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ABSTRACT This paper studies a split-complex-valued neuro-fuzzy algorithm for fuzzy inference system,
which realizes a frequently used zero-order Takagi–Sugeno–Kang system. Here, adaptive momentum is
utilized to speed up the learning convergence. Some strong convergence results are demonstrated based on
the weak convergence results, which expresses that the weight sequence of fuzzy parameters converges to a
fixed point. Simulation results support the theoretical findings.

INDEX TERMS Strong convergence, neuro-fuzzy algorithm, complex, adaptivemomentum, fuzzy inference
system.

I. INTRODUCTION
Applications of telecommunications and signal processing
technologies have encountered a rapid growth, resulting in
an explosion in the research on complex data. Subsequently,
there has been a growing interest in the theoretical research
and practical implementation of complex-valued systems
[1], [2]. In addition, studies on the competence of complex-
valued neurons have proclaimed that they possess more
superior computational power than their real-valued counter-
part [3].

Currently, in order to explore and extend real-valued neu-
ral networks for the unique ability of getting the optimal
solution formulation in complex domain, various complex-
valued neural models are raised. For instance, [4] established
a class of fractional-order complex-valued neural networks
with time delay, and intensively studied the problem of
dissipativity and global asymptotic stability based on the
fractional Halanay inequality and suitable Lyapunov func-
tions. Reference [5] proposed a improved complex-valued
RBF neural network with reduced search space moving tech-
nique in its second stage for multiple crack damage iden-
tification. Complex models can be sorted into two classes
in accordance with the types of the activation function:
the split complex-valued network [6], [7] and the fully
complex-valued network [8]. As stated by Liouville’s theo-
rem, a bounded function must be a constant in C, where an

entire function is defined as analytic, i.e., differentiable at
every point in C [9]. Therefore, there is no analytic complex
nonlinear function that is bounded everywhere on the entire
complex plane. In split-complex networks, a pair of real-
valued activation functions is splitted and then utilized to
dispose the real and imaginary parts of a weighted input
signals individually. This splitting trick aims at efficiently
avoiding the occurrence of singular points in the adaptive
training procedure [10]. Therefore, we concentrate the study
on the analysis of the split complex-valued network.

Neuro-fuzzy inference system (NFIS) are verified to be
efficient when applied to various fields. As for the split-
complex valued neuro-fuzzy inference systems (SCNFIS),
[11] demonstrated a CIT2FIS (complex-valued interval
type-2 fuzzy inference system) and deduced its metacogni-
tive projection-based learning (PBL) algorithm, which imple-
mented a TSK type fuzzy system in a complex-valued neural
network framework. Reference [12] presented a complex
neuro-fuzzy system to achieve high accuracy for the problem
of function approximation with the inheritance of the prop-
erty of universal approximation of neuro-fuzzy system.

Unfortunately, slow convergence is obstacle that always
limits its algorithm competence. To break through this obsta-
cle, the momentum strategy has been raised, being capable
of speeding up the convergence performance and decreasing
the steepest descent error efficiently [13], since it lowers
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the energy value along the gradient direction in a close-to-
optimal way. Reference [14] pointed out the necessity to
use a momentum technique that both adapt to reinforcement
learning and accelerate the learning process and compared the
performance of different momentum techniques.

This paper aims to multiply adaptive momentum to
SCNFA, which is self-adaptive updating iteratively by com-
positing the current weights coefficients with the previous-
step updated coefficients. In the case of nonzero momentum
coefficients, they are redefined as positive value to speed up
training by renewing momentum. Otherwise the momentum
is expected as zero to maintain the error downhill, being
reduced to the gradient-based algorithm.

Another contribution of this paper is to present some strict
convergence results of the SCNFA with adaptive momentum.
We borrow some idea from [15] and [16], but we utilize some
different proof techniques obtaining a new relaxed learning
rate restriction which is much easier to inspect than the
counterpart in [17].

