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ABSTRACT Cloud Virtual Private Server (VPS) services provide the chance of rapid deployment of
anonymous proxy services, becoming an important part of many anonymous proxy solutions. The anony-
mous system represented by ShadowSocks (SS), through proxy services deployed on VPSs provided by
different cloud service providers, has become an important mean for illegal network activists to engage in
illegal network activities such as cyber-attacks and darknet transactions. It is difficult for local network
administrators to supervise SS traffic from the cloud. While from the local network, the task faces the
challenges of Invisible Negotiation Process and Data Transparent Transmission. In this paper, we present
a novel SS detection method based on flow context and host behavior. The method can not only accurately
identify SS flows, but also be applicable to a large-scale network environment. In this method, we extract
12-dimensional features from three aspects: the relationship between flows, hosts’ flow behavior, and hosts’
DNS behavior to build the detection model. Among them, the four features about flow burst and the feature
of unassociated domain names’ number are innovatively proposed in this paper. Moreover, the big data
statistical and association techniques are used in the method. To verify the effectiveness of the method,
we first built a real SS running environment based on the campus network and two VPSs on two different
public cloud platforms.Moreover, we conduct a series of experiments on the NTCI-BDP data platformwhich
is a big data platform built by our team. The experimental results show that our method achieves 93.43%
accuracy on experimental data sets and can effectively identify SS traffic.

INDEX TERMS Big Data association, cloud-based anonymous proxy, flow burst, flow context, host
behavior, traffic identification, shadowsocks.

I. INTRODUCTION
Network security and privacy protection have become the
focus of network users’ attention in recent years. Anonymous
communication technologies, such as anonymous proxy [1],
anonymous routing [2] and anonymous key pair [3], are fre-
quently used to ensure the security of network terminal and
personal privacy. CloudVirtual Private Server (VPS) provides
the opportunity of rapid deployment of anonymous proxy
services, becoming an important part of the anonymous proxy
solution and contributing to the widespread application of
anonymous proxy technology. ShadowSocks (referred to as

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuan Zhang.

SS), a typical anonymous proxy system, can encrypt user
communications and conceal the identification of users. Due
to its simple deployment process, the server side of SS can
be quickly deployed in a VPS [4]. However, VPS-based SS
solutions are also abused while protecting the privacy of com-
municators. They have currently become important means for
illegal network activists to engage in illegal network activities
such as data theft, pornographic propagation, cyber-attacks
and darknet transactions. In these kinds of solutions, virtual
servers are as the scapegoats for malicious actors, which
would have a negative effect on the security assessment of
cloud services [5]. Hence, the work of identifying SS traffic is
of great significance to network security supervision. In these
scenarios, the proxy services of SS are typically deployed
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on VPS of cloud data centers located in different geographic
locations from different cloud providers, such as Amazon
AWS, Microsoft Azure, Google GCM. It is unrealistic for
local network security regulators to monitor all cloud services
to identify and supervisor SS traffic. This poses a challenge
to cybersecurity Supervision. While there are still several
difficulties for network administrators if communications are
supervised from the local network. Encryption and authenti-
cation can be implemented at different layers of ISO/OSI [6].
They are implemented by information encoding and message
authentication mechanisms in the physical layer and the link
layer [7]–[10], by protocol encapsulation or whole packets
encryption in the network layer and the transport layer, and
by specific application encryption protocols in the application
layer. SS traffic is only composed of encrypted traffic based
on TCP. No process of the key negotiation and exchange
between clients and remote servers is seen in them and the
characteristics of traffic are not obvious. The task of iden-
tifying SS traffic faces the challenges of Invisible Negotia-
tion Process and Data Transparent Transmission. Therefore,
identifying SS traffic is a great challenge.

The recent encrypted and anonymous network traf-
fic identification solutions mainly use feature-based and
statistics-based methods [11], [12], which can identify the
traffic of encrypted and anonymous communication systems
such as Skype [13], SSH [14] and Tor [2]. Feature-based
methods rely on the traffic characteristics extracted from
the plaintext information of the protocol handshake between
nodes in the initial stage of the establishment of encrypted
communication, or from the unencrypted protocol header
message, and then identify traffic by pattern or keyword
matching methods. For example, we can verify whether the
connection is an SSL protocol and determine the proto-
col version according to the SSL configuration options by
the analysis of the unencrypted SSL protocol header [15].
Statistics-based methods are mainly based on the statistical
or time series features which are different from other pro-
tocols in terms of length, time, direction and other char-
acteristics in the interaction process of different encryption
protocols. Heuristic rules and machine learning methods are
applied. For example, we can identify cryptographic pro-
tocols such as VoIP [16], Skype [17] and Tor [2] using a
higher percentage of data packets based on a specific length.
Nevertheless, in SS traffic, there are no obvious distinguish
features in protocol header and features about high frequency
packet length like the previously mentionedmethods. The use
of statistical and distribution characteristics at packet level
would affect the performance of methods in large-scale net-
works. If features being extracted with the flow granularity,
it could be difficult to obtain effective features because of the
small amount of information containe+d.
Considering the above issues, a novel method to identify

SS traffic was proposed in this paper. The method bases on
the fact that the use of SS changes the way that the host
finds the target server and the pattern of the host establishes
connections with the target server. It results in changes on the

behavior of host domain name requests and flow initializa-
tion, and the changes on the relationship between flows on
concurrency and relevance. We firstly monitor the relation-
ship between flows in different time windows, the behavior
of the SS host on flow and DNS. Then, leveraging the big data
association technology, we establish the association between
flows, between flow and host, and between flow and DNS.
Accordingly, we extract 12 features reflecting the distinction
between SS flows and non-SS flows (other flows except SS
flows) as the feature representation of the flow from the
association. Finally, we construct the SS identifying model
using the Random Forest algorithm. Experiments on data sets
collected and generated in the real-world network show that
our proposed method can effectively identify SS traffic and
achieves 93.43%, 93.74%, 90.66% and 92.17% in accuracy,
precision, recall and respectively.

The main contributions of this paper are as follows:
• The differences between SS flows and non-SS flows
were characterized. From different perspectives, sev-
eral concepts were proposed from for characterizing SS
flows, which are ‘‘Flow Context’’ from the perspective
of the relationship between flows, ‘‘Flow Burst’’ and
‘‘Destination IP address Entropy’’ from the perspective
of host popularity, and ‘‘Sensitive Domain Name’’ and
‘‘Unassociated Domain Name’’ from the perspective
of host DNS behavior. Several experiments were per-
formed and verified that these features can be used to
identify SS traffic.

• A novel SS detection method based on flow context
and host behavior was proposed. This method applies
big data statistics, association and data processing tech-
nology to implement the association of flows and DNS
data, feature extraction and calculation and detection
model construction. The detector not only can accurately
identify SS traffic, but also is suitable for large-scale
network environments.

• The effectiveness of our proposed method was evaluated
on the experimental dataset from the real network and
compared it with the state-of-the-art methods. The SS
running environment was built based on our campus net-
work and two virtual servers running on different public
cloud platforms. All experimental data is collected from
the specific edge router of our campus network and
labeled. The experimental results show that the method
is effective for identifying SS flow and is superior to the
comparison methods.

