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ABSTRACT The accurate extraction of rivers is closely related to agriculture, socio-economic, environment,
and ecology. It helps us to pre-warn serious natural disasters such as floods, which leads to massive losses of
life and property. With the development and popularization of remote-sensing and information technologies,
a great number of river-extraction methods have been proposed. However, most of them are vulnerable
to noise interference and perform inefficient in a big data environment. To address these problems, a river
extraction method is proposed based on adaptive mutation particle swarm optimization (PSO) support vector
machine (AMPSO-SVM). First, three features, the spectral information, normalized difference water index
(NDWI), and spatial texture entropy, are considered in feature space construction. It makes the objects with
the same spectrum more distinguishable, then the noise interference could be resisted effectively. Second,
in order to address the problems of premature convergence and inefficient iteration, a mutation operator
is introduced to the PSO algorithm. This processing makes transductive SVM obtain optimal parameters
quickly and effectively. The experiments are conducted on GaoFen-1 multispectral remote-sensing images
from Yellow River. The results show that the proposed method performs better than the existed ones,
including PCA, KNN, basic SVM, and PSO-SVM, in terms of overall accuracy and the kappa coefficient.
Besides, the proposed method achieves convergence rate faster than the PSO-SVM method.

INDEX TERMS River extraction, particle swarm optimization, SVM, GaoFen-1 remote-sensing image.

I. INTRODUCTION
Inland waters such as lakes, rivers and reservoirs play key
roles in regional biogeochemical cycles [1]. It is necessary
to accurately evaluate the area and shape of water bod-
ies [2], [3]. Changes in river status impact irrigation, energy
production, fishery and transportation [4], [5], and rivers in
urban areas may cause surface subsidence, urban inland inun-
dation and water-related disease epidemics [6]. Therefore,
it is necessary to monitor and evaluate the distribution and
river conditions.

In recent years, satellite remote-sensing technology has
been developing rapidly, with a wide swath and a short return
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period [7]. It has been widely applied in many fields, such as
military reconnaissance, environmental protection and agri-
culture [8]–[11].

The remote-sensing image has massive spatial information
besides spectral information than before. It poses a substantial
challenge in the field of remote-sensing image processing.
Most high-resolution remote-sensing images only have four
bands (blue, green, red, and near-infrared). They lack neces-
sary spectral information to computing the modified normal-
ized difference water index (MNDWI) [12] and automated
water extraction index (AWEI) [13].

Conventional spectrum-based classification methods con-
sider an image as an ensemble of spectral measurements,
while neglecting the spatial organization of pixels [14]–[17];
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FIGURE 1. OBIA of a remote-sensing image.

Shao et al. [18] analyzed traditional methods and indicated
that the existing methods cannot effectively avoid ‘‘dif-
ferent bodies with the same spectrum’’ and ‘‘same body
with different spectra’’ phenomenon. Castilla [19] pro-
posed an object-based method to address the problems
above-mentioned in landscape mapping and extended it to
the field of image analysis. Blaschke et al. [20] firstly
summarized characteristics of the object-based method in
image analysis and named it as object-based image analysis
(OBIA), which is the definition that most scholars now use.
For remote-sensing image processing, the OBIA process is
illustrated in Fig. 1. Moreover, Ganim and Tokmakoff [21]
demonstrated the feasibility and effectiveness of object-based
methods in details. Since that, many object-based remote
sensing processing methods have been developed. In [22],
an object-based extraction method was proposed and applied
to high-resolution remote-sensing images by considering the
hierarchical spectrum and shape features; an accuracy rate
of 94.6% was realized. In [23], an object-based workflow
was formed that focuses on shallow-water aquatic vegetation
in multispectral imagery. Additionally, Selmes et al. [24]
applied an object-based segmentation method to extract lakes
and the error was within 0.125 km2; however, the method
didn’t perform well on river extraction because of the uncer-
tainty regarding the boundary. In [25], a multiresolution
segmentation method was proposed for extracting build-
ings from very high resolution imagery with high accuracy.
Li et al. [26] improved the watershed segmentation algo-
rithm and obtained clear boundaries of water and vegeta-
tion areas based on OBIA. In [27], an object-based water
classification extraction model was proposed that combined
MXL and the ISODATA algorithm and yielded satisfac-
tory accuracy. In [8], an image sharpening approach was
conducted on Sentinel-2A multispectral instrument imagery
(MSI) for mapping water bodies. To sum up, the object-based
methods outperformed the traditional pixel-based method
on remote-sensing image classification and extraction [28].

