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ABSTRACT Competency-based education is becoming increasingly adopted by higher education insti-
tutions all over the world. This paper presents a framework that assists instructors in this pedagogical
paradigm and its corresponding open-source implementation. The framework supports the formal definition
of competency assessment models and the students’ evaluation under these models. It also provides distinct
learning analytics for identifying course shortcomings and validating corrective actions instructors have
introduced in a course. Finally, this paper reports the benefits of applying our framework to an engineering
course at the Pontifical Catholic University, Valparaiso, Chile for three years.

INDEX TERMS Competency-based education, course assessment, course monitoring, learning outcome.

I. INTRODUCTION

Competency-Based Education (CBE) can be broadly defined
as a pedagogical approach focused on the students’ mastery
about a given subject [1]-[3]. In CBE, students have to
demonstrate their progress by validating their competency,
which means that they prove to master the knowledge and
skills required to overcome a particular course [4]. Thus,
the assessment strategies acquire a key role in the correct
implementation of CBE programs, especially, in courses
where teachers usually have different assessment strategies.
Nevertheless, the current literature reveals that still there is
no uniformity (or standards) regarding how CBE programs
should be structured and assessed [5].

With the aim of supporting CBE, this paper presents a
framework that helps to (i) formally define assessment mod-
els for academic courses, (ii) compute students’ competency
achievement from these models, and (iii) monitor the course
evolution over time, facilitating this way the course contin-
uous improvement. Let us discuss briefly the tremendous
impact that the competency-based paradigm has in higher
education nowadays, the motivations of our work and also
its principal contributions.

The associate editor coordinating the review of this manuscript and
approving it for publication was Andrei Muller.

Higher education institutions regularly face processes of
new degree accreditations and curricular updates to renovate
their contents and educational models, and also to certify their
educational quality [6]. At present, there is a clear tendency
to that academic institutions redirect their teaching method-
ologies towards CBE; for instance, in Europe the Bologna
Declaration [7] has promoted the CBE adoption in twenty-
nine countries, in the USA several states recently intro-
duced and enacted legislative actions related to CBE [8], [9],
and in Chile most universities have started their conversion
from a traditional teaching scheme towards CBE in the last
decade [10].

Using Quality Assurance Agencies for Higher Education,
academic institutions all over the world conduct external
reviews to check the quality of its internal processes. In this
context, the fulfillment of graduate profiles with quality stan-
dards [11] is strictly revised by agencies. As a response,
universities must demonstrate clearly and with evidence that
the curriculum offered for a career are met rigorously. This
latter is particularly difficult for the case of the implementa-
tion of CBE models [5], [12], [13], since the number of new
pedagogical concepts, definitions, and additional aspects to
be handled by the teaching staff are not few and their correct
application strongly depends on the level of knowledge that
each teaching team member has on this educational model.
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This is especially true with regard to the redesign of the course
programs and their assessment methodology where, at least,
the following issues should be considered [4], [14], [15]:
(1) how to define the competency model, (ii) how to generate
the evidence of its development, (iii) how to collect this
evidence, and (iv) how to evaluate it. The latter should provide
objective information on the students’ performance not only
in terms of the contents studied but also concerning the
achievement of competencies of the graduate profile reached
by them.

To overcome the issues mentioned above, this paper pro-
poses the Competency Assessment and Monitoring frame-
work (C-A&M), which provides a formal language to define
competency assessment models accurately, detailing all their
elements and how those elements depend on each other.
C-A&M also implements an automated procedure for pro-
cessing these formal models efficiently, aggregating fine-
grained students’ grades to obtain more abstract information
about their competency acquisition levels. Finally, C-A&M
enables tracking how a competency-based course evolves
by giving descriptive and inferential statistics. The paper
reports the C-A&M application during five editions of an
engineering course at the Pontifical Catholic University
of Valparaiso in Chile, from 2016 to 2018, showing how
C-A&M helped (i) to identify distinct shortcomings in the
course, and (ii) to check if the corrective actions the instruc-
tors implemented for solving the problems were effective.

The remainder of this paper is structured as follows:
Section II describes C-A&M. Section III reports the appli-
cation referred above of C-A&M to a university course.
Section IV discusses work related to ours. Finally, Section V
summarizes the main conclusions of this paper.
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Students’
fine-grained grades

FIGURE 1. Inputs and outputs of the C-A&M framework.

