

B. DEEP CONVOLUTION NEURAL NETWORK MODELS
Deep learning aims to automatically learn and extract multi-
level feature representation from raw data [24]. Convolutional
neural network is a typical and widely used model for deep
learning. The characteristics of convolutional neural network,
such as local connection, weight sharing and down sampling
operation, make it possible to effectively reduce the complex-
ity of the network, reduce the number of training parameters
and present the advantages of strong robustness and fault
tolerance, as well as easy to train and optimize [25]. In this
paper, we applied the convolutional neural network like that
used in computer vision tomake binary emotion classification
on features from time domain, frequency domain and their
combination in valence and arousal dimensions.

For deep CNN models, the essence of convolution kernel
is to extract the deep and abstract information of input sig-
nals automatically. The convolution kernel is calculated as
follows:

x lj = f (
∑
i∈Mj

x l−1i ∗w
l
ij + b

l
j) (1)

where x lj is the j
th feature of the layer l; wlij is the connecting

weight of the jth feature of the layer l and the ith feature of
the layer l-1; blj is the offset of the j

th feature of the layer l;
∗ is the convolution operation; f (•) is the activation function.
The ReLU [26] function is often used as the activation

function because it is simple to implement, can accelerate the
calculation and convergence, has no saturation problem, and
greatly alleviates the phenomenon of gradient dissipation.
The formula of the ReLU function is as follows:

f (x) = max(0, x) (2)

The pooling layer is a structure for down sampling the
features obtained from the convolutional layers, which can
reduce the amount of computation and the degree of over-
fitting of the network to some extent, thus improving the
performance of the CNN model [27]. The pooling method
includes average pooling and maximum pooling. In this
paper, we applied the maximum pooling layer to divide the
convolutional features into several disjoint regions of n∗n
and used the maximum value of each region to represent
the down sampled convolutional feature. After the output
of the last convolutional layer, two fully connected layers
were appended to combine all the extracted features together.

A dropout layer was added after the second full connection
layer which could significantly reduce the overfitting of the
model by ignoring a part of the feature detectors (making
a part of node value in hidden layer 0) in each training
batch. Finally, a Soft-max classification layer was connected.
It was an extended supervised learning algorithm based on
logistic regression, which was often used in combination with
deep learning or unsupervised learning algorithm.

Due to the temporal and spatial correlation of EEG sig-
nals, we considered to use eight convolutional filters on
local/global and space/time combinations and one convolu-
tional filter the same as that of the CNN model used for
computer vision (CVCNN). These eight combined convo-
lutional filters were separately labeled as LS, LT GS, GT,
LSLT, LSGT, GSLT and GSGT. LS stood for local spatial
filter, LT stood for local time filter, GS stood for global
spatial filter, GT stood for global time filter, LSLT stood for
local time local spatial filter, LSGT stood for local space
global time filter, GSLT stood for global space local time
filter and GSGT stood for global space global time filter.
Our previous experimental results [28], [29] had shown that
CVCNN, GSCNN and GSLTCNN models presented better
performance than other filter models in EEG-based rapid
sequence visual presentation (RSVP) event classification.
So, we mainly applied these three deep CNNmodels to make
EEG-based emotion classification.

