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ABSTRACT The recent advances in convolutional neural networks (CNNs) have used for image classifica-
tion to achieve remarkable results. Different fields of image datasets will need different CNN architectures
to achieve exceptional performance. However, designing a good CNN architecture is a computationally
expensive task and requires expert knowledge. In this paper, we propose an effective framework to solve
different image classification tasks using a convolutional neural architecture search (CNAS). The framework
is inspired by current research on NAS, which automatically learns the best architecture for a specific training
dataset, such as MNIST and CIFAR-10. Many search algorithms have been proposed for implementing NAS;
however, insufficient attention has been paid to the selection of primitive operations (POs) in the search space.
We propose a more efficient search space for learning the CNN architecture. Our search algorithm is based on
Darts (a differential architecture search method), but it considers different numbers of intermediate nodes and
replaces some unused POs by channel shuffle operation and squeeze-and-excitation operation. We achieve
a better performance than Darts on both the CIFAR10/CIFA100 and Tiny-ImageNet datasets. We retain the
none operation in deriving the architecture. The performance of the model has slightly decreased, but the
number of architecture parameters has been reduced by approximately 40%. To balance the performance and
the number of architecture parameters, the framework can learn a dense architecture for high-performance
machines, such as servers, but a sparse architecture for resource-constrained devices, such as embedded

systems or mobile devices.

INDEX TERMS Image classification, convolutional neural architecture search, deep learning.

I. INTRODUCTION

With the fast development of the computational capability
of hardware, embedded devices such as mobile phones and
smart wearables can undertake more computationally inten-
sive tasks such as image or voice processing. Among these
tasks, image classification is one of the basic and most chal-
lenging problems, which needs to identify what a camera
sees in the wild or what food is shown in a photograph,
among many other tasks we encounter in everyday life. Image
classification has a wide range of applications in different
research fields, such as in smart monitoring [1], [2], the smart
home [3] and the smart city [4]. It is very necessary to
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find an efficient and highly accurate classification algorithm.
Image classification consists of two essential components:
feature extraction from images and the use of the extracted
features to classify the category contained in the images.
Since Krizhevsky et al. used a deep convolution network to
achieve the best performance in the ILSVRC2012 competi-
tion, the field of computer vision, especially image classifica-
tion, has been dominated by variants of convolutional neural
networks (CNNSs).

A CNN is a feed-forward neural network that extracts
image features using multiple convolutional layers and puts
them into fully connected layers with a softmax func-
tion. When we use the CNN architecture trained by one
dataset (e.g., CIFAR-10) on another similar dataset (e.g.,
CIFAR-100: This dataset is just like the CIFAR-10, except
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FIGURE 1. Methods of stacking cells proposed by Zoph. Stem0 and Stem1 are auxiliary stem layers to accept the input images.

it has 100 classes containing 600 images each. Both of two
are a labeled subset of the 80 million tiny images dataset.),
either some tuning, such as fine-tuning specific layers or
modifying hyperparameters (which is called transfer learn-
ing), or retraining the model from scratch is necessary. How-
ever, if a dataset (e.g., Tiny-ImageNet: It runs similar to the
ImageNet challenge (ILSVRC) and is very different from
CIFAR-10/CIFAR-100 in the scene) is quite different from
the dataset used for training, both retraining the model and
transfer learning may result in a bad performance. In other
words, a new architecture designed for that dataset would be
better.

Manually designing new CNN architectures is compli-
cated because many excellent CNN architectures are expertly
designed over an extended period of time to achieve a sat-
isfactory result, and an ordinary developer has almost no
ability to design a good architecture. Therefore, in recent
years, the problem of how to automatically learn an appro-
priate neural network architecture has attracted the atten-
tion of many scholars and experts. In certain tasks, such
as image classification, the automatically searched network
architecture already has a comparable or even a better per-
formance than the current state-of-the-art manually designed
architecture [S]-[8].