Specifically, the object-based methods that consider other
features besides spectral information, such as KNN method,
PCA method and SVM-based method, achieve the reduction
of wrong extraction and classification results.

With further exploration of the application of computer
technology, the support vector machine (SVM) [29] has
been applied to remote-sensing image processing. In [30],
SVM is utilized to construct a multispectral remote-sensing
land use classification model and compared with the max-
imum likelihood method and decision tree method, which
further demonstrated the advantages of SVM in terms of
accuracy and stability. Chen et al. [31] proposed a multi-
level stacking SVM improved classification model for effec-
tively distinguishing the information of two feature spaces
and maintaining strong generalization ability while realizing
higher classification accuracy for remote-sensing images.
Guo et al. [32] proposed an SVM-based sequential classifier
training approach, which uses the previous images to reduce
the number of samples to enhance the performance of SVM;
this model outperformed state-of-the-art algorithms on multi-
temporal remote-sensing images. Moreover, an improved
SVMwhich using particle swarm optimization algorithm has
been proposed and applied to land cover classification [33].
According to this method, the SVM parameters’ optimization
is meaningful for the whole results of SVM-based method.
Reference [34] developed an alternative extraction method
for urban area by utilizing VIIRS DNB and MODIS NDVI
data. This article incorporating mutation particle swarm opti-
mization and SVM theories and achieves high classification
coherency with Landsat8 OLI results.

In general, the SVM algorithm performs stably and
accurately when applied to information extraction from
remote-sensing image. However, it is necessary to carry out
intensive research on precisely extracting a river via SVM
with higher accuracy and efficiency. Motivated by this point,
we develop an improved support vector machine method.
In thismethod, we build anAMPSO-SVM-based river extrac-
tion framework combined with the feature space we con-
structed, in which the spectral and texture features and water
index are considered in the feature space. In addition, the par-
ticle swarm optimization algorithm with a mutation operator
(AMPSO, Adaptive Mutation Particle Swarm Optimization)
is presented to avoid the premature convergence phenomenon
and lift up the iteration efficiency during the training pro-
cess of the SVM classifier. In the experiments, the proposed
method is compared with the PCA method [35], the KNN
method [36], an SVM-based method and a PSO-SVM-based
method.

The main contributions of this study are summarized as
follows:

1) A novel object-based river extraction method via
AMPSO-SVM is presented. First of all, the feature space is
expanded by spectral information, NDWI and texture entropy.
Besides, a mutation particle swarm optimization algorithm is
introduced to help transductive SVM avoid premature con-
vergence and increase iteration efficiency.
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FIGURE 2. Basic SVM.

2) To evaluate the performance of the proposed method,
an object-based river extraction framework is integrated by
feature space construction module, AMPSO-SVM classifier
and automated river extraction module. Making full use of
the spatial feature, spectral feature of objects and the stability
and efficiency of AMSO-SVM classifier, then we success-
fully extracts river water bodies from multi-spectral remote-
sensing images with higher accuracy and less iterations by
proposed method.

The remainder of this paper is organized as follows: In
Section 2, preliminaries are introduced. Section 3 briefly
introduces the proposed method. The experimental results on
the real data sets are presented in Section 4. The conclusions
of this study and future work are discussed in Section 5.