In EEG-based emotion classification experiment, the selec-
tion of parameters for CNNmodels is very important, includ-
ing the number and setting of convolutional layers, pooling
layers, feature maps and the full connection layers and the
selection of optimization algorithms. In order to balance
the depth of the model with the limited training samples,
we defined a searching space for selecting model parameters:
the number of convolutional layers and pooling layers is
ranging from 1 to 3, the number of full connection layers
is ranging from 1 to 2, and the number of feature maps of
each convolutional layer is ranging from 23to27. By train-
ing and testing the above three CNN models configurated
with each combination of parameters from the searching
space, the model parameters with the best classification
performance was selected. During the searching process,
to simplify the calculation, we set the batch size as 20, the
size of convolution kernel in pooling layer was 2∗2, the
size of convolution kernel in CVCNN model was 5∗5,
the size of convolution kernel in GSLTCNN model was
20∗5, and the size of convolution kernel in GSCNN model
was 20∗1. Four convolution kernels with step 1 were used
in each convolutional lay of three CNN models. The full
connection layer was put after the last convolutional layer
and its pooling layer, a Soft-Max classifier which had two
classes of output was appended at the end of the network.
ReLU function was used as the activation function and
cross entropy was used as the loss function of the network.
We set the rate of dropout as 85% to avoid overfitting. All
CNN models were optimized by stochastic gradient descent
algorithm.
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Through experiments and comparisons of various models
in search space, the best mode parameters were determined
which meant the CVCNN, GSCNN and GSLTCNN models
with 2 convolution layers, 2 pooling layers, 2 fully connected
layers and 1 Soft-Max layer were selected as the optimal
models for emotion classification on DEAP dataset which
first convolution layer had 128 feature maps and second
convolution layer had 64 feature maps. The structure of our
deep CNN models was shown as Fig.1.

FIGURE 1. Structure of our deep CNN models.

FIGURE 2. The architecture of the proposed deep CNN model. A. The
detailed structure of deep CNN model. There are N convolutional layers,
where each blue box represents a convolutional operation and the texts
inside represent [kernel shape] / MP width × Feature Map Size.
‘‘FM’’ denotes feature map. B. The detailed architecture of the DNN
Module in A. It contains fully connected modules (blue boxes) and hidden
units (gray ovals).

The architecture of the proposed deep CNN was shown
as Fig.2. Multiple filters or kernels were convolved with
the input data in terms of vectorized EEG epochs in each
convolutional layer, which were designed to capture differ-
ent local temporal and spatial EEG features. The output of
a convolution layer from one kernel was called a feature
map (FM). All the output feature maps were combined by
the fully connected layers at the end of the last convolution
layer. The pseudocode of our proposed deep CNN procedure
was as Table 1.

C. DECONVOLUTIONAL NEURAL NETWORK FOR
VISUALIZING FEATURES OF DEEP CNN MODELS
To make our proposed deep CNN models easy to be under-
stood, we applied the deconvolutional network [30] on our
trained CNN models to visualize the features extracted by
them. During the implementation of a deconvolutional net-
work, the most activated hidden unit on the top convolution
layer after pooling was firstly selected. A forward propaga-
tion was used to produce a set of hidden units in the top

TABLE 1. Pseudo code of GSLT-CNN for subject identification.

convolutional layer to determine the most activated unit for
each epoch. Then, we calculated the max L1 norm for each
hidden unit and the unit with the largest L1 norm was fed
into the deconvolutional network. The deconvolution algo-
rithm shown as Fig. 3 was like that proposed in [31], which
consisted of 3 steps to deconvolve the activated hidden units
and map them back to the input EEG.

FIGURE 3. Illustration of deconvolutional network for reconstructing the
activated hidden units.

The first step was to make a reverse operation of pooling
that was called unpooling. For our CVCNN, GSCNN and
GSLTCNN, the max pooling operation was non-invertible.
But we could get an approximate inverse value bymarking the
locations of the maxima within each pooling region with a set
of switch variables. Thus, these switches were used to place
the reconstructions from the layer above into the appropriate
locations to preserve the structure of the stimulus [32], while
other locations were filledwith zeros instead. The second step
was rectification, where the function of ReLU was applied to
the unpooling output. The third step was unfiltering. As the
convolution filters in our CVCNN, GSCNN and GSLTCNN
were all linear operations, the reverse operation of filtering
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convolved the feature maps from upper layer using the trans-
posed versions (flipping each filter vertically and horizon-
tally) of the same filters applied on the rectified maps after
step 2. After repeating these deconvolution operations for
each CNNmodule, we could visualize the reconstructed EEG
patterns underlying the most activated hidden units.