Automatic generation of a neural architecture is called
neural architecture search (NAS). NAS (to our knowledge)
was first proposed by Miller et al. [9] in 1989. For the
past 10 years, automated network architecture searches
have generally used neuro-evolution, which mimics the pro-
cess of biological evolution in nature to derive a network
architecture [10]-[13]. Unfortunately, limited by the lack of
computing resources at the time, NAS has not exhibited
promising results, similar to those of the neural network itself,
in the past 10 years.

With the upsurge of research into deep learning, espe-
cially the development of CNNs, excellent CNN archi-
tectures, such as Alexnet [14], GoogleNet [15], Xception
[16], VGGNet [17], ResNet [18] and DenseNet [19], have
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emerged. All of these required experienced experts to propose
some improved architecture based on an existing network.
The discovery of defects in existing network architecture
and subsequent improvements can takes several months, even
years. Therefore, some researchers have returned their focus
to NAS.

The present research on NAS focuses on three aspects:
the NAS space definition, search algorithms in NAS and
model evaluation. A directed acyclic graph (DAG) is used
to represent the network topology architecture, in which
each node h; represents a single latent neuron [10], [11]
or the output of the previous layer (e.g., a feature map in
the CNN) [6], [20]-[23] and each edge is associated with
an operation applied to h;. Since we are only discussing
a CNN, #; in this paper is an input image or a feature
map, and edges represent a convolution operation, a pooling
operation, a skip connection, etc. String representation is
usually used for a DAG [5], [20], [23]. When the generation
method of the DAG is unrestricted, its network architecture
space will be very large, which will bring great challenges
to the present search algorithm. Therefore, Zoph and Le [5]
defined a minimum architecture called a cell (as shown
in Figure 1), which has two input nodes: the input of the
k™ cell, denoted cellr, comes from the output of the cells
k — 1 and k£ — 2. When determining the best cell archi-
tecture, we can stack the cells into a deeper network using
some simple methods. To our knowledge, this idea actually
comes from the successful experience of constructing deep
networks in the Inception network and Resnet network by
stacking basic Inception blocks or Resnet blocks. In this way,
the network architecture space will be dramatically reduced,
and the task of learning the whole network architecture
reduces to learning the cell architecture. Xie and Yuille [20]
limit the number of nodes in a cell to further reduce the
size of the entire search space. The search algorithms
include reinforcement learning (RL) [5]-[7], [24], [25],
heuristic ~ algorithms [10], [12], [20], [23], [24], [26]-[28]
such as genetic algorithms, the Bayesian optimization
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FIGURE 2. Searching for the best CNN architecture for specific datasets and different devices.

method [29], [30], the gradient-based method [22], [31], [32]
and Monte Carlo tree search (MCTS) [33]. Model evaluation
is divided into two aspects. On the one hand, the performance
of the candidate model is evaluated (some works may predict
the network performance by advanced ways [34]-[36]) to
determine whether the model needs to be expanded or kept
for the next update. On the other hand, after selecting the
optimal cell, we need to stack the cell into a deeper network
and put a specific dataset into it for training and to evaluate
the performance.

Recently, the work on NAS has mainly focused on reducing
the network search space and finding a method that can
quickly search for a network architecture as well on eval-
uating its performance. The network search space includes
the topology of nodes and the operations between each con-
nected node. Previous research has introduced many effi-
cient algorithms to generate the topology of nodes; however,
there is insufficient discussion about the operations between
nodes. This paper will research the selection of operations
and the impact of different numbers of intermediate nodes
of the searched network architecture on the performance.
The network architecture is stacked in the same way as in
ENAS [8], which selects a search method to find the best
cell architecture and simply stacks N cells along the depth
dimension to build the final network architecture. Although
we have reduced the original large search space as much as
possible by searching for the best cell architecture among a
limited number of operations and a limited number of nodes,
the number of candidate cell architectures in this space is still
exponential [20], [21]. We introduce the differential architec-
ture search method called Darts proposed by Liu et al. [22],
in which all discrete operations are converted into a continu-
ous space by a softmax function. In this way, the architecture
search problem is converted into learning a set of continuous
variables. When we evaluate the performance of a network
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architecture with the validation set, we can optimize the
model architecture by gradient descent, similar to updating
the network parameters. The difference from Darts is that we
focus on the selection of the primitive operations (POs) and
the number of intermediate nodes in the search space.