II. PRELIMINARIES
A. BASIC SVM THEORY
Support vector machine (SVM) has substantial potential in
the classification of remotely sensed data. As a machine
learning algorithm, SVM is a supervised classification algo-
rithm. Given a training sample and the category to which
it belongs, the classification model is calculated from the
sample via an algorithm and extended to the item to be
classified. Finally, the category to which this item belongs is
obtained according to the value of the discriminant function.
With a simple structure and strong generalization ability,
SVM performs well on problems that have high-dimensional
features and uncertainties [37]. SVM is a very attractive
approach for the classification of remotely sensed data. This
approach seeks to find the optimal separating hyperplane
between classes by focusing on the training cases that lie
at the edges of the class distributions, namely, the support
vectors. The main parameters of SVM are penalty param-
eters and kernel function parameters. The former control
the punishment severity for the incorrect classification of a
sample. In general, the larger the value of c is, the smaller the
maximum spacing between two hyperplanes is, the smaller
the number of misclassified samples is, and the longer the
training time is.

As shown in Fig. 2, classification via SVM can be illus-
trated easily for the simple situation in which there are

two linearly separable classes in q-dimensional space. Using
the training data, which are represented by {xi, yi} , i =
1, . . . , r, yi ∈ {1,−1}, many hyperplanes could be fitted
to separate the classes; however, there is only one optimal
separating hyperplane, which is expected to generalize well
in comparison to other hyperplanes. This optimal hyperplane
should run between the two classes, with all cases of a class
located on the same side of the separating hyperplane, such
that the distance from the hyperplane to the closest training
data points in both classes is as large as possible.

A hyperplane can be defined by the equation ω ·xi+b = 0,
where x is a point that lies on the hyperplane, ω is normal
to the hyperplane,b is the bias, and (b)/(‖ω‖ ) is the perpen-
dicular distance from the hyperplane to the origin. For the
linear partitioning problem, a hyperplane can be defined as
yi(ω · xi + b)− 1 ≥ 0.

B. TRANSDUCTIVE SVM
In this part, we adopt transductive support vector
machine (TSVM) as the initial SVM classifier, which is
a classifier for binary classification problems. Similar to
traditional SVM, TSVM searches for a hyperplane that has
the largest margin and separates the classes; it takes into
account both labeled and unlabeled examples.

Formally, a set of labeled examples can be denoted asDl ={
(x1,y1), (x2,y2), . . . , (xi,yi)

}
and a set of unlabeled examples

as Du = {xl+1, xl+2, . . . , xl+u}, where yi ∈ {+1,−1}, l �
u, l + u = m. We aim at predicting and labeling the samples
from Du : ŷ = (yl+1, yl+2, . . . , yl+u) , ŷ ∈ (+1,−1). The
learning process of TSVM can be formulated as the following
optimization problem:

min
1
2
‖ω‖2 + cl

l∑
i=1

ξi + cu
m∑

i=l+1

ξi

s.t. yi(ωT xi + b) ≥ 1− ξi, i = 1, 2, . . . , l,

ŷ
(
ωT xi + b

)
≥ 1− ξi, i = l + 1, 1+ 2, . . . ,m,

ξi ≥ 0, i = 1, 2, . . . ,m, (1)

where (ω, b) defines a hyperplane; cl and cu are user-
specified parameters that are used to penalize misclassified
samples; cu is called the ‘‘effect factor’’ of the unlabeled
examples in the training process; and cuξi is called the ‘‘effect
term’’ of the unlabeled example in the objective function. The
training process of TSVM involves solving the optimization
problem that is presented above. The algorithm is as follows:

C. PARTICLE SWARM OPTIMIZATION ALGORITHM
The basic strategy of particle swarm optimization (PSO) is to
initialize the system to a set of random solutions and search
for optimal values via iteration. In each iteration, calculate
and update the current velocity and position of the particle
via the following equation:{
V k+1
id = ωV k

id + c1r1(P
k
id − X

k
id )+ c2r2(P

k
gd − X

k
gd )

X k+1id = X kid + V
k+1
id

(2)
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where Xi is the particle set, Vi is the speed, c1 and c2 are
positive constants, Pi = (Pi1, . . . ,Pid ) is a locally optimal
solution, and Pg = (Pg1, . . . ,Pgd ) is a globally optimal
solution.