The main novelties of this paper are the proposed four
features about flow burst and the feature of the number of
unassociated domain names. The four features about flow
burst characterize the concurrency of multiple flows between
the source host and the target service. The feature of unas-
sociated domain name characterizes the temporal association
between the requested domain names and the initialized flows
by the source host. These features are firstly proposed as
far as we know and can reflect the difference between SS
flows and non-SS flows from the perspective of host behavior.
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Experimental results show that these features can be used to
identify SS traffic.

The rest of this paper is organized as follows. In Section II,
the related work in the fields of traffic identification, encryp-
tion and anonymous traffic identification is briefly intro-
duced. Then, in Section III, the operation mechanism of
SS is analyzed, and we analyze the characteristics of SS
communication from the aspects of SS flow context, host
behavior on flow, and host behavior on DNS. After that we
elaborate on the SS flow detection method in Section IV.
In Section V several experiments were conducted to verify
the effectiveness of our proposed method. Finally, the work
of this paper is summarized in Section VI.

II. RELATED WORK
A. METHODS OF TRAFFIC IDENTIFICATION
Currently, the main methods of traffic identification are based
on port, payload, statistics and behavior. Port-based meth-
ods and payload-based methods are quick and simple. How-
ever, these two kinds of methods are significantly lower in
identification accuracy because of the wide application of
dynamic port technology, protocol masquerading and con-
fusion, encryption technology, etc. Payload-based methods
can still be used to identify and coarse-grained specific
encrypted traffic. For example, SSL can be identified based
on the unencrypted header information of the message dur-
ing the handshake [14]. Statistics-based methods, which are
not affected by changes in payload, are based on statistical
properties of traffic and leverage machine learning methods
to identify traffic. They are suitable for the identification of
encryption protocols or private protocol traffic. According
to different statistical granularities, statistics-based methods
can be divided into methods on packet level and methods
on flow level. The former uses the distribution features of
the packets in flows in terms of direction, arrival time and
byte size, such as unidirectional min/max inter packet time,
unidirectional min/max packet size. The latter is based on
statistical features such as numbers and bytes of packets
about up-flow and down-flow, and the duration of flows.
Tan et al. [18] extracted 40 features from the flow level and
the packet level and built a P2P identification model with a
detection rate higher than 95%. Soleimani et al. [19] identi-
fied Tor plugins traffic using statistical features of flow-level
and the statistical features of the first 10 to 50 packets with a
high certainty. Silva et al. [20] extended the flow feature set of
OpenFlow calculators in SDN into three categories: statistical
features, scalar features and complex features to realize traf-
fic classification in SDN networks. Behavior-based methods
characterize the network traffic behavior of a host to achieve
traffic identification by the connection mode that the host
with the other hosts (connection degree, number of ports,
etc.), the traffic communication of the host, or all traffic of
the host communication with a specific IP and a port, etc.
Li et al. [21] combine traffic statistics features with host
behavior to identify VoIP traffic. XIONG et al. [22] proposed
a method based on communication modes between hosts, and

between hosts and servers to identify encrypted P2P traffic.
However, these methods are typically based on pattern of
communication and the behavior of hosts in specific protocol,
and cannot be directly used for SS traffic identification.

In recent years, the correlation between flows is also used
to characterize flow behaviors or host behaviors to implement
traffic identification and classification. Zhang et al. [23] used
destination side heuristic to design a traffic classification
method based on bag-of-flows (BOF). The method combined
flows with the same destination address, destination port,
and protocol into one BOF, and then labeled each flow with
the classification of most flows in the BOF to improve the
accuracy of traffic classification. Furthermore, the authors
also analyzed and proved that BOF ideas could be used to
improve classifier accuracy from both theoretical and practi-
cal perspective [24]. Ding et al. [25] proposed a traffic clas-
sification method based on the relation of flows. The method
introduced seven types of relationships between flows as
extended feature vectors of a flow to perform flow classifica-
tion based on difference shared quaternion attributes. Traffic
classification methods based on flow association relation-
ships provide a very good idea for realizing traffic classifica-
tion and improving traffic classification accuracy at the flow
level. Whereas, these methods only focus on the contribution
of the number of associated flows and the shared attributes to
the classification. They do not analyze more characteristics
between flows.

Big data analysis technology has been applied to traffic
identification and analysis in network operations, security
analysis and intrusion detection [26]–[28], which makes it
possible to use more environmental or contextual informa-
tion to help specific traffic identification. Environmental
and contextual information has been used by researchers to
solve many practical problems in a variety of application
scenarios [29]–[31]. In some network traffic analysis scenar-
ios, such as only flow-level traffic data available, the infor-
mation provided by a single flow is not enough to identify
specific traffic. Some methods based on flow context data
were thus proposed. Anderson et al. [32] proposed a method
for malware traffic identification based on flow context data.
The method utilizes background traffic information related to
TLS flow, such as DNS response, HTTP header information
in a 5 minute time window of the same source IP address,
and unencrypted TLS handshake information, to identify the
encrypted malicious traffic. In order to improve the adapt-
ability of classificationmethods in different scenarios in [33],
the context features, such as network conditions and user
preferences were added to the network traffic identification
to meet the needs of intelligent network selection in 5G envi-
ronment, and different traffic is allocated to the appropriate
network interface.

B. ENCRYPTED AND ANONYMOUS TRAFFIC
IDENTIFICATION
The detection of encryption and anonymous traffic have been
the focus of many researchers for many years. Research
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subjects include Tor, SSL/TLS, SSH, etc. In terms of Tor
traffic identification, Rao et al. [34] proposed a Gravitational
Clustering Algorithm (GCA) for realizing Tor anonymous
traffic identification with a detection rate of over 80%. For
the problem of accessing to Tor networks through bridge
nodes to avoid detection, Lingyu et al. [35] extracted four
communication characteristics from the packet length and
packet arrival time dimension of the flows between clients
and bridge nodes, and then used the decision tree method
to identify Tor traffic. Cuzzocrea et al. [36] extracted the
23-dimensional features such as the packets sending time
interval, the packets arriving time interval, the number of
flows per second, and the number of packets per second
from the flow level and packet level of the network traffic
to determine whether the host is generating TOR traffic.
Finally, they validated the validity of the proposed feature
using a variety of machine learning methods. Mercaldo and
Martinelli [37] used a similar method to identify Tor traffic
too. In other aspects of encryption and anonymous traffic
identification, Draper-Gi et al. [38] proposed a method for
identifying VPN traffic based on 23 features such as packet
arrival time interval, active time of packets in flows, number
of packets per second and so on. After that, their team used the
samemethod to prove that the Tor traffic can be identified and
portrayed only using time-based features with accuracy and
recall rates exceeding 90% [39]. Ding and Li [40] proposed
a hybrid method to identify and classify SSL/TLS encrypted
traffic, extracting features from the dimensions of maximum,
minimum, average, and standard deviation of packet length
and time interval respectively, and applying C4.5 decision
tree to construct traffic identification model. In the case of the
first 4 packets, the accuracy could reach 99.3%. Lee et al. [41]
proposed a Skype traffic detection system based on integrated
mode.