What POs are selected in the search space and the number
of intermediate nodes affect the performance of the net-
work searched. As shown in the Table 1, the selection of
POs differs in different NAS studies. Thirteen POs are used
in NASNet [5], which were reduced to 5 when ENAS [8]
was proposed. Convolution operations of size 2 x 2 were
introduced in NAO [37] for enriching the NAS search space.
Both Darts [22] and PNASNet [21] add a dilated convolution
operation during the search progress. In addition, all of these
NAS studies include Evolutionary search [24] share some
operations, such as the identity operation, 3 x 3 separable
convolution operation, 3 x 3 average pooling operation and
3 x 3 max pooling operation. In this paper, we introduce two
extra operations never used in the current methods of NAS
and empirically show that we achieve a better performance
and fewer network parameters compared to Darts. A sparse
architecture is not under consideration since Darts skips the
none operation when deriving the cell architecture. We con-
sider both the dense architecture and the sparse architec-
ture during our search work. Our work reveals that a sparse
architecture will reduce network parameters by almost 40%
while allowing only a small portion of the performance to be
sacrificed.

Finally, we develop a framework called CNAS to search
for a best CNN architecture for different devices and datasets.
We deploy the framework to the GPU-servers and use some
service computing technologies [38]-[40] to improve the
cooperation between servers. As shown in Figure 2, if we
deploy our CNN architecture in a scenario in which comput-
ing resources are limited, e.g., mobile phone or embedded
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TABLE 1. Selection of POs in current NAS methods.

POs NAS-Net ENAS

NAO

DARTS PNASNet Evolutionary search

Identity
1 x 1 Conv
1 x 1 SepConv
2 x 2 Conv
2 x 2 SepConv
3 x 3 Conv
3 x 3 SepConv
3 x 3 DilConv
1 x 3 then 3 x 1 Conv
5 x 5 SepConv
5 x 5 DilConv
7 x 7 SepConv
1 x 7then 7 x 1 Conv
2 X 2MP
3 x 3MP
5 x 5 MP
7 X 7TMP
2 X 2AP
3 x 3AP
None

X N

XAX CANAX AAX CUAX AX X QNS
XAXXXAX XX XAX XX XXX

XAAX X AAX XX XX XAX AN

v

AAX XX AX X X AAX UAX X X X XN
XAXXXAXXAXAXANAX XX XX
XAXXXAX XXX XAXAXXXXANN

Filter concat

Previous layer

(a)

(b)

FIGURE 3. (a) is the Inception v1 model, and (b) is the corresponding computational graph.

devices, a sparse architecture is better than a dense one.
In summary, our contributions are as follows:

1) We use more efficient and rich POs to extend the CNN
search space by adding the channel shuffle operation
and squeeze-and-excitation operation.

We show the impact of selecting a sparse architecture
and a dense architecture on the performance of the final
network based on the differential architecture search
algorithms and develop a CNAS framework to auto-
matically learn the best CNN architecture for different
image classification scenes.

We achieve a better classification performance than
Darts, which we attribute to our search space (both
in CIFAR10/CIFAR100 and Tiny-ImageNet when the
epoch number is 200 and without using auxiliary lay-
ers).

We have released our code at https://github.com/
tianbaochou/CNAS.

2)

3)

Il. THE CNAS FRAMEWORK
In this section, we will first describe the basic representation
of the CNN architecture. We will briefly describe how to
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represent a network architecture as a DAG. Then, we will
focus on the definition of the network architecture search
space and the selection of POs and discuss the size of the
space we choose. Following that is a description of the
search algorithm we used. After that, we will explain how
to build a deeper network architecture based on the archi-
tecture of searched cells. Finally, we will describe how to
build an efficient automatic convolutional neural architec-
ture search framework to fit different image classification
tasks.