III. METHOD
A. FRAMEWORK
This study proposes an AMPSO-SVM-based method for
information extraction from high-spatial-resolution multi-
spectral remote-sensing images. As illustrated in Fig. 3, this
model is mainly composed of the following five steps: 1) pre-
processing of the remote-sensing image data; 2) extraction of
the spectral information of 4 bands, NDWI values and texture
feature to form the objects’ feature space that marked within
dotted box; 3) division of the data sets to be classified into
labeled and unlabeled samples; 4) initialization of the SVM
classifier and parameter tuning via the AMPSO algorithm;
and 5) output of the results (waterline boundaries and vector
diagram).

FIGURE 3. Framework of the proposed method.

B. AMPSO-SVM ALGORITHM
According to the model, the relative merits of the method
depend on the AMPSO-SVM classifier, which depends on
the parameters of SVM. In this part, we analyze and explain
why this approach performs better. Machine-learning-based
methods utilize a parameter tuning process. Hence, searching
for the optimal solution of the algorithm is the main problem
on which we focus. However, the input data may be mapped
into a high-dimensional space via a nonlinear mapping that
spreads the distribution of the data points in a way that facil-
itates the fitting of a linear hyperplane. On the basis of SVM
theory, which is discussed above, in this case, the hyperplane
can be computed by using a positive-definite kernel function
k(x, xi), which leads to the following decision function:

f (x) = sgn(
n∑
i=1

aiyik(x, xi)+ b) (3)

where ai is the Lagrange multiplier. To train the classi-
fier, only the kernel is required; no explicit knowledge

is necessary. The identification of the optimal parameter val-
ues for SVM is the key problem.

At present, using an intelligent algorithm to optimize the
SVM parameter values is the most advanced and effective
method. Genetic algorithm and particle swarm optimization
are adopted frequently.

PSO has a simple structure and converges fast but always
suffers from premature convergence and low iteration effi-
ciency. Therefore, the mutation strategy in genetic algorithm
is incorporated into PSO. The convergence state of the par-
ticle swarm mainly depends on the fitness function and the
characteristics of the problem. All particles having the same
position are equivalent to all particles having the same fit-
ness. Then, the overall fitness of all particles is calculated.
To describe the state of the particle swarm quantitatively,
the colony fitness variance and particle convergence will
be defined. A flowchart of the AMPSO-SVM algorithm is
shown in Fig. 4.

FIGURE 4. AMPSO-SVM flowchart.

Definition 1 Colony fitness variance: σ 2
=

n∑
i=1

[
fi−favg
f

]2
,

where n is the number of particles, fi is the fitness, favg is
the average fitness, and f is the normalization scaling factor,
which is calculated via the following formula:

f =

{
max

{∣∣fi − favg∣∣} , max
{∣∣fi − favg∣∣} > 1

1, others
(4)

According to this definition, the colony fitness variance
reflects the convergence degree of all particles in the particle
swarm. The smaller σ 2 is, the closer the swarm is to converg-
ing; if it is large, the swarm is in the random search stage.
Definition 2 Particle convergence: lim

t→∞
x(t) = p, where

p is a position in space. Hence, the particle will stop at a
position eventually.
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TABLE 1. GaoFen-1 satellite parameters.

When premature convergence or overall convergence
occurs, σ 2 approaches zero and the particles gather at one
or more positions. For all particles, the final convergence
position will be the globally optimal value that is found by
the whole particle swarm. If the position is unique, all the par-
ticles will be there; if other positions exist, the particles will
also gather at these positions. The position that is found by the
particle swarm may not be the global optimum. Therefore,
it is impossible to distinguish premature convergence from
global convergence because the variance of the population
fitness is zero; it is necessary to further judge whether the
optimal solution that has been obtained by the algorithm is
the theoretical globally optimal solution.