IV. EXPERIMENTS AND RESULTS DISCUSSION
For each type of RAW, NORM, FREQ, FREQRAW and
FREQNORM features extracted and balanced from each sub-
ject, 30% of high-class labels and 30% of low-class labels
and their corresponding EEG data were randomly extracted
as the test set, the rest 70% of the labels and EEG data were
used as the training set, and 10% of the training data was then
randomly selected as the verification set while training began.
In this way, a 10-fold cross-validation set was constructed
for each type of feature of each subject, which was used as
input to train and test the shallow baseline classifiers and our
proposed deep GSCNN, GSLTCNN and CVCNN models.

The area under the ROC (Receiver Operating Characteris-
tic) curve called as AUC (Area Under roc Curve) was used
as a measurement to evaluate the performance of the above
classification models. The value of AUC usually ranges from
0.5 to 1 and the larger the AUC value is, the better the model
is. If AUC = 1, it indicates when using this model for
prediction, the perfect prediction result can be obtained no
matter what threshold is set. While if AUC= 0.5, it indicates
the model cannot complete the classification or prediction
work. The average AUC of each classifier on 10-fold cross-
validation set was taken as the performance metric of this
classifier on the corresponding feature of each subject. The
AUC values of 32 subjects was then averaged as the final
within-subject classification performance of the correspond-
ing model on corresponding type of feature.

The aim of our experiments was to evaluate the binary
classification performance of four shallow baseline classifiers
and three CNN models on valence and arousal dimensions to
find out the optimal classification model and the feature with
the best performance. we also reconstructed and visualized
the hidden units learned from CVCNN model by deconvo-
lution network to show the CVCNN model could learn the
discriminative emotional features.

A. EMOTION CLASSIFICATION IN VALENCE
In valence dimension, we applied four shallow classifiers
including BT, LDA, BLDA, and SVM and three deep CNN
models including CVCNN,GSCNN, andGSLTCNN tomake
within-subject binary (high/low) emotion classification. The
experimental results were shown in Table 2. From that we
could see in valence dimension, BT, BLDA and SVMmodels
all showed the best performances on the FREQ features in fre-
quency domain, which were much higher than those on RAW
and NORM features in time domain, and little higher than
those on FREQRAW and FREQNORM combination fea-
tures except SVM showed better performance on FREQRAW
feature. The performances of three CNN models on FREQ

TABLE 2. The average auc of 7 models on 5 features of 32 subjects in
valence.

features were also much higher than those on the RAW and
NORM features, and the recognition performances on the
FREQRAW and FREQNORM combination features were
still much higher than those on all single features including
FREQ feature.

FIGURE 4. Classification performance of BT model on five features of
32 subjects in valence dimension.

For traditional shallow classifiers, the BT model showed
the best recognition performance, with the best average AUC
of 96.42% on the FREQ feature and the best average AUC
of 92.54% on the combined FREQNORM feature. The binary
valence classification results of BT model on five features
of 32 subjects were shown in Fig.4, from which we found
out the EEG features of the 15th subject presented the best
recognition performance. The LDA model has the best per-
formance in identifying time domain features with an average
AUC of 64.53%. The SVM model has the best recognition
performance on the combined FREQRAW features with an
average AUC of 92.34% and an average ACC of 87.07%.
Compared with the binary valence classification result of
literature [15], the accuracy of SVM model was increased
by 19.86%.

For three types of deep CNN models, their average AUC
performances on FREQNORM features were all approxi-
mately 1, which were significantly higher than those on
single frequency or time features, which showed that our
proposed deep CNN models could obtain nearly perfect per-
formance on the combined FREQNORM feature for predict-
ing high or low valence of emotion. Among them, the deep
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CVCNN model with convolution kernel of 5∗5 had the best
average AUC performance on total five features, reaching
84.02%, which was 4.31% higher than the average AUC
of 79.71% of the best shallow BT model on total five fea-
tures. Additionally, the average ACC of deep CVCNNmodel
was up to 88.76%, which was 9.5% higher than the best
accuracy of 79.26% of the LSTM RNN model proposed
in literation [15] for binary valence classification on the
same DEAP dataset. The performance of the CVCNN model
on five features of 32 subjects was shown in Fig.5, from
which we also found out the 15th subject presented the best
recognition performance and the AUC values of all subject
on FREQNORM and FREQRAW features were significantly
higher than those on single time or frequency features.