The rest of this paper is arranged as follows. Section II
briefly introduces the SCNFA with a adaptive momentum.
Section III presents the strong convergence results. Simula-
tions are carried out in section IV to support the theory, show-
ing its the superior performance in regard to convergence rate
and steady-state behavior. Conclusions are given in SectionV.
Finally, the rigorous proof of the strong convergence results
is demonstrated in the appendix.

mds
Received: date / Accepted: date

II. COMPLEX-VALUED NEURO FUZZY INFERENCE
SYSTEM WITH MOMENTUM
A. ARCHITECTURE OF ZERO-ORDER TSK
A general TSK fuzzy system constitutes by a set of IF-THEN
rules taking the following shape [18]:

Rule q : IF x1 is A1q and x2 is A2q and

. . . and xL is ALq THEN y is yq, (1)

where Q is the number of the fuzzy rules, and xl, yq (l =
1, . . . ,L, q = 1, . . . ,Q) are complex numbers.
A four-layered network realizes zero-order TSK based on

fuzzy inference system, whose topological structure is shown
in Figure 1.

Layer 1 is the input layer formed by L input units, each
unit rely on one complex input variable of x = xR + ixI =
(x1, x2, . . . , xL)T ∈ CL , xR, xI ∈ RL , where xl = xRl +
ixIl , x

R
l , x

I
l ∈ R1 and i =

√
−1. Layer 2 is a Gaussian layer,

Alq(xl) represents the type of Gaussian membership for the
fuzzy judgment ‘‘xl is Alq’’:

Alq(xl) = exp
(
− (xl − alq)(xl − alq)∗/σ 2

lq
)

= exp
(
− (xl − alq)(xl − alq)∗ b2lq

)
, (2)

where ‘‘∗’’ signifies complex conjugate, alq ∈ C1 and σlq ∈
R1 are the center and the width of Gaussian rule antecedent,

FIGURE 1. Topological Structure of the zero-order TSK inference system.

respectively. blq is the reciprocal of σlq, l = 1, 2, . . . ,L,
q = 1, 2, . . . ,Q. We denote (cf. [15])

aq =
(
a1q, a2q, . . . , aLq

)T
,

bq = (b1q, b2q, . . . , bLq)T =
(

1
σ1q

,
1
σ2q

, . . . ,
1
σLq

)T
,

(3)

where aq = aRq + iaIq ∈ CL , aRq , a
I
q ∈ RL , al,q = aRl,q +

iaIl,q, a
R
l,q, a

I
l,q ∈ R1, 1 ≤ l ≤ L, 1 ≤ q ≤ Q.

Layer 3 is the rule layer with Q nodes, h =

(h1, . . . , hQ)T ∈ RQ and the agreement of the q-th antecedent
part is computed by

hq = hq(x) =
L∏
l=1

Alq(xl)

= exp[
L∑
l=1

−(xl − al,q)(xl − al,q)∗ (bl,q)2]

= exp[
L∑
l=1

−
(
(xRl − a

R
l,q)

2
+ (xIl − a

I
l,q)

2)(bl,q)2]. (4)

The weights linking Gaussian Layer and rule Layer are fixed
as constant 1.

Layer 4 exports the sole output unit:

d =
Q∑
q=1

hqyq = dR + id I =
Q∑
q=1

hqyRq + i
Q∑
q=1

hqyIq. (5)

Let the conclusion parameters be a0 = (y1, y2, . . . , yQ)T ∈
CQ, where a0 = aR0 + iaI0, a

R
0 , a

I
0 ∈ RQ, yq = yRq + iyIq,

yRq , y
I
q ∈ R1and take a0 as the weight vector connecting Layer

3 and Layer 4. Then, (5) can be taken as another form

d = aR0 · h+ ia
I
0 · h. (6)
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B. LEARNING ALGORITHM OF SCNFA
Let {xj,Oj}Jj=1 ⊂ CL

× C1 be a training set with J training
samples transmitted to the system. The square error function
of the system trained by SCNFA is defined as following:

E(W) =
1
2

J∑
j=1

(Oj − d j)(Oj − d j)∗

=
1
2
(
J∑
j=1

(Oj,R − d j,R)2 + (Oj,I − d j,I )2)

=

J∑
j=1

[εj,R(aR0 · h
j)+ εj,I (aI0 · h

j)]

=

J∑
j=1

[εj,R(
Q∑
q=1

yRqhq)+ εj,I (
Q∑
q=1

yIqhq)]

=

J∑
j=1

[εj,R(
Q∑
q=1

yRq exp[
L∑
l=1

−((x j,Rl − a
R
l,q)

2

+ (x j,Il − a
I
l,q)

2)(bl,q)2])

+ εj,I (
J∑

q=Q

yIq exp[
L∑
l=1

−((x j,Rl − a
R
l,q)

2

+ (x j,Il − a
I
l,q)

2)(bl,q)2])], (7)

where Oj is the ideal output for the j-th training pattern xj,
d j is the corresponding fuzzy reasoning result, and for
j = 1, . . . , J

hj = (hj1, h
j
2, . . . , h

j
Q) = h(xj),

εj,R(t) =
1
2
(t − d j,R)2, εj,I (t) =

1
2
(t − d j,I )2, t ∈ R. (8)

For simplicity, all weighted parameters are combined into
a weight vector W ∈ CL(2Q+1):

W =
(
(a0)T , (a1)T , . . . , (aQ)T , (b1)T , . . . , (bQ)T

)T
.

The objective of the network learning is to obtainW? such
that

W?
= argminWE(W). (9)

We differentiate E(W) with respect to the real parts and the
imaginary parts of the weight vectors,

∂E(W)

∂aR0
=

J∑
j=1

ε′j,R(a
R
0 · h

j)hj,

∂E(W)

∂aI0
=

J∑
j=1

ε′j,I (a
I
0 · h

j)hj. (10)

Hadamard product operator ‘‘�’’ is introduced for easy read-
ing. Noting

hjq = hq(xj)

= exp[
L∑
l=1

−
(
(x j,Rl − a

R
l,q)

2
+ (x j,Il − a

I
l,q)

2)(bl,q)2], (11)

we have

∂hjk
∂aRq
=
∂hjk
∂aIq
= 0, ∀k 6= q, (12)

and the partial gradient of hjq with respect to the real parts and
the imaginary parts of aq are

∂hjq
∂aRq
= (

∂hjq
∂aR1,q

, . . . ,
∂hjq
∂aRL,q

)

= (2hjqb
2
1,q(x

j,R
l − a

R
1,q), . . . , 2h

j
qb

2
L,q(x

j,R
L − a

R
L,q))

= 2hjq
(
(xj,R − aRq )� bq � bq

)
, (13)

∂hjq
∂aIq
= (

∂hjq
∂aI1,q

, . . . ,
∂hjq
∂aIL,q

)

= (2hjqb
2
1,q(x

j,I
l − a

I
1,q), . . . , 2h

j
qb

2
L,q(x

j,I
L − a

I
L,q))

= 2hjq
(
(xj,I − aIq)� bq � bq

)
. (14)

In the light of (12), (13) and (13), for q = 1, . . . ,Q, the partial
gradient of the cost function E(W) with respect to the real
parts and the imaginary parts of aq are

∂E(W)
∂aRq

=

J∑
j=1

[ε′j,R(a
R
0 · h

j)(
Q∑
k=1

yRk
∂hjk
∂aRq

)

+ ε′j,I (a
I
0 · h

j)(
Q∑
k=1

yIk
∂hjk
∂aRq

)]

= 2
J∑
j=1

ε′j,R(a
R
0 · h

j)yRqh
j
q
(
(xj,R − aRq )� bq � bq

)
+ 2

J∑
j=1

ε′j,I (a
I
0 · h

j)yIqh
j
q
(
(xj,R − aRq )� bq � bq

)
,

(15)