According to equation (3), the next position of a particle
is determined by the current position and speed Vi, which
depends on the initial speed, Pid and Pgd . If premature con-
vergence has occurred, Pgd is a locally optimal solution.
Changing Pgd will lead to the transformation of the search
direction and other areas of the space will be searched.
This is repeated until the globally optimal solution has been
obtained. Suppose that a better position will be found under
Pgd . The mutation operation is performed by a random oper-
ator on Pgd with probability Pm:

Pm =

{
k, σ 2 < σ 2 and f (Pgd ) < fd
0, others

(5)

where fd is the theoretical optimum and k is a random number
(in the range [0.1, 0.3]). The mutation operation is realized by
adding a random disturbance: Pkgd = Pkgd (1 + 0.5η), where
η obeys a (0,1) Gaussian distribution. This operation con-
tinuously shrinks the search space throughout the iterations
while maintaining the diversity. According to the algorithm,
wemeasure the classification accuracy under cross-validation
via the following fitness function:

f =
cc

cc+ uc
× 100% (6)

where cc denotes the number of correctly classified samples
and uc denotes the number of incorrectly classified samples.
The algorithm is presented in detail as follows.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. GAOFEN-1 SATELLITE PARAMETERS
The experiments data is from GaoFen-1 satellite which
is equipped with two multispectral scanners with a
2-m-resolution panchromatic band, four 8-m-resolution

Algorithm 1 1 TSVM
Input: Dl , Du, Cl , Cu
Training SVMl with Dl
Predict Du, obtain

∧
y

Initialize Cu � Cl
While Cu < Cl do
Compute (ω, b) and ξ via equation (1)
While ∃

{
i, j
∣∣(yiyj < 0) ∧ (ξi < 0) ∧ (ξj < 0)

∧(ξi + ξj > 2)
}

do yi = −yi, yj = −yj
Compute (ω, b), ξ

End while
Cu = min {2Cu,Cl}

End while
Output unlabeled example prediction results

∧
y

Algorithm 2 AMPSO-SVM
Input: SVM parameters (c, γ )
Initialize the particle position (c, γ )
Set Pb and Pg
Do update Vi and Pi
Calculate σ 2, f

(
Pg
)
, Pm

If Generate r ∈ [0, 1] and r < Pm
Then, do Pkgd

while σ 2
=

n∑
i=1

[
fi−favg
f

]2
= 0 and f

(
Pg
)
≥ fd

Then, output Pg, (c, γ )

TABLE 2. Experimental parameter settings.

multi-spectral bands with a two-camera stitching swath width
of 60 km, and four 16-m-resolution multispectral bands with
a four-camera stitching swath width of 800 km.

According to Table 2, a 16-m-spatial-resolution multi-
spectral remote-sensing image can be obtained in 4 days.
Quick image acquisition is helpful for dynamic and timely
supervision; therefore, it is more meaningful to study such
images. In this article, we select image data that have a spatial
resolution of 16 m.
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FIGURE 5. Study area 1. (a) GF-1 multispectral imagery (a section of the Yellow River, with an area of 711∗531 pixels),
(b) extraction result of the KNN method, (c) extraction result of the PCA method, (d) extraction result of the basic
SVM method, (e) extraction result of the PSO-SVM method, and (f) extraction result of the AMPSO-SVM method. The
green area is the water area, while the red area represents the non-water area.

B. EXPERIMENTAL SETTINGS
In order to evaluate the performance of proposed method,
the experiments are conducted on GaoFen-1 remote-sensing
images. The region of interest includes rural areas, veg-
etation, mountains and river, as shown in Fig. 5(a) and
Fig. 6(a). This paper presents focuses on river extraction from

high-spatial-resolution multispectral remote-sensing images.
The preprocessing was realized by ENVI 5.3 and the
AMPSO-SVM algorithm was implemented using Lib-
SVM [38] in Python 3.5. As discussed above, in this paper,
6 features were extracted to form the feature space: the spec-
tral indices of band 1, band 2, band 3, and band 4; NDWI;
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FIGURE 6. Study area 2. (a) GF-1 multispectral imagery, (b) extraction result of the KNN method,
(c) extraction result of the PCA method, (d) extraction result of the basic SVM method, (e)
extraction result of the PSO-SVM method, and (f) extraction result of the AMPSO-SVM method.

and the texture entropy. The test sample is independent from
the training data. Our results and analysis will be followed
by a comparison with principal component analysis (PCA)

andK-nearest neighbor (KNN). To preserve the original spec-
tral features of the ground-truth object, no digital enhance-
ment processing was performed prior to the experiments.
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TABLE 3. Numbers of training and test samples for 4 categories.