FIGURE 5. Classification performance of CVCNN model on 5 features of
32 subjects in valence dimension.

FIGURE 6. Comparison of classification results of different models on
different features in valence.

The comprehensive comparison Histogram of the classifi-
cation performances of shallow models and deep models in
valence dimension were shown in Fig.6. On the RAW feature
in the time domain, the deep GSLTCNN model showed the
highest classification performance, with an average AUC
of 67.16%, which was 8.27% higher than the average AUC
of 58.89% of the best performing BT model in the shal-
low classifiers. On the NORM feature in the time domain,
the deep CVCNN model showed the highest classification
performance, with the average AUC of 65.51%, which was

0.98% higher than the average AUC of 64.53% of the best
performing LDA model in the shallow classifiers. On the
FREQ feature in the frequency domain, BTmodel showed the
best performance, with an average AUC of 96.42%, which
was 3.35% higher than the average AUC (93.07%) of the
best performing deep CVCNN model. On the FREQRAW
combination feature, the deep GSLTCNN model showed
the best performance, with an average AUC of 99.46%,
which was 6.96% higher than the average AUC of 92.5%
of the best performing BT model in the shallow classi-
fiers. On the FREQNORM combination feature, the deep
GSLTCNN model showed the best performance, with an
average AUC of 99.99%, which was 7.45% higher than the
average AUC of 92.54% of the best performing BT model
in the shallow classifiers. Thus, it could be seen that the
EEG-base emotion classification performances of deep CNN
models were almost better than those of shallow classifiers
on four types of features, especially on combination features
of time domain and frequency domain.

B. EMOTION CLASSIFICATION IN AROUSAL
In arousal dimension, we also applied four shallow classifiers
including BT, LDA, BLDA, and SVM and the deep CVCNN,
GSCNN, and GSLTCNN modes to make within-subject
binary emotion classification. The experimental results were
shown in Table 3.

TABLE 3. The average AUC of 7 classification models on 5 features of
32 subjects on arousal.

From Table 3 we found out in arousal dimension, dif-
ferent from the classification results in valence dimension,
the recognition performances of BT, BLDA and LDAmodels
on RAW features in time domain were almost much higher
than those on NORM and FREQ features and little higher
than those on FREQRAW and FREQNORM combination
features. While the performances of three CNN models on
FREQ features were still much higher than those on the RAW
and NORM features, and the recognition performances on
the FREQRAWand FREQNORMcombination features were
still much higher than those on all single features including
FREQ feature.

For the shallow classifiers, the BT model still had the best
recognition performance, with the average AUC of 96.71%
on the RAW feature in time domain and the average AUC
of 94.42% on the FREQNORM combination feature. The
result of binary arousal classification of 32 subjects on five
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FIGURE 7. Classification performance of BT model on five features of
32 subjects in arousal dimension.

features by BT model was shown in Fig.7, from which we
found out the EEG features of the 23th subject presented the
best recognition performance. While the SVMmodel showed
the best recognition performance on combined FREQRAW
feature in time-frequency domain, with an average AUC
of 94.62% and average ACC of 86.98%. Compared with
the binary arousal classification result of literature [15],
the accuracy of EEG-based emotion classification by SVM
was increased by 18.43%.