∂E(W)
∂aIq

=

J∑
j=1

ε′j,R(a
R
0 · h

j)(
Q∑
k=1

yRk
∂hjk
∂aIq

)

+

J∑
j=1

ε′j,I (a
I
0 · h

j)(
Q∑
k=1

yIk
∂hjk
∂aIq

)

= 2
J∑
j=1

ε′j,R(a
R
0 · h

j)yRqh
j
q
(
(xj,I − aIq)� bq � bq

)
+ 2

J∑
j=1

ε′j,I (a
I
0 · h

j)yIqh
j
q
(
(xj,I − aIq)� bq � bq

)
.

(16)

Similarly, the partial gradient of the error function E(W)
with respect to bq are

∂E(W)
∂bq

=

J∑
j=1

ε′j,R(a
R
0 · h

j)
( Q∑
k=1

yRk
∂hjk
∂bq

)
+

J∑
j=1

ε′j,I (a
I
0 · h

j)
( Q∑
k=1

yIk
∂hjk
∂bq

)
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= −2
J∑
j=1

ε′j,R(a
R
0 · h

j)yRqh
j
q
[
(xj,R − aRq )

� (xj,R − aRq )� bq

+ (xj,I − aIq)� (xj,I − aIq)� bq
]

− 2
J∑
j=1

ε′j,I (a
I
0 · h

j)yIqh
j
q
[
(xj,R − aRq )

� (xj,R − aRq )� bq

+ (xj,I − aIq)� (xj,I − aIq)� bq
]
. (17)

Write Wt
= ((at0)

T , · · · , (atQ)
T , (bt1)

T , · · · , (btQ)
T )T , let

W0 be arbitrarily chosen initial weights, and let 1a0,Rn =

1a0,In = 0 (n = 0, 1, · · · ,Q), 1b0q = 0 (q = 1, · · · ,Q),
the SCNFA updates the real parts and the imaginary parts of
the weights separately:

1at,Rn = at+1,Rn − at,Rn = −η
∂E(Wt )
∂aRn

+ τ t,Rn 1at,Rn ;

1at,In = at+1,In − at,In = −η
∂E(Wt )
∂aIn

+ τ t,In 1at,In ,

n = 0, 1, · · · ,Q;

1btq = bt+1q − btq = −η
∂E(Wt )
∂bq

+ τ tq1btq,

q = 1, · · · ,Q,

(18)

where η ∈ (0, 1) is the learning rate, τ t,Rn , τ t,In (n =
0, 1, · · · ,Q) and τ tq (q = 1, · · · ,Q) are the momentum
parameters. For simplicity, let us denote

pt,Rn =
∂E(Wt )
∂aRn

, pt,In =
∂E(Wt )
∂aIn

, κ tq =
∂E(Wt )
∂bq

. (19)

Then (18) can be rewritten as
1at+1,Rn = τ t,Rn 1at,Rn − ηp

t,R
n ;

1at+1,In = τ t,In 1at,In − ηp
t,I
n ;

1bt+1q = τ tq1btq − ηκ
t
q.

(20)

Similar to BPM (BP with Momentum) ( [19]), we choose the
adaptive momentum parameters τ t,Rn , τ t,In and τ tq as follows:

τ t,Rn =


τ‖pt,Rn ‖

‖1at,Rn ‖
, if ‖1at,Rn ‖ 6= 0;

0, else,
(21)

τ t,In =


τ‖pt,In ‖

‖1at,In ‖
, if ‖1at,In ‖ 6= 0;

0, else,
(22)

τ tq =


τ‖κ tq‖

‖1btq‖
, if ‖1btq‖ 6= 0;

0, else,
(23)

where τ ∈ (0, 1) is a constant parameter. The above
three formulas demonstrates self-adaptive updating itera-
tively by compositing the current weights coefficients with
the previous-step updated coefficients. In the case of nonzero

momentum coefficients, they are redefined as positive value
to speed up training by renewing momentum. Otherwise the
momentum is expected as zero to maintain the error downhill,
being reduced to the gradient-based algorithm.