However, these researches are targeted at specific anony-
mous protocol or application, lacking of solutions to identi-
fying SS traffic. In the few researches about SS traffic, most
of them are the identification of specific websites and web
pages on SS traffic based on fingerprint attacks [42], [43].
To the best of our knowledge, only Deng et al. proposed a
random forest-based SS detection method in 2017 [44]. The
method extracts more than 3000 features from bidirectional
flows and network packets host profile, and the detection rate
reaches 85% or more on the experimental data set. However,
this method extracts a lot of features at the packet level and
is apt to suffer the problems of performance and availability
in large-scale network environments. In this work, we will
perform SS traffic identification at the flow level in order to
be applicable to large-scale networks.

III. ANALYSIS OF PROBLEM AND SS TRAFFIC
CHARACTERISTICS
In this section, we first descript the operating mechanism of
SS and analyze the difficulties of SS traffic detection. Then
we analyze the differences between SS flows and non-SS
flows from traffic characteristics and host behavior. These

work will provide the basis for establishing SS traffic iden-
tification model.

A. PROBLEM ANALYSIS
SS is a single-hop anonymous proxy system based on the
Socks5 protocol and its traffic exposed to the network super-
visor is encrypted TCP flows [4]. SS software is composed
of two parts: the client SS_Local and the server SS_Server .
SS_Local is typically deployed on a local machine, router,
or other machine on the local network, and starts a local
Socks5 agent server. SS_Server is deployed outside the fire-
wall. The communication process of SS is shown in Figure 1.
Specific steps are as follows: (1) The user application com-
municate with the SS_Local based on the Socks5 protocol.
(2) After the connection is established, SS_Local automati-
cally encrypts the application request data and forwards them
to the SS_Server via TCP flows. (3) SS_Server decrypts
the encrypted data received from SS_Local, parses the user
requests and forwards them to the target server. (4) After
obtaining the responses of the target server, SS_Server sends
the response data back to the client through TCP flows in
the same encryption mode. SS_Local can communicate with
SS_Server based on multiple options including encryption
method, encryption key, and service port. These options are
pre-configured, and remain unchanged once transmission
begins.

FIGURE 1. The communication process of SS system.

From the operation mechanism of SS, SS traffic detection
is mainly faced with the two challenges of Invisible Negoti-
ation Process and Transparent Data Transmission compared
to the other anonymous traffic. They are detailed as follows.
• Invisible Negotiation Process. Leveraging the plain-
text information in protocol negotiation process or the
unencrypted header field message, we can identify the
encrypted traffic such as SSH or VPN. However, the SS
traffic passing through the firewall is only TCP-based
encrypted flows. There is no key exchange and negotia-
tion process between the SS_Local and the remote server
SS_Server . Whenever the middleman between the client
and the server appears, the communication content is
encrypted. No unencrypted information is available in
the SS traffic to distinguish it from a variety of flows.

• Transparent Data Transmission. Studies have shown
that most encryption and anonymous systems, such as
Tor and VPN, can re-encapsulate user data. We can
extract traffic characteristics from the dimensions of
packet length, packet arrival time, and packet direction
to identify their traffic and achieve better results. How-
ever, SS_Local forwards client requests transparently in
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SS. It creates a new connection when application initials
a new proxy connection request, and only converts user’s
original data into encryption packets with encryption
and obfuscation before forwarding them to SS_Server ,
and then does not generate cell packets with specific
length. Hence, no obvious flow characteristics are avail-
able in an SS flow.

Therefore, It is hard to detect SS only rely on the
self-characteristics of a flow. Faced with these challenges,
we need mine more useful information from context and
external of flows and other relevant data to help identify SS
traffic.

B. ANALYSIS OF SS TRAFFIC CHARACTERISTICS AND
HOST BEHAVIOR
A client host communicates with the target server through SS
when SS enabled. The connections that should be established
between the client and the target server will all be changed
into connections between the client and the SS Server, which
will change the correlation between a flow and its adjacent
flows on the flow quintuple attributes and on the time char-
acteristics and alter the connection relationship between the
client and the other hosts on flow. The client no longer relies
on the IP address obtained from the local DNS responses to
access target services, and its behavior on DNS will change
too. Therefore, in this section, wewill analyze the distinctions
between SS flow and the other flows from three aspects: flow
context, host behaviors on flows and host behaviors on DNS.

1) FLOW CONTEXT
• Related Definition

For the sake of description, we will define the key concepts
as follow.
Definition 1: Bidirectional flows (bi-flow): Bi-flow is an

assemblage of all packets that have the same 5-tuple (source
address, destination address, source port, destination port,
protocol) or reversal 5-tuple (source IP, source port, desti-
nation IP and destination port are equal to destination IP,
destination port, source IP and source port respectively.) The
packets in a bi-flow start with the first SYN packet and end
with the last FIN or RST packet. A bi-flow can be expressed
as f = (sip, sport, dip, dport, stime, prot). The attributes in
f indicate the source IP address, source port, destination IP
address, destination port and transport layer protocol in turn.
In this paper, we only concern about the analysis of TCP
flows because the SS communication is based on TCP proto-
col. Unless otherwise specified, the ‘‘flow’’ used in this paper
is a bi-flow. A bi-flow can be thought as the communication
between two network terminals. We refer to the end that
initiates the flow as the ‘‘source-side’’ and the other end as
the ‘‘destination-side’’. The combination of the destination
IP address and the destination port is called the ‘‘destination
service’’.
Definition 2: Flow correlation. Flow correlation refers

to the relationship among multiple flows based on flow

identification attributes. From the perspective of the source-
side, destination-side and destination service of a flow,
we define the following five types of flow correlation accord-
ing to the different flow attributes between two flows.
Definition 2-1: Flow correlation of sharing source and

destination service RS_DP. Let f and g be any two flows,
if f .sip = g.sip, f .dip = g.dip and f .dport = g.dport , then
the Flow correlation RS_DP exists between f and g. RS_DP can
be used to reflect the behavior of a source-side host requests
one same destination service.
Definition 2-2: Flow correlation of sharing source and des-

tination RS_D. Let f and g be any two flows, if f .sip = g.sip
and f .dip = g.dip, then the Flow correlation RS_D exists
between f and g. RS_D can be used to reflect the behavior
of a source-side host requests one or more services of the
destination.
Definition 2-3: Flow correlation of sharing destination

service RDP. Let f and g be any two flows, if f .dip = g.dip
and f .dport = g.dport , then the Flow correlation RDP exists
between f and g. RDP can be used to reflect the behavior of
one or more source-side hosts request one same destination
service.
Definition 2-4: Flow correlation of sharing destination RD.

Let f and g be any two flows, if f .dip = g.dip, then the Flow
correlation RD exists between f and g. RD can be used to
reflect the behavior of one or more source-side hosts request
one same destination.
Definition 2-5: Flow correlation of sharing source RS . Let

f and g be any two flows, if f .sip = g.sip, then the Flow
correlation RS exists between f and g. RS can be used to
reflect the behavior of a source-side host requests one or more
destination or destination services.