For three types of deep CNN models, their average AUC
performances on the FREQNORM feature were all approxi-
mately 1, whichwere significantly higher than those on single
frequency or time domain features. It showed our proposed
deep CNN models could obtain nearly perfect prediction
results when they were used to predict high or low arousal of
emotion on the FREQNORM combination features. Among
them, the deep CVCNN model with convolution kernel of
5∗5 still had the best average AUC performance on total five
features, reaching 82.05%, which was 3.77% higher than the
average AUC of 78.28% of the best shallow BT model on
total five features. Additionally, the average ACC of deep
CVCNNmodel was up to 85.57%, which was 10.22% higher
than the best accuracy of 75.35% of the LSTM RNN model
proposed in literation [15] for binary arousal classification
on the same DEAP dataset. The performance of the deep
CVCNN model on five features of 32 subjects was shown
in Fig.8, from which we found out the 16th subject presented
the best recognition performance.

The comprehensive comparison Histogram of the classifi-
cation performances of shallow models and deep models in
arousal dimension were shown in Fig.9. On the RAW feature
in the time domain, the BTmodel showed the highest classifi-
cation performance, with an average AUC of 96.71%, which
was significantly higher than those of the three depth CNN
models and other shallow models. On the NORM feature in
the time domain, the deep CVCNNmodel showed the highest
classification performance, with the average AUC of 61.76%,
which was 5.86% higher than the average AUC of 55.9% of
the best performing SVM model in the shallow classifiers.
On the FREQ feature in the frequency domain, the CVCNN

FIGURE 8. Classification performance of CVCNN model on 5 features of
32 subjects in arousal dimension.

FIGURE 9. Performance comparison histogram of different models on
different features in arousal.

model still showed the best performance, with an average
AUC of 88.51%, which was 33.2% higher than the average
AUC of 55.31% of the best performing SVM model in the
shallow classifiers. On the FREQRAW combination feature,
the deep CVCNN model showed the best performance, with
an average AUC of 99.88%, which was 6.26% higher than the
average AUC of 94.62% of the best performing SVM model
in the shallow classifiers. On the FREQNORM combination
feature, the average AUC values of the three deep CNN
models were all approximately 1, which were 5.58% higher
than the average AUC value of 94.42% of the best performing
BTmodel in the shallow classifiers. Thus, it could be seen that
the EEG-base emotion classification performances of deep
CNN models were almost better and robust than those of
shallow classifiers on four types of features, especially on
combination features of time domain and frequency domain.

C. PERFORMANCE EVALUATION OF CNN MODELS
As shown in Fig.6 and Fig.9, the CVCNN model had the
general best performance in EEG-based emotion classifica-
tion in valence and arousal dimensions, and its classification
performance on the single FREQ feature was always higher
than that on RAW or NORM feature in time domain. In our
opinions, its best performance close to 1 on the FREQNORM
and FREQRAW combination features was largely due to its
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FIGURE 10. Learning curve of CVCNN model on FREQ feature in valence
classification.

FIGURE 11. Learning curve of CVCNN model on FREQ feature in arousal
classification.

higher performance on the FREQ feature. Therefore, we plot-
ted the learning rate curve of the CVCNNmodel on the FREQ
feature in valence and arousal dimension separately shown
in Fig.10 and Fig.11 to evaluate the learning performance of
the model.

As seen from Fig.10 and Fig.11, in both valence and
arousal dimensions, the classification accuracy on the train-
ing set increased rapidly with the increase of iteration times
and the overfitting on the training set was achieved after about
3K iterations. But during the training process, the classifi-
cation accuracy on test set and validation set both increased
slowly, the learning curve on verification set fluctuated
slightly while increasing, and the learning curve on test set
fluctuated little and stops growing after about 4K iterations,
which indicated that the deep CVCNN model had good and
stable classification performance on FREQ feature in fre-
quency domain. The learning rate curves of GSCNN and
GSLTCNN in valence and arousal dimensions were almost
the same as that of CVCNN, so there was no more repetition.

