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ABSTRACT Increasingly, more people are suffering from the effects of air pollution. This study took Beijing
as an example and proposed an attention-based air quality predictor (AAQP) that could better protect people
from air pollution. The AAQP is a seq2seq model, and it exploits historical air quality data and weather
data to predict future air quality indexes. Although existing research has promoted seq2seq for air quality
prediction, there are still two problems. First, the seq2seq has a slow training speed so the original RNN in the
encoder was replaced with a fully connected encoder to accelerate the training process. Position embedding
was also introduced to help the fully connected encoder find the sequential relationships among source
sequences. Another problem is error accumulation caused by recurrent prediction. Accordingly, the n-step
recurrent prediction was proposed to solve this problem. The experimental results validated that the AAQP
with n-step recurrent prediction had better performance than the related arts since the error accumulation
was reduced, and the training time was significantly decreased compared with the original seq2seq attention
model.

INDEX TERMS Air quality, seq2seq, attention, prediction.

I. INTRODUCTION
Fossil fuels, such as coal and petroleum, have been the
main energy sources since the first industrial revolution.
Because abundant fossil fuels are stored in the earth and
easy to exploit, they are widely used in social production by
humans. Fossil fuels provide a huge amount of energy for
the development of human society. Meanwhile, air pollution
has become one of the thorniest problems for humans due to
the combustion of fossil fuels. Combusting fossil fuels emits
carbon dioxide, nitrogen oxide, sulfur dioxide andmany other
pollutions, which are the causes of acid rain, the greenhouse
effect and other meteorological disasters. Among these air
pollutants, PM2.5 is the most threatening since it causes
heavy smog. The most well-known smog is the ‘‘Great Smog
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of London’’, which killed thousands of people. In the last
decades, with rapid industrialization, air pollution in develop-
ing countries is becoming increasingly more serious than that
in developed countries. As the biggest developing country,
China has suffered from air pollution in recent years, espe-
cially in Beijing. Sometimes, the concentration of PM2.5 is
more than 1000 µg/m3, and the visibility is less than 1 km.
Moreover, high concentration of PM2.5 may harm the res-
piratory system and cause lung cancer. If people do not take
actions in time, high concentration PM2.5 will kill people in a
short period of time. Other developing countries such as India
and Mongolia are also suffering from severe air pollution.
However, in terms of current technology level, there are no
efficient ways to fundamentally solve heavy smog. Therefore,
the best way to prevent people from being harmed by heavy
smog is to predict the concentration of PM2.5 and remind
people of taking actions in time.
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In big data era, Machine Learning (ML) has become the
most important method to identify patterns of big data. With
the accumulation of meteorology data and air quality data,
ML became more and more popular in air quality prediction
because it is easy to be implemented and has relatively high
accuracy. Linear models were basic models in ML and now
few researchers apply linear models to air quality predictions.
Rajput et al. [1] used multiple linear regression (MLR) to
build a model that can predict the air pollutants in India.
However, in practice, air pollutants have nonlinear relation-
ships with their influencing factors. Singh et al. [2] com-
pared linear methods and nonlinear methods and found that
nonlinear method could capture complex nonlinearity in air
quality data. Thus nonlinear models, such as ANN [3], are
more appropriate than linear models. Azid et al. [4] combined
Principal Component Analysis (PCA) and ANN to predict
the air quality in Malaysia. De Vito et al. [5] improved ANN
with a dynamic approach. Kang [6] used data of Lanzhou and
optimized ANN by genetic simulated annealing algorithm
to predict air quality. Paoli et al. [7] used ANN to predict
O3 in Corsica. Mahajan et al. [8] used a geographical dis-
tance based clustering method to improve the performance
of ANNs in 4 cities of Taiwan. Another nonlinear method
called Support Vector Machine (SVM) [9] was also popular
among researchers because it has better generalization abil-
ity than ANN. Sánchez et al. [10] found that SVM usually
had better performance than ANN by comparing SVM with
different kernels and ANN in Spain. Nieto et al. [11] utilized
PSO-SVM based approach to predict the air quality in north-
ern Spain. Gu et al. [12] extracted the sequential information
of prediction by applying recurrent prediction to SVM.

Recently, deep learning has become popular because of
its powerful nonlinear fitting ability. Deep learning allows
researchers to easily integrate the information of different
air-quality-monitor stations. Meanwhile, most researchers
started to build models for predicting air quality of a future
range rather than a future point. Li et al. [13] used a stacked
autoencoder (SAE) to extract information from 12 stations
and then feed extracted information into a linear regression
(LR) to predict the air quality at 12 stations simultaneously.
However, air quality data are sequential, so models that are
good at processing sequential data such as recurrent neural
network (RNN) are more powerful than SAE, ANN and
SVM for air quality prediction. Ong et al. [14] also utilized
SAE but replaced LR with RNN to give 12-hour predic-
tion. However, RNN is hard to be trained due to its two
shortcomings: exploding gradients and vanishing gradients.
So, some researchers adopted Long Short-Term Memory
(LSTM) to predict air quality since it was easier to be trained.
Chaudhary et al. [15] and Pardo et al. [16] used simple LSTM
to predict air quality for future 12 and 24 hours respectively.
Zhao et al. [17] utilized the information of neighbor stations
and LSTM to build models. Wang et al. [18] also used
LSTM but they adopted Granger causality to choose high
related stations. Zhou et al. [19] established a model based
on LSTM and it could predict air quality of several stations.