There are one or more of the above flow relationships
between two flows at the same time. Let isRx(f , g) be a func-
tion indicating whether there is a flow correlation Rx between
the flow f and the flow g, as shown in equation (1). Among
them, x = {S_DP, S_D, DP, D, S} identifiers representing
the five different flow associations.

isRx(f , g) =

{
1 if there is Rx between f and g.
0 if there is not Rx between f and g.

(1)

Let is Rx(f , g) be the function that indicates whether there
is the flow correlation Rx between f and g. Its expression is
shown as (1), where x = {S_DP, S_D, DP, D, S}, which is
the five flow correlations tags set.
Definition 3: Flow Context. Given a flow f , the Flow

Context of f is the collection of all flows that have the
five flow correlations in R = {RS_DP,RS_D,RDP,RD,RS}
with f in a given time window [f .stime− wb, f .stime+ wp],
where wb and wp refer to length of time. Let Gf be
the flow context of f , then Gf can be expressed as
Gf = {GfS_DP,G

f
S_D,GfDP,G

f
D,GfS}, where GfS_DP, GfS_D,

GfDP, G
f
D and GfS are the subset of Gf and represent a col-

lection of all flows that have five flow correlations RS_DP,
RS_D, RDP, RD and RS with f respectively. Take G

f
S_DP as an
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example, its formalization is as shown in (2).

GfS_DP = {gi|isRS_DP(gi, f ) = 1,

gi.stime ∈ [f .stime− wb, f .stime+ wp], i = 1, 2, 3, . . .}

(2)

Furtherly, we quantify the flow context using the number of
flows of per flow correlation subset. Let FV (Gf ) be the func-
tion of quantifying Gf , then FV (Gf ) = (d fS_DP, d

f
S_D, d fDP,

d fD, d fS ), where d
f
x indicates the number of elements in Gfx .

• Flow Context Analysis
When users access the target service using SS, all connec-

tions initiated by the host application to the target service
are proxied, causing the context of the flow to change. For
example, when a user do not use SS to access a web page
whose content is provided by a web server, an image server,
a video server and an advertisement server, the user host
establishes connections with the n target hosts which provide
the content of the web page at the same time. For any of
the flows generated in the above process, its flow context is
mainly composed of flows that have the flow correlation RS
with it, and the number of flows correlation RS_DP with it
is limited. Let xi be the number of concurrent connections
between the user and the i-th host. When using SS, the host

initializes
n∑
i=1

xi connections with SS_Server at the same time.

For any of the flows generated in the process, the number of
flows that have the flow correlations RS_D and RS_DP with it
in its flow context will be higher than that of a flow generated
in the no SS process significantly. What’s more, when multi-
ple users in the network use the same SS service at the same
time, the flows between different hosts to multiple different
target services are performed by the SS proxy. So, the flow

correlation RDP exists among the formed
nuser∑
j=1

nj∑
i=1

xj,i flows,

where xj,i is the number of connections between SS users j
and host i, nj is the number of target hosts requested by user j,
and nuser is the number of users that connect to the SS_Server .
While, when SS is not used, the flows between different hosts
and different target servers are irrelevant. Obviously, in this
scenario, for any one of these flows, the number of flows
that have the flow correlations RD and RDP with it in its flow
context will be significantly higher than that of a non-SS flow.

Therefore, there is a difference between SS flows and
non-SS flows in flow context characteristics. SS flows’ con-
text quantitative characteristics have higher values on multi-
ple dimensions than non-SS flows.

2) HOST FLOW BEHAVIOR
• Distribution of Destination IP Address
When a host using SS, the network connections that the

client should have established with the target server changes
to the connections with the SS_Server , which makes the des-
tination of more flows to be aggregated on one host. Hence,
there is a certain centralized characteristic in the distribution
of destination IP address of flows generated by the hosts

that use SS, rather than a decentralized distribution on the
hosts that do not use SS. we calculate the entropy of the
destination IP address set accessed by a host in a given time
to measure the degree of dispersion of the destination IP
addresses. Let dipSet be the set of the destination IP addresses
of flows connected by a host in a given unit time, then
dipSet = {ip1, ip2, · · · ipi, · · · , ipn}, where ipi represents the
i-th IP address. Let P be the probability distribution set of
dipSet , then P = {p1, p2, · · · , pi, . . . , pn}, where pi refer to
the probability of ipi. Hence, the entropy E of the destination
IP address set accessed by the source-side host of a flow can
be expressed as (3).

E = −
n∑
i=1

pi ln pi (3)

The larger the entropy value is, the more decentralized
the IP address of the destination host accessed by the host
is, the lower the probability that the host will use SS is;
the smaller the entropy value is, the more concentrated the
IP address of the destination host accessed by the host is,
the higher the probability that the host will use SS is. It is
found that the entropy of the source host of SS flows is gen-
erally smaller than that of the non-SS flows in the 5-minute
time window from the experiment in Section V.C.1). So,
the entropy can be used to represent the flow behavior of the
source-side host of SS flows.
• Time Characteristic Analysis of Multiple Flows

Applications usually limit the number of concurrent flows
per user to prevent service resources from being maliciously
occupied by a few users. This mechanism limits the number
of concurrent flows between the source-side host and the
target server. When the SS service enabled, the multiple
concurrent flows initialized by the user to connect different
services will be turned into one set of concurrent flows which
belong to only SS service. In order to analyze the temporal
concurrency of multiple flows between the source-side host
and the target service, based on the idea of Bursty Traffic
metrics [45], we propose the concept of Flow Burst and use
its features to characterize the source-side host behavior of a
flow.
Definition 4: Flow Burst. Suppose that a source-side host

initialize multiple flows with target service in a given time
window. After sorting these flows by time, if there are at least
consecutive N flows whose start time interval is less than the
given threshold T , a Flow Burst is formed. Burst Length is
the number of flows contained in a Flow Burst and then the
minimum value of Burst Length equal to N .

In a given time window, multiple Flow Bursts may be
formed between the source-side host and the target ser-
vice. The number of Flow Bursts is called Burst Num-
ber (bnum), the max of Flow Burst length is called Max
Burst Length (maxBLen), the sum of all Burst Length is
called Total Bust Length (totalBLen), and the ratio of Total
Bust Length to Burst Number is called Average Burst
Length (avgBLen). Therefore, given a flow f , its source-side
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host behavior on flow can be represented as B(f ) =
(bnum,maxBLen, totalBLen, avgBLen).
Wewill see that in subsection V.(C).1, when N= 3 and T=

100ms, the values of these features of SS flows are generally
higher than that of non-SS flows and these behavioral features
of the source-side host of a flow can be used to distinguished
between SS flows and non-SS flows.

3) HOST DNS BEHAVIOR
• Sensitive Domain Name Request Behavior Analysis

SS provides PAC (Proxy Auto-Config) and Global modes.
In Global mode, all sites requested by users are accessed
through proxy. In PAC mode, only the sites whose domain
are appeared in the given PAC configuration list are proxied
by SS. Usually, the configuration list consists of domain
names that are restricted by local security policies. We name
these domain names as Sensitive Domain Names. Since SS
servers are usually deployed outside firewalls and network
bandwidth is limited, if the global mode is used, all user
requests are proxied by SS, including local services, which
will lead to slow service access and a poor user experience.
Therefore, PACmode is widely used to get access to restricted
network resources.