Il. C-A&M: A FRAMEWORK TO ASSESS AND MONITOR
COMPETENCY-BASED COURSES
Figure 1 provides a general overview of C-A&M, depicting
it as a “‘black-box” that:
1) Receives a competency assessment model specifically
designed for a course, and the fine-grained grades
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obtained by the students in one or more course editions.
Section II-A describes this input.
2) Generates:

a) A report, personalized for each student, about the
competency level she has achieved. This feature
is explained in Section II-B.

b) A report, for every element of the competency
model, that analyzes students’ competency acqui-
sition evolution along several course editions.
This analysis is summarized in Section II-C

An open-source prototype implementation of C-A&M is
freely available at: https://github.com/rheradio/C-AM/.

A. COMPETENCY ASSESSMENT MODEL

C-A&M is founded on the underlying concepts of CBE.
An academic degree promotes a set of competencies, and
it is composed of different courses that focus on subsets of
these competencies. Each competency is developed by a set
of learning outcomes that students should evidence by means
of the different assessment tools applied in the course. Edu-
cators use different types of assessment tools (diagnostic, for-
mative, summative, norm-referenced, criterion-referenced,
among others) to collect feedback on all aspects of the student
learning experience along the course. In this sense, a set of
concrete and evaluable behaviors that allow verifying the
achievement of a learning outcome must be defined. Such
behaviors are named indicators and these can address con-
tent, skills, and long-term attitudes or values [16]. Once
the indicators are defined, the selection and creation of the
assessment tools are done based on them. These are designed
to measure a subset of indicators, preferably using evalua-
tion rubrics so that objectivity of the assessment process is
guaranteed.

weight
Competency ‘.

[1:N

weight| weight
1:N_|O:N
Learning 01

Outcome

[

1N

weight|

1:N
Assessment
Tool

FIGURE 2. Competency assessment metamodel.

In C-A&M, the assessment model of a course is defined
as a particular instance of the metamodel in Figure 2.
For instance, Figure 3 represents a course that promotes
seven Competencies Ci, Ca, ..., C7, with seven Learning
QOutcomes LO1,LO;,...,LO7, an ten Assessment 7ools
ATy, ATs, ..., ATyp. In this example, students will be eval-
uated with a numerical scale from O to 10.
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FIGURE 3. Graphical representation of a competency assessment model.

Abstract competencies can be decomposed into more con-
crete ones. For example, Cj is decomposed into C; and C3.
A weight between 0 and 1 specifies the contribution of each
concrete competency to the abstract one. The sum of all
the descendant weights of any competency is 1 (indeed, this
holds for any kind of element, including learning outcomes
and assessment tools). For instance, C> and C3 contribute
80% and 20% to Cj, respectively. Likewise, concrete com-
petencies are developed by learning outcomes (e.g., C3 is
developed by LO; and LO3), and abstract learning outcomes
can be decomposed into more concrete ones, which are finally
measured with assessment tools (e.g., LO| is measured with
AT and AT>,). The cardinalities in Figure 2 accurately set the
inter-element relationship constraints that every model must
satisfy: elements of the same type are decomposed as Trees,
and elements of different kind are organized as Directed
Acyclic Graphs (DAGS). For instance, C3, C5 and LO3 follow
a DAG structure since LO3 has the two parents C3 and Cs:
LO3 develops 40% of C3, and 30% of Cs.

C-A&M provides a language to formally define assessment
models. For example, the following code fragment speci-
fies the decomposition of C3 into LO, and LO3; Lines 1-2
declare the types of C3, LO> and LO3 (i.e., competency
and learning_outcome); and Lines 4-7 express the
decomposition:

competency "C3"
learning_outcome "LO2", "LO3"

decompose "C3" into
"LO2" weights 0.6
"LO3" weights 0.4
end

A N I SER VI CR

B. STUDENTS’ FEEDBACK
Once the students’ fine-grained grades have been measured
with the assessment tools, C-A&M computes the achieve-
ment levels of the competencies and learning outcomes,
providing students with a graphical report of their results.
For example, Table 1 summarizes the grades of a student
measured with the tools ATy, AT», ...,AT)o; and Figure 4
depicts the derived achievement levels, which are calcu-
lated as weighted averages as follows: if an element e is
decomposed into n elements with weights wy, wo, ..., wy,
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TABLE 1. Fine grained grades of a student measured with the assessment
tools AT, AT,, . .., ATy,.