C. ALGORITHM FLOW

Algorithm 1 Next, the SCNFAWith Adaptive Momentum is
Illustrated in Brief
Input: The data set {xj, Oj }Jj=1 will be learnt
Output: Parameters of the network: center (aq), reciprocal
of width (bq) of Gaussian membership (q = 1, 2, . . . ,Q) and
conclusion parameters (a0)
Begin

Initialize aq, bq and a0
Select the learning rate η and momentum parameter τ
Select the number of fuzzy rules Q
Select the maximum training steps N

for t = 1, 2, . . . ,N do
Compute the Gaussian function Alq using Eq. (2)
Compute the rule agreement hq using Eq. (4)
Compute the network output d using Eq. (5)
Compute the error using Eq. (7)
Update parameters aq, bq and a0 as given in
Eqs. (15)-(23)

end
end

III. MAIN CONVERGENCE RESULTS
In this section we present a convergence theorem of the
learning iteration process (18)–(23). Its proof has been rel-
egated to the Appendix. Some sufficient assumptions for the
convergence are given as follows:

(A1) There exists a constant C0 > 0 such that
max{‖at,R0 ‖, ‖a

t,I
0 ‖} ≤ C0, max{‖at,Rq ‖, ‖a

t,I
q ‖} ≤ C0 and

‖btq‖ ≤ C0 for all q = 1, 2, . . . ,Q, t = 1, 2, . . .;
(A2) The set � = {W| ∂E(W)

∂aR0
= 0, ∂E(W)

∂aI0
= 0, ∂E(W)

∂aRq
=

0, ∂E(W)
∂aIq

= 0, ∂E(W)
∂bq

= 0, q = 1, 2, . . . ,Q} contains finite
points, where � is a compact set.
Theorem 1: Suppose Assumption (A1) is valid, and that
{Wt
} is the weight vector sequence generated by (18)–(23),

with arbitrary initial valueW0. Then, there exists a constant
C > 0 such that for 0 < g < 1, τ = gη and η ≤ 1−g

C(1+g)2
,

then we have the following weak convergence
(i) E(Wt+1) ≤ E(Wt ), t = 0, 1, 2, . . .;
(ii) There is E∗ ≥ 0, such that lim

t→∞
E(Wt ) = E∗;

Furthermore, if Assumption (A2) is also satisfied, then we get
the strong convergence, that is, there exists a point W?

∈ �

such that
(iii) lim

t→∞
Wt
=W∗.

IV. SIMULATIONS
The performance of the proposed zero-order TSK system
with the well defined adaptive momentum-weighted SCNFA
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is studied in this section. The simulation results support
the validity of the theoretical conclusions and exhibit the
high performance of the proposed algorithm, compared with
SCNFAwith no momentum (NM) and with constant momen-
tum (CM). The effectiveness and convergence property of
SCNFA with adaptive momentum (AM) are shown. The
effectiveness is judged by how small the cost function is at
the end of the training process, and by how fast the algo-
rithm convergent, while the convergence property is detected
by whether the error and the norm of gradient of the error
function go to zero when the training course terminates. The
convergence performance of the algorithm is demonstrated
through the complex XOR benchmark problem.
Example (Complex XOR Benchmark): The complex XOR

is commonly utilized in literature to evaluate the convergence
capacity of the algorithms. In complex domain, the input and
ideal output of each sample is given as [20]. In this simulation,
5 complex fuzzy rules were involved. The real and imaginary
components of weights for fuzzy reasoning were randomly
initialized out of an interval in the range [−1, 1], the learning
rate µ was set to 0.01, and the momentum coefficient τ was
set as the legend of Fig. 2 shown. The maximum iteration
steps was 500.

FIGURE 2. Error curves comparison of SCNFA with NM, CM and AM .