By analyzing SS traffic, we find that there is a DNS leakage
problem [46] when SS is working in PAC mode or some
versions’ Global mode. When application uses SS to connect
the target server, the local DNS server can see what domain
name the user is asking for. Obviously, the more sensitive
domain name requests are made in a user’s DNS requests,
the greater the probability that the user will use SS.
• Unassociated Domain Request Behavior Analysis
Generally, application sends DNS request to obtain the IP

address of the target host before accessing the target service.
Under most circumstances, After an application requests a
domain name (for example, www.example.com ) and get all
IP addresses mapped by this domain, it will establish a
connection with one of the IP addresses (mostly the first
IP address [47]) in a very short time. Figure 2 shows the
process and the relationship between a DNS response and its
corresponding flows.

FIGURE 2. The relationship between domain name requests and flows.

SS is a transparent proxy. Since the existence of DNS
leakage problem, all domain names requested by user in the
process of accessing target services can be seen in local DNS
server, but user do not initialize any connection to the host
of target services. Therefore, we call these domain names as
Unassociated Domain Names. Apparently, the more unasso-
ciated domain names the host requests, the higher the fre-
quency of domain name leaks and the greater the probability
of using SS is.

IV. DETECTION METHOD
In this section, we introduce the framework of our proposed
SS traffic identification method firstly, and then detail the
implementation of each part of the framework.

A. DETECTION METHOD FRAMEWORK OVERVIEW
Figure 3 shows the overview of our proposed SS traffic
detection method, including three stages: data preprocessing,
feature extraction and SS traffic detection. In the stage of
data preprocessing, data of flows and DNS in a given time
window is read from network or offline data. Then a set of
flow association data is formed based on flow correlations
under different time parameters in the Flow Correlator, a set
of DNS behavior data of source host is formed in the Flow &
DNS Correlator based on the time sequence relation between
the host requesting domain names and host initializing flows.
In the feature extraction stage, flow feature vectors are formed
by extracting and computing flow features. In this process,
the quantitative features of flow context and the flow behav-
iors features of the source-side host of a flow extracted from
the flow context data, and DNS behavior features of the
source-side host abstracted from DNS behavior data of the
source-side host. In the SS traffic detection stage, based on the
flow feature vectors, the Random Forest algorithm is used to
construct classifier to detect SS flow. The whole framework is
designed and implemented on the big data platform based on
Hadoop and Spark. In the next subsection, we will describe
the three processes of data preprocessing, feature extraction,
and model construction in detail.

B. DATA PREPROCESSING
1) FLOW CORRELATION
The function of the Flow Correlator is to form a subset of
neighbor flows for each flow based on different flow corre-
lations between flows with different time parameters, which
provides a basis for the features of flow context and host
behaviors extraction. In order to fully reflect the neighbor-
hood relationship of a flow, we proposed a data extraction
method of looking forward and backward in time axis. The
detail of this method is as follows. The neighbor flow subset
of f is constructed on the set of adjacent flows of f , which
consists of all flows in the wb time window before the start
time of f and in the wp time window after the start time of
f . That is, the neighbor flows of f consist of all flows that
are in the time-zone (f .stime − wb, f .stime + wp) (usually
wb = wp). We use the data processing mechanism based
on sliding window to realize flow correlation. Suppose that
the time window size of data to be processed each time is
wf _deal , the sliding window is formed by forwarding wp and
backing wb on the basis of the time window of data in order
that each flow in the window can obtain all adjacent flows
in the front and rear time windows. That is to say, the final
sliding window size is wflow = wf _deal + wb + wp. Then set
the size of sliding step of the sliding window as b = wf _deal to
achieve non-overlapping processing of all flows. The process
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FIGURE 3. SS traffic identification framework overview.

is shown in the Data Preprocessing Phase of Figure 3, where
the shaded part of the slashes tagged by wf _deal is the data
block of each flow to be processed. Algorithm 1 describes
the process of calculating the flow context characteristics
while flow association. Given the Flow data FlowData_W
in any one sliding window, the flow data to be processed is
get according to the time filter parameters (line 2), and then
each flow is processed (lines 3-7). Next, the set of adjacent
flows (line 4) is obtained through the designed filter process,
and then the number of flows (lines 5-7) under different
correlations is counted according to the flow Association
rules, forming the flow context feature set (line 8).

2) FLOW AND DNS CORRELATION
Flow & DNS Correlator provides a basis for the fea-
ture extraction of source-side host DNS behavior of flows.
According to the mapping relationship between DNS behav-
ior and flow behavior of a host, it forms a list of pairs between
domain name and server IP address requested by source hosts
in a given time window through association. Because of the
caching mechanism of DNS system, for a given flow, we use
DNS requests from the host to correlate with the flow for time
wflow before the flow is initialized. The process diagram is
shown in the Data Preprocessing Phase in Figure 3. We use
the correlation method of flows and DNS based on different
sliding window sizes proposed in our previous work to realize
the correlation between them. First, we read the data of
flows in the time window wflow and get the data of DNS in
the time window wdns. Then we enter the next data reading
window with the same sliding step size. In order to unify
the processing mechanism of flow data in flow association,
the end time of each read DNS data block is same as that of
wf _deal . The association method between Flow and DNS data
is shown in line 1-5 of algorithm 3.More detailed information
will be introduced in Section IV.C.3).

C. FEATURE EXTRACTION
Based on the analysis of Section III.(B), 12 features were
extracted from three aspects: flow context, behavior of

Algorithm 1 The Computation of Flow Correlation and Flow
Context Features
Input: FlowData_W , wb, wp, wf _deal
Output: Flow Context Features
1: Let t_start be the starttime of FlowData_W
2: flowContext = FlowData_W .filter(f => t_start + wb

< f .stime < t_start + wb + wf _deal)
3: .map(f => {

4: neighborFlows = FlowData_W .filter(g =>

isRr (f , g) == 1)
5: For r in (S_DP, S_D,DP,D, S)
6: dr = neighborFlows.count(g => isRr (f , g) == 1)
7: EndFor
8: (dS_DP, dS_D, dDP, dD, dS ) })

source-side hosts on flow and DNS behavior of source-side
host on DNS, and then they are be used to construct the
detectionmodel. They are all shown in Table 1. The extraction
and calculation methods of these features are described in the
next subsection.

1) FEATURES OF FLOW CONTEXT
Flow context features are formed by calculating the quan-
titative value of the flow context. That is, based on a set
of adjacent flows of a flow obtained in the previous steps,
the flow context is formed according to definition 3, and
then the flow context feature set is quantized. The detailed
calculation process is shown in algorithm 1 (line 5-8).

2) SOURCE-SIDE HOST BEHAVIOR FEATURES ON FLOW
The source-side host behavior features on flow include the
entropy of the destination IP accessed by the source-side
host of the flow and four features of the Flow Burst of
the host based on RS_DP, and their calculation process is
shown in algorithm 2. The algorithm takes all flows in one
sliding window as input, which is denoted by the symbol
FlowData_W . After obtaining the flow data to be processed
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TABLE 1. The list of features proposed in our method.