A. ARCHITECTURE REPRESENTATION
The neural network architecture itself has a strong topology.
As shown in Figure 3(a), which depicts the Inception v1 mod-
ule, we regard a group of feature maps as a node, and opera-
tions such as convolution, skip connect or pooling represent
edges. Figure 3(b) is a diagram of the DAG transformed from
the Inception vl module, where the orange arrow indicates
the aggregation operation.

In general, the CNN architecture o can be represented by
a graph Gy (Vy, Ey). Each node v € V,, is associated with
an image input or a feature map, and each directed edge
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ew,v) € Ey is associated with an operation applied to the u
node that was transformed to v.

B. SEARCH SPACE

Recently, the work on NAS has mainly focused on reducing
the network search space and finding a method that can
quickly search network architectures as well as on evaluat-
ing the network’s performance. The network search space
includes the topology of nodes and the operations between
each node. Previous research has introduced many efficient
algorithms to generate the topology of nodes; however, there
is no reasonable discussion about the operations between
nodes. This paper will research the selection of operations
and the impact of different numbers of intermediate nodes of
the searched network architecture on the performance.

1) The SELECTION OF POs

The choice of operations needs to meet three conditions:
uniqueness, fewer parameters and fast calculation. Fewer
parameters means that simple POs will be put into the search
space in order to consume less GPU or RAM memory
resources during the search process, fast calculation is vital
to speed up both architecture search and model running,
and uniqueness here means that each operation has some
unique properties that cannot be replaced by the others. Large
receptive fields, such as a 5 x 5 size convolution and a
7 x 7 size convolution, can be replaced by stacking 3 x 3
size convolutions along the depth. Therefore, all convolution
operations and pooling operations are limited by a 3 x 3
size. We analyze the CNN architectures that have achieved
significant performance in image classification, image seg-
mentation and object detection in recent years. The following
POs are selected.

e none
o identity

e average-pooling

o max-pooling

o separable convolution

o dilation convolution

o Squeeze-and-excitation

o channel shuffle convolution

The none operation means that there is no connection
between two nodes which is considered when we need gen-
erate a sparse architecture. The identity operation leads to
the previous feature maps being added to the current layer’s
feature maps by skipping the intermediate layer. Therefore,
information on different layers can appear in the same layer,
which can smooth the loss landscape and help backpropa-
gation escape a locally optimal solution [41]. The main role
of average-pooling and max-pooling is to refine the feature
from the previous feature map and reduce its dimensions.
Separable convolution operation can dramatically reduce net-
work parameters without sacrificing network performance
due to a pair of (depthwise, pointwise) operations. A dilation
convolution operation can let a 3 x 3 size convolution view

VOLUME 7, 2019

1 x 1 Group Convolution

v
R

Channel Shuffle

I

3 x 3 Group Convolution

v

1 x 1 Group Convolution

Channel Shuffle Convolution

Operation

FIGURE 4. The channel shuffle convolution operation.

a larger field of view in the current layer. When its dilation
is 2, it can see the 7 x 7 size field of view, which enables
the current layer’s feature map to respond to different ranges
of information at the same time. As we mentioned before,
to speed up the search process without reducing performance,
we use group convolution for all convolution operations, and
each uses 1 x 1 convolution to concatenate feature maps in
the end.

The above 6 POs have been used in current NAS
methods [5], [8], [21], [37], but all of these methods do not
consider the squeeze-and-excitation [42] operation and the
channel shuffle convolution [43] operation.

Group convolution is one of the major contributions in
AlexNet, in which channels of features are evenly distributed
into different groups, and finally, the features are merged
through two fully connected layers so that the features
between the different groups can only be merged at the last
moment. This approach is quite unfavorable for the general-
ization ability of the network. To solve this problem, Shuf-
fleNet performs a channel shuffle every time before stacking
the group convolutional layer (we call this the channel shuffle
convolution operation, as shown in Figure 4), and the shuffled
channels are allocated to different groups. After the channel
shuffle, the output features after group convolution can take
into account more channels of information and are more
representative (meaning a better result of information fusion).