Fig. 2 also demonstrated that the error curve of FCNFA
with AM was monotonously decreasing, which was consis-
tent with the theoretical findings. Meanwhile, the compar-
isons of experimental results of the three algorithms were
exhibited, which showed that FCNFA with AM performed
best among all algorithms as for convergence speed and the
terminated error. Specifically, the error curve of FCNFAwith
AM dropped fastest and deepest, bearing 0.024 in the middle
of the training process i.e. 250 iterations compared with
0.039, 0.057 and 0.130. FCNFA with AM also behaved the
least terminated error, bearing 0.009 at the end of the training
process i.e. 500 iterations compared with 0.013, 0.025 and
0.056.

Basically the gradient-based neuro-fuzzy algorithm was
nothing just a gradient descent method, which tried to minish
the gap between the ideal and real outputs in an iterative
manner. As for AM, the weights involved in the system were
renewed so as to not only render the error decreased along a
descent direction, but rather exploited the message benefited
by the previous and the next preceding steps at each iteration.
As can be observed, the AM has remarkable advantages in
both accelerated convergence and least error value. It can be
noticed that our approach very significantly accelerate the
learning process in comparison with the conventional CM.

V. CONCLUSION
In this paper, a split-complex valued neuro-fuzzy algorithm
(SCNFA) for fuzzy inference system has been developed to
promote the potential capacities of TSK system. The momen-
tum strategy successfully speeds up the convergence perfor-
mance and decreasing the steepest descent error efficiently.
The strong convergence of the SCNFA is strictly investigated.
The convergence of the weight sequence of parameters is also
given by adding a moderate condition. This improved version
of adaptive momentum has been simulated to support the
superiority in contrast with other methods.

APPENDIX
We first present a lemma, then use it to prove the strong
convergence results.
Lemma 1: Suppose that F : RQ(2L+1)

→ R1 is continuous
and differentiable on a compact set D ⊂ RQ(2L+1), and that
� = {$ ∈ D | ∂F($ )

∂$
= 0} contains only finite points. If a

sequence {$ t
} ⊂ D satisfies

lim
t→∞
‖$ t+1

−$ t
‖ = 0, lim

t→∞

∥∥∥∥∂F($ t )
∂$

∥∥∥∥ = 0,

then there exists a point$ ?
∈ � such that lim

t→∞
$ t
= $ ?.

Proof: This result is almost the same as in [15,
Lemma 1], and the detail of the proof is omitted.

Proof of Theorem 1: Conclusions (i) and (ii) in Theo-
rem 1 can be similarly proved as in [15].

Next, we prove Conclusion (iii) i.e. strong convergence.
In the following, we suppose conditions of Theorem 1 are
valid, let α = −(τ −η+ (C2+C4)(τ +η)2), β = −(τ −η+
(C2 + C3 + C4)(τ + η)2), then there hold α ≥ 0, β ≥ 0 and

E(Wt+1)− E(Wt )

≤
(
(τ − η)+ (C2 + C3 + C4)(τ + η)2

)
×
( Q∑
q=1

(‖pt,Rq ‖
2
+ ‖pt,Iq ‖

2)+
Q∑
q=1

‖κ tq‖
2)

+ ((τ − η)+ (C2 + C4)(τ + η)2)

× (‖pt,R0 ‖
2
+ ‖pt,I0 ‖

2). (24)
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Then we have

E(Wt+1) ≤ E(Wt )− α(‖pt,R0 ‖
2
+ ‖pt,I0 ‖

2)

−β

Q∑
q=1

(‖pt,Rq ‖
2
+ ‖pt,Iq ‖

2
+ ‖κ tq‖

2)

≤ . . . ≤ E(W0)−
t∑

k=0

[α(‖pk,R0 ‖
2
+ ‖pk,I0 ‖

2)

+β

Q∑
q=1

(‖pk,Rq ‖
2
+ ‖pk,Iq ‖

2
+ ‖κkq‖

2)].