Algorithm 2 The Computation of Source-side Host Behavior
Features on Flow
Input: FlowData_W , wb, wp, wf _deal , minFlowTime,

minBurstLen
Output: Source-side host behavior features on flow
1: Let t_start be the starttime of FlowData_W
2: flowContext = FlowData_W .filter(f => t_start + wb

< f .stime < t_start + wb + wf _deal)
3: .map(f => {

4: bFlows = FlowData_W .filter(g =>isRS_DP(f , g) == 1)
.sortby(stime)

5: flowsInterval = flowsTimeInterval(bFlows)
6: loc=0
7: For inv_i ∈ flowsInterval Do
8: If inv_i > minFlowTime
9: bLen = i - loc; loc = i;
10: If bLen >= minBurstLen Then
11: bBuf .append(bLen)
12: EndIf
13: EndIf
14: EndFor
15: IPEntropy = Entropy(FlowData_W .filter(g =>

isRS (g, f ) == 1).map((dip)))
16: (IPEntropy,bBuf .size,bBuf .max,bBuf .sum,bBuf .avg)

})

(line 2), the Flow Burst features of the source-side host
of each flow are calculated. The following is the detailed
processes. Firstly, all flows satisfying flow correlation RS_DP
with the current flow are filtered out from the sliding window
and sorted according to the start time of the flow (line 4).
Then we compute all Flow Burst features according to Def-
inition 4. and store them in a list bBuf (lines 6-14). Finally,
the four features of Flow Burst are calculated. Line 15 is the
calculation process of IP entropy.

3) SOURCE-SIDE HOST BEHAVIOR FEATURES ON DNS
The source-side host behavior features on DNS include
two features: the number of sensitive domain names and
the number of unassociated domain names requested by
the source-side host of a flow. The calculation process

is shown in algorithm 3. The algorithm takes all flows
denoted as FlowDataW in one sliding window wflow and
all dns data denoted as DNSData in one sliding window
wdns as inputs. Firstly, the algorithm handles FlowDataW
to obtain the flow data to be processed according time fil-
ter parameters (line 1-2), and then transformes them into a
(Key, Value) format with the source IP address (clientIP)
as the keyword (line 3). Next, in line 4, DNSData are
also transformed into the (Key, Value) format, the Key of
which is the IP address of the client host in dns response
data and the Value of which consists of the requested
domain name and the first server IP address obtained,
namely (clientIP, (domain, serverIP)). Then correlation cal-
culation on the two processed data are performed to form
a (Key, Value) pair with clientIP as the keyword and in
form of (clientIP,(flowDataList ,dnsDataList) (line 5), where
flowDataList refers to the Value list of Flows_Processed
and dnsDataList refers to the Value list of DNS_Processed .
Then the number of sensitive domain names (line 7) and the
number of unassociated domain names (lines 8-13) requested
by the source-side host of the flow are calculated based on the
associated results. Sensitive domain names are determined
if the domain names in the dnsDataList corresponding to
each clientIP exist in the pacList (generated according the
default PAC configure file in SS software) and counting the
number of existing domains. The calculation of unassociated
domain names first requires the destination host IP address
set dstIPCon requested by the client (line 8-11), and the
first server IP address set dstIPDns obtained by the client
requesting the domain name (line 12). Then we calculate
the number unAssDNum of elements in dstIPDns that do not
appear in dstIPCon.

D. DETECTION MODEL
The Random Forest Algorithm is a classification algorithm
which contains multiple decision trees in a randomway. It has
strong generalization ability and is easy to be implemented
in parallel. Compared with other algorithms, it has a good
performance on many data sets. Therefore, we select the
random forest algorithm to construct SS traffic classifier on
big data platform based on the 12-dimensional feature vectors
proposed in Section IV.(C).
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Algorithm 3 The computation of Host DNS Behavior
Features
Input: FlowData_W , DnsData, pacList , wf _deal , wdns
Output: Source-side host behavior features on DNS
1: Let t_start be the starttime of FlowData_W
2: Flows_Processed = FlowData_W .filter(f =>

t_start + wb < f .stime < t_start + wb + wf _deal)
3: .map(data =>(clientIP,(data)))
4: DNS_Processed = DnsData.map(data =>

(clientIP, (domain, serverIP))
5: DNSBehavior = Flows_Processed

.cogroup(Dns_Processed)
6: .flatMap(t =>{
7: sensDNum =t.dnsDataList.count( isSensitive(domain,

pacList)==True)
8: dstIPCon = FlowData_W
9: .filter(f =>t_start + wb + wdeal − wdns <

f .stime < t_start + wb + wf _deal)
10: .filter(f => (f .clientIP == t.clientIP))
11: .map(f => (f .dip))
12: dstIPDns = t.dnsDataList.filter(dns =>

t.stime−wf _deal < dns.time ).map((serverIP))
13: unAssDNum = dstIPDns.diff(dstIPCon).length
14: (sensDNum, unAssDNum) })

V. EXPERIMENT AND RESULT ANALYSIS
A. DATA SET GENERATION AND EXPERIMENTAL
ENVIRONMENT.
To create a representative SS traffic data set, we captured the
real traffic generated by our labmembers.We created a virtual
machine respectively on each of two different large public
cloud platform outside the firewall, and deployed SS service
on it. We installed and configured the SS client (version.
4.1.0 or 4.1.2 ) on hosts of 10 members. These hosts are not
only used to daily study and access Internet, but also inter-
mittently access a variety of applications and services outside
the firewall through SS server. The logical topology structure
of the experimental environment and the location of exper-
imental data acquisition points are shown in Figure 4. The
flow data was collected from the boundary network devices
of our laboratory. The bidirectional flows of TCP were recon-
structed while traffic data were collected. Each flow includes
attributes such as source IP, source port, destination IP, desti-
nation port, start time and protocol. the DNS data collected
from the server area of the campus network. Three DNS
servers are deployed in the area, providing domain name
resolution service for campus users including our laboratory.
Each DNS record includes source IP, source port, destina-
tion IP, destination port and all header fields defined in the
DNS protocol.

We use the flow data and the DNS data collected between
Oct. 20, 2018 and Nov. 30, 2018 for experiments. The Raw
samples were formed by the data preprocessing and fea-
tures extraction methods described in Section IV. Then, these

FIGURE 4. The logistic topology diagram of experimental network.

samples were marked according to the SS server IP and port
number. The flows, which match the destination IP address
and port number with the IP address and port number of
the SS server deployed in the experiment, were labeled as
SS flows, and the rest were labeled as Non-SS flows. The
details of the data set are shown in Table 2. The DNS part in
the table lists the total number of DNS records extracted and
the number involved in the sample data calculation process.
The flow samples are composed of the samples labeled as
SS flows and the background traffic samples are randomly
extracted from the host traffic that never used SS. Considering
the problem of sample balance, the number of the adopted
background flows is roughly 2-folds of the number of SS
flows samples. Since massive traffic data in a long period of
time needs to be processed and correlated in our experiments,
all researches and experiments were conducted on NTCI-
BDP, a big data analysis platform established by authors’
team. Based on Hadoop and Spark, the platform is configured
with 1master node and 14 data nodes, and the communication
bandwidth between nodes is 10 Gbps. All experimental data
is formatted according to the protocol and stored on HDFS
in Parquet format and all algorithms are implemented with
Spark and Spark MLib.