In Inception, DenseNet, or ShuffleNet, the features we gen-
erate for all channels are directly combined evenly. However,
there is no reason why the features of all channels are equal
in the model, so a better method is to automatically learn the
weights of every channel. As shown in Figure 5, before start-
ing, we perform a normal convolution and obtain a feature
map that has two routes; the first route does nothing before
the end of the second route, and the second route performs
the squeeze operation (global average pooling) to compress
the 2-dimensional features of each channel into one dimen-
sion. After that, a feature channel vector is obtained (each
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FIGURE 5. The squeeze-and-excitation operation.

number represents the features of the corresponding chan-
nels). Then, an excitation operation is performed, the column
feature channel vector is put into two fully connected layers
(the experience value of r is 16) and a sigmoid function,
and the correlation between the feature channels is modeled.
The obtained output is actually the weights corresponding
to each channel, and the original features (the first route)
are finally weighted by these weights. These procedures
are exactly what the squeeze-and-excitation operation does.
In short, the squeeze-and-excitation operation suppresses
some redundant features and enhances useful features by
assigning weights to feature channels.

2) NUMBER OF INTERMEDIATE NODES

The number of intermediate nodes in a cell determines the
complexity of the searched network architecture. This paper
will experimentally observe the impact of different numbers
of intermediate nodes on the final performance of the model
and select the appropriate number of intermediate nodes for
training of the network to obtain the best performance on each
set of training data.

3) SIZE OF THE SEARCH SPACE

Assume that the PO set is O, the size of intermediate node set
is M, and the output of the cell is aggregated by all the inter-
mediate nodes in the cell. If we do not limit the predecessor
node of each intermediate node, then the entire search space
will be very large. To reduce the size of search space, we num-
ber the intermediate nodes as ng, n1, - - - B —1), similar to in
Darts:

=Yy oim). e)

j<i

where n; is the i’ node, and 0; j represents the n; applied in
an operation to obtain n;. The size of the entire search space
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is:

MM—1)
oM+ 2)

where |O] is the dimension of the PO set, which is 8 in our
paper. When M = 4, the size of the search space is 8!4; when
M =5, the size of the search space will dramatically increase
to 820, We can see that varying the number of intermediate
nodes has a huge impact on the size of the search space.

C. SEARCHING ALGORITHM

In this paper, we choose Darts, a differential architecture
search method proposed by Liu et al., as our searching algo-
rithm, in which all discrete operations are converted into a
continuous space by a softmax function. In this way, the archi-
tecture search problem is converted into learning a set of
continuous variables. When we evaluate the performance of
a network architecture with the validation set, we can opti-
mize the model architecture by gradient descent, similar to
updating the network parameters.

Darts removes the meta-controller(or hypernetwork) by
modeling NAS as a single training process of an over-
parameterized network that comprises all candidate paths.
Suppose O = {0;} is the set of N candidate primitive opera-
tions. To build the over-parameterized network that includes
all architecture in the search space, Darts sets each edge to
be a mixed operation that has N parallel path, denote as
MixO. Given input x, the output of a mixed operation MixO
is defined based on the outputs of its N path and MixO(x) is
weighted sum of 0;(x):

N
MixO(x) = Zwioi(x). 3)
i=1

We can see from 3, if a primitive operation has a great
contribution to the edge, its weight should be larger than
others, which is a good metric that measures whether the
operation is useful. That is why we use Darts instead of
other search algorithms for verifying the validity of the two
primitive operations introduced.

D. STACKING CELLS

The stacking methods of cells can also be determined by
some search algorithm similar to the cell architectures we
search, but the focus of this paper is not on this aspect. For
the sake of fairness, we simply stack the cells along the depth,
and the first and second nodes of cell k are set equal to the
outputs of cell k — 2 and cell k¥ — 1, respectively; auxiliary
convolution layers with stride 2 are inserted as necessary (if
the input image size is large, e.g., in ImageNet). At the same
time, to reduce the size of the entire network, cells located at
1/3 and 2/3 of the total depth of the network are reduction cells
(both in the process of searching and evaluation), for which
all the operations adjacent to the input nodes are of stride two
which will reduce the usage of memory and accelerate both
searching and training.
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FIGURE 6. The framework of CNAS, which contains two steps; the first step is searching for a best cell for the dataset, and the second step is stacking
the cells searched to obtain a deeper network. In the last cell, we need to link fully connected layers for image classification.