Since E(Wt+1) ≥ 0, there holds
t∑

k=0

[α(‖pk,R0 ‖
2
+ ‖pk,I0 ‖

2)

+β

Q∑
q=1

(‖pk,Rq ‖
2
+ ‖pk,Iq ‖

2
+ ‖κkq‖

2)] ≤ E(W0).

Letting t →∞ then
∞∑
k=0

[α(‖pk,R0 ‖
2
+ ‖pk,I0 ‖

2)

+β

Q∑
q=1

(‖pk,Rq ‖
2
+ ‖pk,Iq ‖

2
+ ‖κkq‖

2)]≤E(W0)<∞.

Hence, there holds

lim
t→∞

(‖pt,Rn ‖
2
+ ‖pt,In ‖

2) = lim
t→∞
‖κ tq‖

2
= 0,

n = 0, 1 · · · ,Q, q = 1, · · · ,Q, (25)

which implies

lim
t→∞
‖
∂E(Wt )
∂aRn

‖ = lim
t→∞
‖
∂E(Wt )
∂aIn

‖

= lim
t→∞
‖
∂E(Wt )
∂bq

‖ = 0. (26)

Finally, we use (18)-(20) and (26) to obtain

lim
t→∞
‖at+1,Rn − at,Rn ‖ = lim

t→∞
‖at+1,In − at,In ‖

= lim
t→∞
‖bt+1q − btq‖ = 0. (27)

From Assumption (A2), (26), (27) and Lemma IV, we obtain
that there is a W ∗ such that lim

t→∞
Wt
= W∗. The statement

(iii) is proved. We thus complete the proof.

REFERENCES
[1] T. Adali and P. J. Schreier, ‘‘Optimization and estimation of complex-

valued signals: Theory and applications in filtering and blind source sep-
aration,’’ IEEE Trans Signal Process. Mag., vol. 31, no. 5, pp. 112–128,
Sep. 2014.

[2] D. P. Mandic and V. S. Lee Goh, Complex Valued Nonlinear Adaptive
Filters: Noncircularity, Widely Linear and Neural Models. Hoboken, NJ,
USA: Wiley, 2009.

[3] T. Nitta, ‘‘The computational power of complex-valued neuron,’’
in Artificial Neural Networks and Neural Information Processing—
ICANN/ICONIP. Berlin, Germany: Springer, 2003, pp. 993–1000.

[4] G. Velmurugan, R. Rakkiyappan, V. Vembarasan, J. Cao, and A. Alsaedi,
‘‘Dissipativity and stability analysis of fractional-order complex-valued
neural networks with time delay,’’ Neural Netw., vol. 86, pp. 42–53,
Feb. 2017.

[5] M. Rajendra and K. Shankar, ‘‘Improved complex-valued radial basis
function (ICRBF) neural networks on multiple crack identification,’’ Appl.
Soft Comput., vol. 28, pp. 285–300, Mar. 2015.

[6] M. Kobayashi, ‘‘Dual–numbered Hopfield neural networks,’’ IEEJ Trans.
Elect. Electron., vol. 13, no. 2, pp. 280–284, 2018.

[7] Y. Liu, L. Li, and D. Yang, ‘‘Boundedness and convergence of split
complex gradient descent algorithm with momentum and regularizer for
TSK fuzzymodels,’’Neurocomputing, vol. 311, no. 15, pp. 270–278, 2018.

[8] D. Xu, J. Dong, and C. Zhang, ‘‘Convergence of quasi-newton method
for fully complex-valued neural networks,’’ Neural Process. Lett., vol. 46,
no. 3, pp. 961–968, 2017.

[9] W. Rudin, Real and Complex Analysis. New York, NY, USA:
McGraw-Hill, 1987.

[10] S. S. Yang, S. Siu, and C. L. Ho, ‘‘Analysis of the initial values in split-
complex backpropagation algorithm,’’ IEEE Trans. Neural Netw., vol. 19,
no. 9, pp. 1564–1573, Sep. 2008.