B. EVALUATION INDICES
In order to evaluate the performance of SS classifier, we use
Accuracy (Ac), Precision (Pr), Recall (Rc), and F1 score (F1)
as evaluation indices. The formula of the above indicators
is shown as (4)-(7), Where TP, FP, FN and TN represent
true positive, false positive, false negative and true negative
respectively.

Ac =
TP+ TN

TP+ TN + FP+ FN
(4)

Pr =
TP

TP+ FP
(5)

Rc =
TP

TP+ FN
(6)

F1 =
2 · Pr · Rc
Pr + Rc

(7)
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TABLE 2. The details of the experimental data set.

FIGURE 5. The distribution diagrams of flow context features.

C. EXPERIMENT AND ANALYSIS
1) ANALYSIS OF FLOW CONTEXT AND HOSTS’ BEHAVIOR
In order to verify the results of the analysis of SS traffic
context characteristics and host behavior characteristics in
section III.(B), in this section, we verify the discrimination
of each one-dimensional feature proposed in this paper to
SS flows on the real-world network data set described in
section V.(A).

• Flow Context

We analyze the flow context characteristics of SS
and non-SS flows on the experimental data set. For
any flow f , Set the time window for forming the flow
context as [f .stime− 15s, f .stime+ 15s], which means
wb = wp = 15s. In Figure 5, (a) - (e) is a comparison of
Cumulative Distribution Function (CDF) of quantization vec-
tors FV (Gf ) of SS and non-SS flows in each dimension of
flow context. As we can see, SS flows and non-SS flows have
different distribution characteristics in the four dimensions of
dS_DP, dS_D, dDP and dD. About 85%of non-SSflowvalues in
these four dimensions are less than 15, about 65% of SS flow
values in the [15, 200] range, and SS flow values are generally
higher than non-SS flow values. The results are consistent
with our analysis in section III.(B).1). It is worth nothing that
Figure 5 (e) shows that the range and distribution of values
of SS and non-SS flows on dS are consistent, which means
that the use of SS does not change the characteristics of the
number of connections initiated by hosts.

We also conducted several experiments and analyzed the
relationship between SS flow and non-SS flow in mul-
tiple dimensions of the flow context, to further verify
the difference between them in the flow context features.
Figure 5 (f) - (h) shows the sample scatter distribution of SS

flow and non-SS flow in two-dimensional feature space:
(dS ,dS_D), (dDP,dS_D) and (dS ,dDP). The mapping relation-
ship between dS and dS_D reflects the relationship between
the number of flows which are initialized by source hosts
and destination host, and the number of all flows which are
initialized by source hosts. Figure 5 (f) shows that the sample
points of SS flows are mainly distributed on dS_D=dS and
a small number of samples are distributed below dS_D=dS ,
which indicates that the source hosts only establish con-
nection with SS server within 30 seconds of requesting SS
server. Most of the samples of non-SS flows are distributed
below dS_D=dS . With the increase of dS , the value of dS_D is
more distributed in [0,30], which indicates that connections
are also established between the source host and other hosts
within 30 seconds. The larger the number of connections
between a source host and destination hosts are, the fewer
connections between a source host and other hosts are estab-
lished. The mapping relationship between dDP and dS_DP
reflects the relationship between the total number of connec-
tions that the destination service is accessed and the number
of connections accessed by the source host of the current flow.
Figure 5 (g) shows that both SSflow and non-SSflow samples
are distributed in the region above and below dDP=dS_DP,
but the non-SS flows are more concentrated near the origin
of the coordinate axis, and SS flows are scattered in the
larger space of this region. This result shows that SS servers
produce more flows than non-SS servers in most cases. The
mapping relationship between dS and dDP reflects the rela-
tionship between the number of connections initiated by the
source-side host and the number of connections connected
by the destination of a flow. When dS < dDP, it indicates
that there are connections between the destination service
and other hosts besides the current source, which means that
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the destination service is accessed by multiple different hosts
at the same time. When dS=dDP, it means that the source
host only establishes connectionswith the destination service,
and the destination service is only accessed by the current
source. When dS > dDP, it means that the source host
accesses other hosts or services in addition to the destination
service. As we can see from Figure 5 (h), SS flows are all
concentrated in the area of dS ≤ dDP, while non-SS flows
are mainly concentrated in the area of dS > dDP and a few
in the area of dS ≤ dDP. The result of Figure 5 (h) indicates
that SS services are accessed by one host or more different
hosts at the same time, while the source hosts of non-SS
services establish connections with multiple hosts or services
at the same time. In Figure 5 (j)and (k) are sample scatter
distributions in three-dimensional space: (dS_DP, dDP, dS ) and
(dD, dS_D, dS ). As can be seen from the figures, there is a
clear spatial interface between SS flow and non-SS flow. In a
word, we can conclude that SS flow and non-SS flow are
distinguished in the quantization vectors of flow context.

• Analysis of Host Flow Behavior

Destination IP Addresses Entropy. According to Eq. (3),
we analyze the distribution of destination IP address entropy
accessed by source host of flows on the experimental data
set. Figure 6 shows that there are differences between SS
flows and non-SS flows in destination IP address entropy
distribution of flows that initiated by the source hosts. 80%
of the IP entropy of the destination host requesting from the
source side of SS flow is in [0, 2], while only 15% of the
destination IP entropy of non-SS flow is in (0,2) and 85% is
in [2, 5]. From the above, the IP addresses of destination hosts
during the use of SS have obvious centralized characteristics.

FIGURE 6. The distribution diagrams of the entropy of destination IP
addresses.

Flow Burst Features. We analyzed the flow behavior of
source-side hosts for SS and non-SS flows on the experimen-
tal data set. Here we define the minimum Burst length N = 3
and the time interval threshold T = 100ms. As the results are
shown in Figure 7, About 80% of the source-side hosts of
non-SS flows do not formflowBurst, while 90%of the source
hosts of SS flows form flow Burst with bnum ∈ [0, 100).
Different dimensional distributions of source host behaviors
of non-SS and SSflows are different. In the three-dimensional
feature space, we further observed the distribution of the
source-side host flow behavior of SS flows and non-SS flows.
As we can see from (e) and (f) in Figure 7, non-ss flows
are relatively concentrated near the origin in two different

three-dimensional features spaces, while SS flows are dis-
persed in a larger space. Obviously, there is a certain distinc-
tion between SS flows and non-SS flows in multi-flow time
characteristics based on the source-side hosts of flows and
target services.

• Analysis of Host DNS behavior

On the experimental data set, we analyzed the difference
between the source-side host of an SS flow and that of
a non-SS flow in the number of request sensitive domain
names and the number of request unrelated domain names.
Figure 8 (a)-(c) are the distribution diagrams of the number of
user requests for sensitive domain names in the past 5 minutes
before the initialization of the flow for the source-side hosts
of the SS flow and that the non-SS flow (the sample order has
been randomized). The three figures report that the two dis-
tributions are different, and the value range of SS flows is in
[0, 500], while 90% of the value of non-SS flow is distributed
in (0,50). The results show that the source-side host of a
non-SS flow will hardly request sensitive domain names.
Even if there are a few sensitive domain names accessed,
the request amount is much lower than the source-side hosts
of SS flows. From the above, we can conclude that the source
hosts of SS flows and non-SS flows have distinction in sen-
sitive domain name request behaviors.