E. BUILDING THE CNAS FRAMEWORK

As show in Figure 6, based on the above search algorithm
and the search space mentioned, we build a framework for
automatically learning the convolutional neural architecture.
When we need to find the best CNN architecture for a specific
dataset, we can put the dataset into the search process to
find the best normal and reduction cell architectures and
retrain the architecture by stacking enough of the cells that
we searched. All components in CNAS are written in Python
and are recommended to run on servers with GPUs. The
GPU cluster can be deployed to the cloud, and the net-
work architecture configuration [44] is automatically recom-
mended according to the target device information selected
by the user [45], [46].

Ill. EXPERIMENTS

This article will perform search experiments on the
CIFAR10 dataset. Based on Darts, we delete the 5 x 5 size
separable convolution and 5 x 5 size dilation convolution
in the original implementation (which not contribute to final
architecture searched, so we call them unused POs) and add
a 3 x 3 size squeeze-and-excitation operation and a 3 x 3
size channel shuffle convolution. At the same time, Darts
leaves the none operation in the mixed operation but did
not consider it when deriving the architecture from encoding
(which we call dense architecture «). In our experiment,
we found that the weight of the none operation will increase
to a high value (e.g., over 0.8) during searching and that the
normal cell searched will be very sparse (which we call sparse
architecture @), which means there are much fewer network
parameters than in the dense architecture. At the same time,
although the computational capability of embedded devices
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has been greatly improved, it is not sufficient to address
network models with many parameters. Therefore, this paper
will consider both none operation and non-none operation.

For comparison with Darts, we set convolution operations
to have stride 1 and add padding to preserve the feature
map dimension. The mixed operation is actually a weight
sharing [8], [25], [29] method, which avoids retraining the
currently generated network architecture by sharing the sub-
network architecture’s weights in the search process, thus
saving much searching time. The authors of Darts proposed
using second order approximation when updating network
architecture parameters, but this would take more than twice
as much time compared to first order approximation (first
order approximation needs to perform 2 forward propaga-
tions and 2 backward propagations to update the architecture
parameters «, while second order approximation requires
4 forward propagations and 4 backward propagations). Addi-
tionally, during experimentation, we found that the perfor-
mance of the architecture optimized by second order approx-
imation exhibits almost no improvement compared to that
of the architecture optimized by first order approximation.
Therefore, the search time is measured by using first order
approximation for cell architecture searching. All of our
experiments were performed using an NVIDIA GTX TITAN
PASCAL GPU.

A. SEARCHING CELLS ON CIFAR-10

The CIFAR-10 dataset contains 50k and 10k images, which
is categorized into 10 classes, for training and testing, and
each image has a size of 32 x 32. It is much smaller
than the ImageNet dataset, and the training images are suf-
ficiently rich. Thus, we search our best cells on CIFAR-
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FIGURE 8. Reduction cell architecture in the searched architecture «; (i = 1, 2, 3, 4).

10 and transfer them to CIFAR-100 (similar to CIFAR-10,
CIFAR-100 also contains 50k and 10k images for train-
ing and testing, but categorized into 100 classes.) and
Tiny-ImageNet.

The number of intermediate nodes is selected as M = 3, 4,
5, and 6, and the network architecture searched on CIFAR-10
isa;(i = 1,2, 3,4), respectively. We keep half of the training
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data as the validation set. To obtain each architecture «;,
a small network obtained by stacking 6 cells is trained for
50 epochs with batch size 64, and we use the classification
error rate on the validation set as the performance of the cells
we searched.

The search time and model parameter size of «; are shown
in Table 2.
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FIGURE 9. (a) is the weights of POs without the none operation in normal
cells when the number of intermediate nodes is 4; (b) is similar but in
reduction cells. n(i, j) indicates that the predecessor’s id is j for the
intermediate node with id i. The values in the rectangles indicate the
specific operation’s weight in mixed operation.