TABLE 4. Accuracy comparison.

The parameter settings for the experiment are listed in
Table 2. The initial positions of particles were produces as
positive a value and their associated velocities could be a pos-
itive or negative value.We initialized 30 as the population size
based on the extent of searching area. The maximum number
of iterations ensure that the convergence is achieved within
the number of iterations, and this value helps us analyze the
iteration efficiency. Small learning factor leads to inefficient
learning and big value leads to overfitting. Therefore we
choose 1.5 as the learning factor in our experiments.

Prior to evaluating the classification results, we randomly
select a subdomain for training and testing the SVMclassifier.
The number of training and test samples from the images are
listed in Table 3.

C. COMPARISON IN TERMS OF ACCURACY
As discussed previously, the main objective of the study was
to extract river bodies accurately. The proposed method has
an advantage in river delineation. As shown in Fig. 5(a) and
Fig. 6(a), which are referred to as area 1 and area 2, the image
contains a section of the Yellow River. It was captured by
the GaoFen-1 satellite. Area 1 covers river, reservoir and a
narrow water body with an area of 711∗531 pixels, while
area 2 primarily covers river with substantial rocky reef and
between mountains with an area of 187∗555 pixels. The
accuracy is evaluated in terms of PA (Producer Accuracy),
UA (User Accuracy), OA (overall accuracy) and the kappa
coefficient relative to the ground-truth map via a confusion
matrix, which is calculated according to the position of each
pixel and the classification of the corresponding image.

The accuracy comparison is presented in Table 4. Under
the same scenario, SVM-based methods yield higher overall
accuracy than other object-based methods in the two study
areas and the kappa coefficients are similar. Besides, the PA
(Producer Accuracy) and UA (User Accuracy) performs
same trend. The classified results have a high consistency
according to a random sample. Moreover, the SVM-based
methods always get better PA and UA than KNN and PCA
method. This gives rise from the advantages of SVM in
classification with limit information. An average increase
in accuracy of nearly 2 percent is realized by SVM-based
methods, according to the results. For the SVM-based meth-
ods, the extraction results differ among the parameter tuning
methods because the selection of the final parameter values
is directly related to the accuracy of the machine learning
classifier. The AMPSO-SVM method can yield 94.5% accu-
racy in area 1 and area 2, which is higher compared to other
methods, with a similar kappa coefficient. The improvements
in the accuracy and kappa coefficient of the extraction result
are substantial.

According to a visual inspection, AMPSO-SVM success-
fully extracted most of the river water body, including narrow
tributary water body information, in study areas 1 and 2.
Based on the feature space of the objects that we discussed
above, the KNN, PCA, and SVM-based methods ignore the
mountain shadow interference. This demonstrates the supe-
rior feature space construction performance of the proposed
method. By considering both the texture and spectral features,
the object-based methods substantially outperform the exist-
ing object feature space construction methods. According
to Fig. 5 and Fig. 6, the SVM-based extraction methods
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TABLE 5. Parameter comparison.

outperformed PCA and KNN and objects are omitted in
the PCA and KNN extract results. SVM-based methods
yield satisfactory generalization performance and have strong
robustness in the case of small-sample data. The area that is
surrounded by a purple circle in Fig. 5 and Fig. 6 is classified
differently by the methods; according to the ground truth,
only AMPSO-SVM could precisely distinguish it. For the
spot that is surrounded by yellow circle in Fig. 5, the result
specifies the clear river boundaries against the river inland,
which has lower reflectance.