[ AT1 [ AT2 [ AT3 [ AT4 | AT5 | AT6 | AT7 | AT8 [ AT9 [ AT10 |
[ 4 ]3] 67578 [25]6 ] 7 5765 ]

and whose achievement levels ay, ay, . . ., a, are known, then
eachievementisa = ) ;_, w; - a;. In Figure 4, LO3 is decom-
posed into AT>, AT3 and AT4 and thus LO3 achievement is
02-34+404-6+04-75=6.

To obtain a more immediate and abstract understanding of
students’ competency achievement, instructors can transform
numerical assessment values into linguistic ones. To do so,
a conversion range needs to be specified. For instance, the fol-
lowing conversion range transforms numerical assessments a
into the linguistic labels not achieved, moderately achieved
and achieved:

not achieved whena < 5

linguistic label = { moderately achieved when5 <a <7

achieved whena > 7

ey

As a result, the students’ and course analysis graphical
reports that C-A&M generates are enhanced with colors that
account for the linguistic labels specified by the instructor.
For example, in Figure 4 colors red, yellow and green repre-
sent the linguistic values not achieved, moderately achieved
and achieved, respectively. The achievement levels of a stu-
dent are computed with Algorithm 1, which traverses the
assessment model in a depth-first fashion; getAchLevels
is called as many times as top-abstract competencies the
model has, receiving the model roots as argument.

Algorithm 1. Computing Student Achievement Levels

1 Function getAchLevels (@)

2 mark(e) < not mark(e)

3 if ¢ is not an assessment tool then
4 ach[e] <0
5
6
7

foreach descendant d of ¢ do
if mark(e) # mark(d) then getAchLevels (d)
ach[¢] < ach[e] + ach[d] - weight, ;4

8 foreach root competency ¢ do
9 | getAchLevels (e)

There is a Boolean mark for every node e in the model,
being either all true or all false when the algorithm execu-
tion starts; get AchLevels visits all nodes by recursively
visiting the sub-models rooted by e. Whenever a node is
visited, its mark value is complemented. Comparing the
marks of e and its children, it is determined if they have
already been visited. The method ensures that each node is
visited exactly once and that, when getAchLevels fin-
ishes, all node marks have the same value. The computed
achievement levels are stored in the global variable ach of
type array.
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FIGURE 4. Achievement levels for the student in Table 1.
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achievement residuals follow a normal distribution.
C-AGM ii) A Levene’s test verifies the variance homo-

learning analytics
A

\ .
Competency-based . Obtained
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FIGURE 5. Instructors’ decision making support to improve the
competencies achievement in a course.

C. INSTRUCTORS' FEEDBACK

A C-A&M essential feature is rendering learning analyt-
ics for monitoring the students’ competency achievement
along different course editions and thus supporting the course
continuous improvement. Figure 5 sketches this iterative
improvement process: students obtain a given competency
achievement, which is compared to the results instructors
expect. Depending on the analysis, instructors may decide
corrective actions to improve students’ performance in the
following course edition, which is later analyzed in a sub-
sequent process iteration.

The following points summarize the analytics C-A&M
currently supports; nevertheless, its architecture has been
specifically designed so that it can be easily extended to
incorporate new statistical analyses:

1) Descriptive statistics:

a) For each model element, a summary is produced,
showing students’ mean, trimmed mean, standard
deviation, minimum and maximum values, value
range, median, median absolute deviation, skew
and kurtosis.

b) A box-plot is also generated for each model
element (some examples will be presented in
Section II1-C).

2) Inferential statistics: to test if the students’ competency
achievement changes significatively along the succes-
sive course editions, C-A&M undertakes an ANalysis
Of VAriance (ANOVA) that includes:
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geneity.

It is worth noting that the group independence
requirement does not need to be tested since
the competency level that students achieved in
one semester/year does not affect the competency
level that other students achieved in a different
semester/year.

b) ANOVA results (p-value, F-value, sum of
squares, mean squares, and degrees of freedom.

¢) n?[17] to account for the effect size.

d) Tukey’s method for multiple comparisons of
means to identify when instructors’ corrective
actions pay-off with statistical significance.

Ill. CASE STUDY

This section reports the C-A&M application to an Automatic
Control course of a competency-based study program of the
master degree on Electrical Engineering at Pontifical Catholic
University of Valparaiso (PUCV), in Chile.