TABLE 2. Time and model parameter costs for 4 architecture searched on
CIFAR-10.

ARCHITECTURE SEARCH TIME (DAYS/GPU) MODEL PARAM (M)

a 0.25 1.73
oo 0.5 2.04
as 1.1 2.80
a 2.5 2.95

The architectures of the corresponding normal cell and
reduction cell are shown in Figure 7 and Figure 8, respec-
tively. As shown in Figure 7, the proportion of the squeeze-
and-excitation operation in the normal cell is very large,
followed by the channel shuffle convolution operation. Sim-
ilarly, the channel shuffle convolution operation accounts
for the largest proportion in the reduction cell, followed by
the max pooling operation, as Figure 8 shows. The weight
distribution for POs without the none operation is shown
in Figure 9. We can see that the squeeze-and-excitation oper-
ation almost has the largest weight applied for each candi-
date predecessor node in normal cells, which means that the
optimization of the architecture of normal cells in this search
space works well, as we expected (as show in Figure 9(a)).
There is little difference between the colors of each column
in a reduction cell (as show in Figure 9(b)) due to fewer
reduction cells being used in the architecture search and
insufficient optimization compared to normal cells.
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FIGURE 10. Comparison of loss and accuracy changes in the training
process of o, and o5 on CIFAR-10.
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FIGURE 11. Comparison of loss and accuracy changes in the training
process of o5 and o3 on CIFAR-100.

All of these results show that the search space proposed in
this paper is better than the search space used in Darts in the
image classification task.

B. EVALUATION OF THE ARCHITECTURE

The architectures «;, i = 1,2,3,4) searched above are
trained on CIFAR-10, CIFAR-100 and Tiny-ImageNet to
evaluate their performance. For the sake of fairness, we train
all our models using 200 epochs without auxiliary tower
layers [16] in the path for every dataset and add an auxiliary
drop path [47] with a fixed drop probability 0.25. The same
data augmentation (e.g., normalization, random crop and ran-
dom horizontal flip) is applied to each dataset. The error rate
is selected as the evaluation metric since all the datasets are
used for classification.

1) CIFAR-10 AND CIFAR-100
We use a large network of 20 cells (note that a much small
network with 6 cells is stacked for searching, because the
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TABLE 3. Classification error rate for o;, (i = 1, 2, 3, 4).

Dataset Architecture Top1l Top5 Evaluation Time Model Size
i 6.38 - 12h 1.73M
s 5.8 — 1d-1h 2.04M
CIFAR-10 as 4.7 - 17h 2.80M
ay 4.23 — 22h 2.95M
ai 25.53 6.18 13h 1.89M
a3 24.65 5.82 18h 2.27M
CIFAR-100 as 23.26 544 1d-2h 3.08M
ay 22.24 5.01 1d-23h 3.67TM
al 45.81 21.17 2d-13h 1.58M
Tiny-ImageNet g 41.91 19.81 2d-15h 1.89M
y-imag o3 38.26 16.34 1d-2h 2.59M
ay 35.90 9.89 3d-12h 2.71M
TABLE 4. Comparison with Darts on CIFAR-10.
Model Accuracy Evaluation time Model size
Darts 4.74 23h 3.16M
Ours 4.23 22H 2.95M
Ours (with none) 5.4 18H 1.92M
TABLE 5. Comparison with Darts on CIFAR-100.
Model Topl Top5 Evaluation time Model size
Darts 23.22 5.6 12h 3.03M
Ours 22.24 4.54 22h 3.67TM
Ours (with none) 24.20 5.8 9h 2.03M

GPU memory will occupied too much if we stack 20 cells.)
for training over 200 epochs with a batch size of 96 or 64
(when the number of intermediate nodes is 6). Other hyperpa-
rameters remain the same as the ones used for the architecture
search, similar to Darts.