[11] K. Subramanian, R. Savitha, and S. Suresh, ‘‘A metacognitive complex-
valued interval type-2 fuzzy inference system,’’ IEEE Trans Neur. Netw.
Learn. Syst., vol. 25, no. 9, pp. 1659–1672, Sep. 2014.

[12] C. Li and T.-W. Chiang, ‘‘Function approximation with complex neuro-
fuzzy system using complex fuzzy sets—A new approach,’’ New Gener.
Comput., vol. 29, pp. 261–276, Jul. 2011.

[13] A. A. Hameed, B. Karlik, and M. S. Salman, ‘‘Back-propagation algo-
rithm with variable adaptive momentum,’’ Knowl. Based Syst., vol. 114,
pp. 79–87, Dec. 2016.

[14] M. L. Sarigül andM. Avci, ‘‘Performance comparison of different momen-
tum techniques on deep reinforcement learning,’’ J. Inf. Telecommun.,
vol. 2, no. 2, pp. 205–216, 2018.

[15] Y. Liu and D. Yang, ‘‘Convergence analysis of the batch gradient-based
neuro-fuzzy learning algorithm with smoothing L1/2 regularization for the
first-order Takagi–Sugeno system,’’ Fuzzy Sets Syst., vol. 319, pp. 28–49,
Jul. 2017.

[16] Y. Liu, D. Yang, N. Nan, L. Guo, and J. Zhang, ‘‘Strong convergence
analysis of batch gradient-based learning algorithm for training Pi-Sigma
network based on TSK fuzzymodels,’’Neural Process. Lett., vol. 43, no. 3,
pp. 745–758 2016.

[17] W. Wu, N. Zhang, and Z. Li, ‘‘Convergence of gradient method with
momentum for back-propagation neural networks,’’ J. Comput. Math.,
vol. 26, no. 4, pp. 613–623, 2008.

[18] T. Takagi and M. Sugeno, ‘‘Fuzzy identification of systems and its
applications to modeling and control,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[19] N. Zhang, W. Wu, and G. Zheng, ‘‘Convergence of gradient method
with momentum for two-layer feedforward neural networks,’’ IEEE Trans.
Neural Netw., vol. 17, no. 2, pp. 522–525, Mar. 2006.

[20] H. Zhang, D. Xu, and Y. Zhang, ‘‘Boundedness and convergence of split-
complex back-propagation algorithm with momentum and penalty,’’ Neu-
ral Process. Lett., vol. 39, no. 3, pp. 297–307, Jun. 2014.

YAN LIU received the Ph.D. degree in compu-
tational mathematics from the Dalian University
of Technology in 2012. She is currently with the
School of Information Sciences and Engineering,
Dalian Polytechnic University, Dalian, China. Her
research interests include machine learning, fuzzy
neural networks, and regularization theory.

VOLUME 7, 2019 39367



Y. Liu et al.: Strong Convergence of Neuro-Fuzzy Learning With Adaptive Momentum for Complex System

FANG LIU is currently a Graduate Student with
the School of Mathematical Sciences, Dalian Uni-
versity of Technology. Her major interests include
computational mathematics. And her research
interests include machine learning and neural net-
works theory.

LONG LI received the M.S. and Ph.D. degrees in
computational mathematics from the Dalian Uni-
versity of Technology, Dalian, China, in 2007 and
2010, respectively. He is currently with the College
of Mathematics and Statistics, Hengyang Normal
University, Hengyang, China. His research inter-
ests include numerical analysis, neural network
computation, and fuzzy system.

39368 VOLUME 7, 2019


	INTRODUCTION
	COMPLEX-VALUED NEURO FUZZY INFERENCE SYSTEM WITH MOMENTUM
	ARCHITECTURE OF ZERO-ORDER TSK
	LEARNING ALGORITHM OF SCNFA
	ALGORITHM FLOW

	MAIN CONVERGENCE RESULTS
	SIMULATIONS
	CONCLUSION
	REFERENCES
	Biographies
	YAN LIU
	FANG LIU
	LONG LI