A. COMPETENCY ASSESSMENT MODEL
The graduate profile of the study program promotes a total
of twenty competencies. In particular, the Automatic Control
course contributes to developing two of them: Cy» and Cj3,
which are supported by three learning outcomes: LO12 1,
LO12_ 2 and LOj3_;. Table 2 describes each competency and
its associated learning outcomes. Figure 6 depicts the rela-
tionship between competencies and learning outcomes. Cj3 is
developed with LO1;_i, related with control systems anal-
ysis, and LO1> 7, related with control systems design, both
contributing with the same weight (50%) to the competency.
In addition, Cy3 is developed with LO3_i, related to control
systems simulation, therefore contributing with a 100% to the
competency.

The learning outcomes are evaluated with three assessment
tools: two exam-like partial tests A7) and AT>; and one
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TABLE 2. Competencies and learning outcomes for the automatic control course at PUCV.

‘ Competency C12

‘ Solving open and complex problems of Electrical Engineering and/or that require disciplinary approaches

‘ Learning outcomes

‘ Indicators (content, skills, and long-term attitudes or values)

LO12 1: students will be
able to apply methodologies
of control system analysis to
solve electrical engineering
problems

The student identifies processes and their variables and it models their behavior

The student analyses the transient and steady state response of a control system

The student analyses the stability of a control system using the typical analysis tools known as LGR, BODE and/or NYQUIST, as appropriate

The student interprets and validates results obtained from the control system analysis

LO12 2: Students will be
able to apply methodologies
of control system design to
solve electrical engineering
problems

The student selects an appropriate controller design strategy and justifies its choice through analysis

The student designs conventional compensators, PID controllers and / or controllers by state feedback, applying the classic controller tuning procedures

The student interprets and validates the performance of a controller by analysing the resultant closed-loop system

Competency C3

Simulating electrical systems to represent its behaviour optimize its parameters and improve its operating conditions

Learning outcomes

Indicators (content, skills, and long-term attitudes or values)

LOq31: Students will be
able to use computational
tools to simulate and analyse
control systems

The student models and simulates control systems using simulation software

The student defines experiments to analyse the performance of a control system using simulation software

The student interprets and validates results of control systems by analysing response graphs obtained by means of simulation

C12

~
=]

C13

mean

=3
S

0.5

LO12 1

o
1=}

0.5 1

o

IS
S

@
1=}

LOI12 2

)
=3

1

FIGURE 6. Competency model for the automatic control course at PUCV.

knowledge integration activity AT3. AT1 and AT, are intended
to measure specifically the theoretical knowledge acquired by
the students about the analysis and design of control systems
(content indicators). ATz relies on virtual laboratories for
conducting online experiments [18]-[21]; these labs enable
students to apply their control designs on real processes by
conducting practical experiences to train fine control skills
and checking the validity of a control strategy with simulation
techniques (skill indicators).

All the elements of the assessment model (competencies,
learning outcomes and assessment tools) are measured with
a numeric scale that goes from 1 for the lowest qualification
up to 7 for the highest qualification. An element is approved
when its grade is greater than or equal to 4 (exigency fac-
tor of 50%). The numeric scale is translated to a linguistic

Number of students

=)

1

—

20

2o\ 20\
Ast s

(0 (0
AT3 (5 2005

Course edition

FIGURE 7. Number of enrolled students per course edition.

number of students enrolled in each course edition. There
were 60.4 students per course on average. The maximum
and minimum number of students were 68 and 56, in the
13t semester of 2017 and both the 1% and 2™ semesters
of 2018, respectively.

C-A&M was used to inform students about their grades,
justifying their results at all abstraction levels: competencies,
learning outcomes, and assessment tools (see Section II-B).
Moreover, C-A&M was applied to monitor the course evolu-
tion over time. Instructors were responsible for measuring,
registering and tracking the academic performance of the
students. Subsequently, based on the periodical analysis of
the obtained competency achievement in comparison with the
expected performance, they implemented corrective actions
to improve the next course edition competency attainment.

achievement scale as follows: Not achieved (grade < 4),

Moderately achieved (4 < grade < 5.5), and Achieved

(grade > 5.9).

B. METHOD

C-A&M was applied in the last five editions of the Automatic
Control course previously described. Figure 7 shows the

VOLUME 7, 2019

C. RESULTS AND DISCUSSION

The data presented in this section (students’ grades obtained
with the assessment tools AT; AT, and AT3, their derived
competency achievement levels, and the competency longi-
tudinal analysis) are available at: https://github.com/rheradio/
C-AM/tree/master/examples/PUCV
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FIGURE 9. Students’ results for LO;, ; and LOy; .