In Figure 8 (d)-(f) are the distribution of the number of
unassociated domain names of the source-side host of an SS
flow and that of a non-SS flow. We can learn that the distri-
bution of the two is different. SS flows have a wider range
of values, ranging in [0,700], and there are more samples
distributed in [100,400]. More than 80% of non-SS flows
are 0, and the rest are mainly distributed in (0,100). The
results indicate that there is a mapping relationship between
domain name requests and popular behavior in source hosts
of non-SS flows in most cases while there are a lot of requests
for unassociated domain names in the source host of SS flows.
In a word, the source-side hosts of SS flows and non-SS flows
differ in behaviors of requesting unassociated domain names.

The above experimental results show that SS flows are
different from non-SS flows in terms of flow context char-
acteristics, host behavior and host DNS behavior, and these
kinds of features can be used to identify SS traffic.

2) COMPARISON AND ANALYSIS ON DIFFERENT
FEATURE SETS
In order to analyze the effect of the features extracted from
different dimensions on the detection results, we carries out
experiments based on the three dimensions of flow context,
host flow behavior and host DNS behavior, and compares
the three features and their results on evaluation indica-
tors Ac,Pr ,Rc and F1. According to the analysis of SS
traffic characteristics and host behavior in Section III.(B),
we set the flow context characteristic time window parameter
wb = wp = 15s and host flow characteristic time window
parameter wb = wp = 2.5min. As for host DNS behavior,
the extraction time window size of DNS data is 15 minutes.
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FIGURE 7. The distribution diagrams of flow context features.

FIGURE 8. The distribution diagrams of host behavior on dns.

We use the Random Forest method to implement the clas-
sifier. The sample data set is divided into 7:3 scales. Seven
parts are used as training sample set and the remaining three
are used as test sample set. Repeat the process ten times, and
finally measure the classification performance based on the
average value of each evaluation index.

The experimental results are shown in Table 3 and the com-
parison is shown in Figure 9 (a). From the results, we can see
that SS traffic can be identified to a certain degree based on

the characteristics of flow context and host flow behavior, and
it can reach more than 80% in several evaluation indicators.
The detection performance of flow context features is slightly
better than that of host flow features because the host flow
features are 1.69% higher in accuracy than the flow context
features, but 4.01% lower in recall rate, which ultimately
leads to better performance of up-flow context feature than
host flow feature in F1. The combination of flow context
features and host flow features can significantly improve the
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FIGURE 9. The distribution diagrams of flow context features.

TABLE 3. The comparison results on different feature sets.

TABLE 4. The comparison results on different classification algorithm.

ability to recognize SS traffic, especially in the recall rate,
which is 6.01% higher than that of using flow context features
alone and 10.16% higher than that of using host flow behavior
alone. Besides, the combined features increased by nearly 5%
in F1. After further adding the DNS behavior characteristics
of hosts, the evaluation indexes were significantly improved,
which were 1.82%, 3.41%, 0.54% and 2.05% respectively.
Therefore, it is reasonable to combine three kinds of features
to construct SS traffic classifier.

3) COMPARISON AND ANALYSIS ON DIFFERENT
CLASSIFICATION ALGORITHMS
In order to verify the validity of the proposed feature vec-
tors, we construct classifiers using Naive Bayesian, Logical
Regression, SVM, C4.5 and Random Forest respectively.
We compare the results on evaluation indicators: Ac, Pr , Rc
and F1. The experimental method is the same as the previous
experiments. The sample data set is divided into 7:3 scales,
and the process is repeated ten times. Finally, the classifica-
tion performance is measured based on the average value of
each evaluation index.

The experimental results are shown in Table 4 and the
results are compared as shown in Figure 9 (b). The experi-
mental results show that the proposed feature performs well
in the classifier constructed by several algorithms. Most eval-
uatiion indices’ values are higher than 80%. The performance
of tree structure-based classifier is better than that of other
methods, and each index reaches more than 90%. Further-
more, the performance of random forest algorithm is the best,
with the accuracy of 93.43% and the F1 of 92.17%.

4) COMPARISON WITH OTHER METHODS
In order to verify the validity of the method, we compare it
with the classificationmethods proposed in literature [44] and
literature [25]. There are two main reasons we choose these
two methods for comparative experiments. First, Literature
[44] is the only method for identifying SS traffic as far as
we know. Second, in literature [25], a traffic classification
method based on flow extension vector was proposed based
on the relationship between flows, which was applied to
traffic classification including HTTP and HTTP proxy. There
is no SS traffic public data set at present and the authors
of literature [44] have not published the SS data set used
in their literature. Therefore, we carried out a comparative
experiment on the data set. The experimental method is the
same as the previous experiments. The experimental results
are shown in table 5, and the comparison of experimental
results are shown in Figure 9 (c).

TABLE 5. The comparison results on different methods.

It can be seen from Table 5 and Figure 9 (c) that the
traffic classification method based on flow extension vector
proposed in literature [25] has only 87.16% accuracy and
77.68% recall rate in distinguishing SS traffic. Therefore,
the methods only relying on the correlation between flows
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cannot effectively identify SS flows. The identification accu-
racy of the method proposed in the literature [44] for SS
traffic is basically consistent with the experimental results in
the literature (the accuracy greater than 85%). The detection
method proposed in this paper has the best performance in
three methods. The accuracy, precision and accuracy are all
good, which are 2.77%-5.27%, 7.16%-7.87% and 2.75%-
10.34% higher respectively. Although the recall rate of the
proposed method is slightly lower than that of reference [44],
the accuracy of the method is 7.87% and 2.75% higher, and
the accuracy of SS traffic identification is better. In addition,
because our method only used flow-level data, it did not need
the distribution characteristics such as the arrival time of data
packets in the flow, and not need to retain the information of
data packets in flows in the process of data acquisition. So our
method is more suitable for the application in large-scale
network environment. From above, the method we proposed
is effective in identifying SS traffic and has more advantages
in accuracy and application range.

VI. CONCLUSION
In this paper, we proposed a method to detect SS traffic
based on flow context and host behavior. This method can
alleviate the abuse of cloud VPS services by SS users effec-
tively and improve the security of cloud computing platforms.
It can also help network administrators to identify malicious
network activities using SS and improve network security
management capabilities. It is worth mentioning that our pro-
posed method making full use of the information contained in
flow contexts and host behaviors and performed the detection
of SS traffic on flow-level. Moreover, as far as we know,
the features extracted from them, such as the four features
about flow burst based on inter-flow relations and the fea-
ture of unassociated domain names based on DNS and flow
association, are innovatively proposed and applied to flow
classification methods by us. Besides, since the method does
not rely on the detail distribution characteristics of packets in
flows, it is more suitable for large-scale network environment.
The experimental results on dataset collected from the real
network environment yielded significant improvements to
the state-of-the-art methods, validating the effectiveness our
proposed method based on flow context and host behavior.
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