We have found that the performance of the network is
almost unchanged after the number of intermediate nodes
goes from 5 to 6, but the network parameter increases by
approximately 6% and the evaluation time by approximately
30%. As we mentioned before, we consider both none opera-
tion and non-none operation. Suppose that the architecture
searched by adding a none operation is ¢;(i = 1,2,3,4).
When we evaluated the networks on CIFAR-10, we found
that o] and a; performed badly. From Figure 10(a) and 10(b),
we can see that the loss of a; rebounded around epoch 15,
and then, the loss rose until the end; however, the loss of
o3 decreased over time. Far worse is that a similar situation
exists for CIFAR-100 (as shown in Figure 11(c) and 11(d).
We observe four network architectures and find that there is
only one non-none operation in the normal cell architecture of
a1 and orp, but there are two non-none operations in &3 and oz,
which indicates that o] and o> have encountered overfitting
on the CIFAR-10 dataset when searching. Overfitting leads
to poor generalization of the model during real training and
lack of transferability.

Although the network architectures o] and oy per-
form poorly when using the current hyperparameters, they
may be trained well as long as the hyperparameters are
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properly adjusted. To unify the parameters used in each train-
ing data we trained on, this paper does not conduct in-depth
research. To clarify the sparse architecture we used, when we
mention sparse architecture, it means .

We compare the architecture that performs best on each
dataset in Table 3 with the architecture obtained by Darts.
As can be seen from Table 4 and Table 5, our model obtained
the best performance on both CIFAR-10 and CIFAR-100. Itis
particularly worth mentioning that although the architecture
achieved by allowing the use of the none operation when
deriving it, (a4), is one percent less accurate than Darts,
the parameter size of the entire model is reduced by approxi-
mately 40%.

2) TINY-IMAGENET

The Tiny-ImageNet dataset contains images with 200 differ-
ent categories, and each image has a size of 64 x 64. The train-
ing set has 100k images, and the validation set has 10k images
(50 images per category). We use a network with 12 cells for
training the model, and the initial learning rate is 0.05. The
images in Tiny-ImageNet differ greatly from the images in
CIFAR-10; it is necessary to compare the performance of the
architecture obtained by searching Tiny-ImageNet itself and
the transferred architecture obtained by searching CIFAR-10.
As shown in Table 6, the performance of the classification
network transferred from CIFAR-10 is worse than that of the
network trained using Tiny-ImageNet itself. In short, when
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TABLE 6. Comparison with different architecture on Tiny ImageNet.

Model Topl Top5 Evaluation time Model size
Darts 38.60 20.5 3d-18h 3.03M
Ours (search with CIFAR-10) 38.10 18.89 3d-22h 2.71M
Ours (search with Tiny-ImageNet) 36.00 15.34 3d-12h 2.26M
the new dataset is very different from the original dataset, re- [6] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable

searching the network architecture with the new dataset tends
to result in a better performance.

IV. CONCLUSION

We proposed a more effective framework for solving differ-
ent image classification problems using convolutional neural
architecture search (CNAS), which can automatically learn
the best CNN architecture for a specific dataset. We show that
both the channel shuffle convolution operation and squeeze-
and-excitation operation are almost the only two operations
selected for normal cells in classifying tasks after searching.
This result may be useful for reducing the search space fur-
ther. Although the performance of a sparse architecture will
decrease a bit compare to a dense architecture, the number
of parameters of the model will reduced by approximately
40%, which is very useful in some IOT scenarios in which
hardware resources are limited (e.g., mobile phones and
embedded deviced). Our best architecture has achieved a
higher performance than Darts on all Image dataset we used.
In the future, we would like to use our search space for other
differential architecture search methods such as NAO [37]
or for many discrete architecture search methods, because
deriving a sparse architecture may fail (we found that when
using Tiny-ImageNet dataset to search a sparse architecture,
the normal cell architecture will only contain none opera-
tions, which can be trained in the architecture search process
because we mix up all candidate operations. however, holes
will exist on the network architecture stacked by the cell
during the evaluation phase, resulting the inability of the
information flow to be transmitted). Additionally, performing
deep research on the stacking of cell in more flexible manners
is necessary.
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