1) MONITORING C;,

The boxplot in Figure 8 represents students’ Ci; fulfillment
over time. Colors red, yellow and green represent the lin-
guistic grade values Not achieved, Moderately achieved and
Achieved, respectively.

Instructors were extremely concerned about the low
competency achievement in the first course editions. For
instance, in the 2™ semester of 2016 most students failed to
achieve C1;: students’ mean and median were 3.64 and 3.75,
respectively; and the standard deviation was just 0.93.

One of the advantages of C-A&M is that it supports moving
between distinct assessment abstraction levels to understand
better the causes of an educational problem. Figure 9 descents
one abstraction level to depict students’ evolution for LO12_;
and LO13 ». Atthislevel, LO12_; seems to be the main respon-
sible for the low C}, achievement in the 2" semester of 2016:
whereas LO12_1 median is 3.4, LO17 > median is 4.1. Hence,
instructors focused their efforts on improving LO12_1. As a
result, they modified the control system analysis teaching
material and redistribute the course schedule to dedicate more
hours to LO12 2. As a result, in the 15t semester of 2017,
LO1;_; students’ grades slightly increased but at the cost of
reducing students’ performance for LO12_» (having less time
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TABLE 3. ANOVA for C;, LO;, ; and LO;; .

ANOVA Effect Size
Element >
F value | p value n
(&P 4.171 0.002 0.053
LO12 1 6.268 | 7.45e-05 0.077
L0122 4.301 0.002 0.054

TABLE 4. Tukey multiple comparisons of means for C;,, LO¢;
and LOy; ,.

[ Element | Pair | Mean difference | Adjusted p-value |
2016 2S vs 2018 1S 0.525 0.030
c 2016 2S vs 2018 2S 0.502 0.043
12 2017 1S vs 2018 1S 0.524 0.026
2017 1S vs 2018 2S 0.500 0.038
2016 2S vs 2017 2S 0.592 0.016
LO12; | 20162Svs 2018 1S 0.835 0.000
2017 1S vs 2018 1S 0.696 0.002
2016 2S vs 2018 2S 0.649 0.040
LO12 2 | 2017 1S vs 2018 2S 0.785 0.005
2017 2S vs 2018 2S 0.839 0.003

Level and Setpoint

S E

W0 100 B0o 200 m00 300 m00 400 4500 500
Time (5)

Setpoint Control Acton

Voltage (v)

00 300 b0 100 00 200 00 3500 060 4500 3000

Time (s)
(] o ] ]

Level (m) = | 0,150

Reference (m) = | 0.150

Tnput valve (V) = | 2.862

Perturbation valve (V) = 0.0000

FIGURE 10. One of the virtual labs used to support C;3: controlling a
single tank system.

for LO12_» had a negative impact). So, next time instructors’
efforts shifted towards improving LO12_».

As Figure 9 shows, instructors have struggled to find a
balance between LO1> | and LOj2 2 over the successive
course editions. Table 3 shows the ANOVA analysis of Cj»,
LO12_1 and LOj3_ 5 evolution. Instructors’ corrections pro-
duced a moderate and statistically significant change (> val-
ues around 0.06 [22], and p values < 0.05). Table 4 helps to
identify in which precise moment those corrections paid-off
thanks to the Tukey multiple comparisons procedure (only the
statistically significant pairs are included).

Accordingly, instructors’ actions were producing an accu-
mulative effect in Cj; that finally became significant in the
15t semester of 2018.

2) MONITORING C;3
C13 refers to the students’ capacity of using computational
tools to simulate and analyze control systems. In particular,
students undertook practical experiences on virtual labs, like
the one in Figure 10.
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FIGURE 11. Students’ results for C;5.

TABLE 5. ANOVA for Cy3.

ANOVA
F value | p value n
33.53 <2e-16 0.311

Effect Size
)

TABLE 6. Tukey multiple comparisons of means for C;5.