D. FEATURE RECONSTRUCTURE AND VISUALIZATION
WE also reconstructed and visualized the hidden units
learned from CVCNN model by deconvolution network to
show the CVCNN model could learn the discriminative

FIGURE 12. The RAW average EEG signal and reconstructed by the most
activated CVCNN hidden units of low/high arousal from subject 23. A) The
RAW average EEG signal (bottom) and reconstructed EEG signal (top) of
low arousal from subject 23. B) The RAW average EEG signal of high
arousal (bottom) and reconstructed EEG signal (top) of high arousal from
subject 23. Horizontal axis is the time point of 1 second epoch, and the
vertical axis is the channel. Deconvolutional network was used for
reconstruction. The color axis is scaled from −3 to 3.

emotional features. Fig.12 showed the Average FREQ EEG
signal and the reconstructed FREQ EEG signal by the most
activated CVCNN hidden units from subject 16 who had the
best performance by CVCNN model in arousal dimension.
As we could see, the reconstructed signal of this subject
was different from the average EEG signal and it showed
some task specific features. For example, for the low arousal
task, the highlighted reconstructed features existed between
600-700ms, while these kinds of features did not appear in
the high arousal task. For the high arousal task, the high-
lighted reconstructed features existed between 800-850ms,
while these kinds of features do not appear in the low arousal
task. The same conditions also existed in the original average
FREQEEG signals in low/high arousal tasks, but the different
pattern was not so obvious as that in the constructed signals,
which showed that the CVCNN model could learn more
discriminant hidden features for emotion classification.

V. CONCLUSION
In this paper, the traditional machine learning and deep learn-
ing models for EEG-based emotion classification were estab-
lished, and their classification performances were verified
on the EEG signals of DEAP dataset. We firstly extracted
the preprocessed and denoised 60-s 32-channel EEG data
induced by watching video from 40 trials in DEAP dataset
for each of 32 subjects, then removed the 3-s baseline signals
before watching video to correct the changes of stimulus-
independent signals, then segmented the 60-s EEG signals
into sixty 1-s epochs tomake the dimension of each EEG sam-
ple similar to that of the image, such as 128 (time points)∗32
(channels)∗1∗2400 (epochs), and finally the dataset was
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balanced to ensure that the number of two classes of labels
and samples are equal to improve the normalization ability
of classification models. We obtained five types of features
including the RAW and NORM features in time domain,
FREQ feature in frequency domain, and the combination
features of FREQRAW and FREQNORM in both time and
frequency domain through the way introduced above. Then,
10-fold cross validation dataset was constructed for each type
of feature of each subject, and was input into 4 shallow
classifiers and 3 deep CNN models to make binary within-
subject emotion classification experiments in valence and
arousal dimensions.

The experimental results showed that the deep CNN mod-
els always performed better andmore stably on FREQ feature
and the FREQRAW and FREQNOR combination features,
and the best classification performance of deep CNN mod-
els on combination features was obviously better than the
best performance of shallow classifiers. Although the shal-
low BT model showed the optimal performance on single
FREQ or RAW EEG feature, its performance was not stable
and consistent, for example, it showed the best performance
on FREQ feature in valence dimension, but in arousal dimen-
sion its prediction performance on FREQ feature was very
poor, on the contrary, it showed the best performance on the
RAW feature.

So, it was concluded that based on the time and frequency
combination EEG features, our proposed deep CNN model
similar to that used for image classification in computer
vision could automatically learned the discriminant stimulus-
related EEG dynamics end-to-end and achieve the optimal
and robust performance of binary emotion classification in
valence and arousal dimensions, which not only avoided
the large engineering of manual feature extraction and fea-
ture selection before traditional machine learning classifi-
cation, but also improve effectively improves the accuracy
and stability of EEG emotion recognition. It also provided
a valuable method for developing high performance brain-
computer interface for EEG-based emotion recognition and
regulation.

Although good experimental results have been obtained
in our present study, further research is still needed on how
to extract more discriminative EEG features to make cross-
subject emotion classification, how to select, construct and
optimize deep learning models with higher accuracy, robust-
ness and generalization for EEG-based emotion recognition,
and how to incorporate some emotional-related brain neuro-
genic analysis into the analysis of experimental results. All
these are the main contents of our next research work.
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