For the wide river areas, there was little difference among
the methods. This is because of the advantages of object-
based method and the use of the same feature space.
Meanwhile, the NDWI was adopted as one of the spectral
features, which helps increase the discrimination between the
river water body and other noise. A significant difference
is observed in the purple circles in Fig. 5 and Fig. 6: The
AMPSO-SVM outperforms PSO-SVM in terms of the con-
tinuity and consistency of the water body, as indicated by the
yellow circles in Fig. 6(e) and Fig. 6(f). Because the param-
eters in AMPSO-SVM are both local and global optimal
solutions, the local details and global accuracy are relatively
improved compared with PSO-SVM and basic SVM.

In summary, according to the results of the experiments,
the feature space and the classification method are the core
factors that determine the accuracy of the final result. First,
we select spectral bands, NDWI, and texture entropy to form
the feature space; this approach substantially outperforms the
existing feature selection method. Second, the SVM-based
method is useful in the research fields of remote-sensing
image classification and extraction. Third, the optimization of
SVM could further improve the performance of the classifier
and lead to better results and the superior performance of
AMPSO has been demonstrated.

D. SELECTION OF PARAMETERS
During the extraction process, PSO-SVM and AMPSO-SVM
differ substantially in terms of the speed and efficiency
of parameter optimization. In Fig. 7, the two curves have
noticeably differences: AMPSO-SVMalways converges after
approximately 6 iterations, while the PSO-SVM algorithm
requires more than 10 iterations. Moreover, the AMPSO-
SVM algorithm yields a higher final fitness than PSO-SVM
after dozens of iterations. The fitness represents the degree
of the classification accuracy. When convergence has been
realized, the classification accuracy tends toward the optimal
value. The faster convergence of the proposed method is due
to the mutation operator, which enables PSO-SVM to escape

FIGURE 7. Iteration efficiency.

from a local extremum as quickly as possible, which results
in superior performance of the PSO-SVM algorithm.

The AMPSO algorithm compares the colony fitness vari-
ance with the globally optimal solution to judge whether
it has fallen into a local extremum and the mutation oper-
ator enables it to escape from of local extrema quickly.
AMPSO-SVM overcomes the subjectivity of the PSO-SVM
algorithm and escapes from local extrema quickly. The final
parameters that obtained based on local extrema always have
low fitness, which are not the optimal parameters in whole
images. The iterations represents the optimal parameters are
obtained. In means the less iterations equals the better perfor-
mance.

The parameter selection results are listed in Table 5.
Compare with the basic SVM and PSO-SVM algorithms,
the AMPSO-SVM’s parameter values yield the highest over-
all accuracy because the introduction of the mutation operator
into PSO optimizes the processing, which leads to optimal
parameters that directly increase the classification accuracy.

V. CONCLUSION
This paper analyzed the shortcomings of the existing river
extraction methods, such as the water index, PCA, KNN,
and basic SVM, for high-spatial-resolution remote-sensing
images and proposed an improved SVM algorithm that con-
siders the correlation between the spectral and spatial char-
acteristics to distinguish the river water pixels. During the
process, better parameter values lead to more accurate results.
Therefore, we improved the process of SVM parameter
optimization by incorporating the mutation particle swarm
optimization algorithm, which adds the mutation operator
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into the PSO algorithm. Compared with PCA, KNN, basic
SVM and the PSO-SVMmethod, the proposed method yields
higher overall accuracy on the Yellow River image from
the GaoFen-1 satellite. According to the confusion matrix,
the kappa coefficient demonstrates similar performance. It is
demonstrated that the proposed method accurately delineates
the river bodies, including the relatively narrow water body,
and effectively ignores the interference of background noise,
such as mountain shadows.

The proposed approach is suitable for extracting river
information from GaoFen-1 remote-sensing images. It is use-
ful for monitoring rivers to ensure water safety, such as for
flood warning, via river area extraction. According to this
study, the machine-learning-based method is superior to the
traditional method. The most advanced research direction is
to use a hybrid approach of computer science and machine
learning. Further study is expected to follow two directions:
further optimization of the performance of the SVM optimal
parameter selection method and investigation of the applica-
tion of similar approaches to river extraction, such as random
forests and neural networks.
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