‘ Pair | Mean difference [ Adjusted p-value |
2016 2S vs 2017 2S 1.348 0.000
2016 2S vs 2018 1S 0.622 0.007
2016 2S vs 2018 2S 1.181 0.000
2017 1S vs 2017 2S 1.713 0.000
2017 1S vs 2018 1S 0.987 0.000
2017 1S vs 2018 2S 1.546 0.000
2017 2S vs 2018 1S -0.725 0.001
2018 1S vs 2018 2S 0.558 0.029

The boxplot in Figure 11 shows students’ Cy3 achievement
evolution. After the 219 semester of 2016, instructors decided
to introduce a course improvement: students had not only to
use the labs to conduct experiments but also save the gathered
data and use them later in a specialized software tool for
control analysis and design purposes.

According to the ANOVA analysis in Table 5, the course
modification was both statistically significant and with large
effect size (n? for Cy3 is almost six times greater than 7>
for C17). In particular, the Tukey’s post hoc tests in Table 6
show that the improvement became statistically significant
from the 2" semester of 2017.

Looking at the two first boxes in Figure 11, it seems that
the “improvement” failed initially since it had a negative
effect. Although the effect was statistically non-significant
(Table 6 does not include the pair “2016 2S vs 2017 1S”
because the correspondent p-value is 0.233; i.e., considerably
greater than 0.05), instructors decided to give students in the
27 semester of 2017 an introduction about the use of the
software tool required to analyzed the gathered data, with
a special focus on (i) the control toolbox that should be
used, (ii) the interpretation of results, and (iii) some issues
about the conversion of measurement units in the control
loop. Once applied this action, Cj3 academic performance
increased drastically (see “2016 2S vs 2017 2S” in Table 6).

Finally, as C;3 performance was much higher than Cy,,
instructors decided to transfer some hours from Ci3 to Ci; in
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the 1%t semester of 2018. As aresult, Cj, improved but C13 got
worse. In the next course edition, this latter modification was
adjusted to balance better the results of both competencies.

IV. RELATED WORK

Competency assessment models are commonly defined as
hierarchies of three types of interdependent elements: com-
petencies, learning outcomes, and assessment tools [23]. Our
work contributes to this mainstream by providing a general
framework that processes these hierarchies for both assessing
students and monitoring courses.

There are typically two approaches to derive students’
competency achievement levels from assessment tool mea-
surements: numerically and linguistically. The numerical
approach assumes that both students’ grades and relationship
importance between each pair of elements (e.g. competencies
and learning outcomes) can be accurately defined. Thus,
competency levels are obtained by traversing the hierarchy
in a bottom-up fashion, computing each element’s grade
as the weighted average of its descendants’ grades [24].
In contrast, the linguistic approach premise is that neither the
students’ grades nor the relationship importance can be pre-
cisely expressed with numbers. For instance, [25]-[28] pro-
pose assessment procedures based on fuzzy linguistic logic
to aggregate students’ grades and relationship importance
expressed in natural language (e.g., “‘learning outcome LO is
poorly achieved” and “LO is essential for competency C”,
respectively).

C-A&M enriches current students’ assessment proposals
with a language to formally define competency models, and
by providing Algorithm 1 to efficiently processing these
models. It is worth noting that, although our approach is
currently numerical, it can be easily extended to integrate lin-
guistic information substituting Line 7 in Algorithm 1 by the
corresponding fuzzy linguistic aggregation procedure. This
would open new blended assessment possibilities unexplored
to date; for example, supporting the combination of numerical
students’ grades with linguistic relationship importance.

Finally and to the extent of our knowledge, this paper
presents the first automated approach for competency-based
course monitoring, whose utility has been illustrated on the
continuous improvement of a university course over three
years.

V. CONCLUSIONS

C-A&M supports competency-based education in many fun-
damental aspects. It facilitates instructors the design of com-
petency assessment models thanks to a formal language
for specifying competencies, learning outcomes, assessment
tools, and the inter-dependencies among all these elements.
It provides an automated procedure for processing these
models to calculate students’ competency achievement. The
method is efficient (its time-complexity is O(NV), being N
the number of elements in the model) and easily extensi-
ble to incorporate new ways for aggregating achievement
information (both numerical and linguistic). Finally, C-A&M
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provides learning analytics to supervise competency-based
courses. In particular, it has shown to be remarkably helpful
to reform a university engineering course at the Pontifical
Catholic University of Valparaiso in Chile. Along five course
editions, C-A&M assisted instructors to (i) reason about
students’ competency achievement, (ii) identify shortcom-
ings in the course, (iii) implement corrective actions, and
(iv) subsequently check the validity of the actions.
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