M. Kim et al [20] and KÖK et al. [21] found that RNN
could achieve better results than ANNs and SVM. Gated
Recurrent Unit (GRU) is a simplified version of LSTM and
some researchers applied this method to air quality predic-
tion. Athira et al. [22] compared vanilla RNN, LSTM and
GRU for air quality prediction and their experiments showed
that GRU had the best performance. Wang et al. [23] added
a residual connection to GRU and LSTM and they found
that GRU had better performance than LSTM. Instead of
preprocessing data by RNN, Sun et al. [24] preprocessed data
by convolution function before feeding them into predictors
and their experiments turned out that GRU had better result
than LSTM, ANN, SVM, random forest and MLR. Different
from X. Sun et al., some researchers like Du et al. [25],
Feng et al. [26] and Huang et al. [27] adopted convolutional
neural network (CNN) [28], which adapted convolution ker-
nel to specific task, to preprocess raw data and then fed
them into LSTM. Soh et al. [29] used the CNN to extract
terrain information, e.g., a mountain between stations, and
utilized LSTM and ANN to extract information from tar-
get station and its high related stations selected by cluster
method. At last, they merged all the information for final
prediction. Pan et al. [30] established a model that consisted
of spatial module, deduction module and temporal module.
The deduction module derived parameters of temporal mod-
ule from spatial module. The temporal module, which could
be CNN, LSTM or ANN models, conducted the final pre-
diction. However, none of the above methods can treat input
data and output data as sequence simultaneously. Researchers
utilize either fully connected (FC) layer to predict or CNN
to extract input data but all these methods lose sequen-
tial information even if CNN can only obtain fixed-length
sequential information. In deep learning, the sequence-to-
sequence model (seq2seq) uses RNN to extract information
and predict so all the sequential information can be preserved.
Reddy et al. [31] applied the seq2seq with LSTM to air
quality prediction and proved that seq2seq was a promis-
ing method for air quality prediction. In seq2seq, the final
hidden state of LSTM encoder is taken as context vector,
which is decoded by LSTM decoder for final prediction,
while the final hidden state of encoder cannot preserve all
the useful information because some important information
may be forgotten by the forget gate of LSTM. Bui et al. [32]
takes the mean of all the encoder outputs as the context vec-
tor to solve this problem. However, different encoding time
steps have different effects on decoding process, so to better
address this problem, some researches tried to apply attention
mechanism (AM), which was proposed by Bahdanau et al.
[33], to seq2seq. Wang et al. [34] used CNN to extract
the relationship among different stations and seq2seq with
simplified attention for final prediction. Except for normal
attention, Liang et al. [35] applied global attention in order to
weigh the data from other sensors. Cheng et al. [36] adopted
RNN to extract information from input sequence andAMwas
used to measure the influence of other stations but they used
FC layer to obtain prediction results.
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FIGURE 1. Direct prediction (a) and recurrent prediction (b). The direct
prediction gives the n hours’ predictions simultaneously. The recurrent
prediction takes the output of the previous step as the input. The initial
input can be the real value of the previous step.

Even when attention mechanism is applied, seq2seq has
two problems. The first problem is that its training speed
is too slow. In practice, models are built for each monitor
station respectively. Therefore, if the model needs plenty of
time for training, then it will take tremendous amount of
time. The worst situation is that the models need retraining
because of model deterioration caused by the variation of
data distribution over time. Lots of models need to be trained
simultaneously. As a result, the prediction service may have
to be stopped. The seq2seq model is time-consuming because
of the RNN in the encoder and decoder. The RNN runs
in a step-by-step manner, which means that it cannot be
paralleled. Another problem is error accumulation. Actually,
seq2seq adopts recurrent prediction, which takes the output
of the previous time step as the input of the current time
step. Therefore, Recurrent prediction accumulates error at
each time step due to the fact that predictions at each time
step have error. In contrast, models that give a prediction in
future period by FC layer adopted direct prediction. Direct
prediction outputs the result sequence simultaneously with-
out error accumulation but it loses the sequential information
of the target sequence. The direct prediction and the recurrent
prediction are shown in Figure 1. In the seq2seq, the accu-
mulated errors also weaken the performance of the previous
time steps because seq2seq is optimized according to the
errors of all time steps. To accelerate the training process,
we replaced the RNN in encoder with a FC layer shared by
each time step. Since FC layer does not run in step-by-step
manner, it can be paralleled. However, FC layer is not as pow-
erful as RNN when processing sequential data, so position
embedding is introduced to help FC layer process sequential
data. To alleviate the error accumulation, we applied n-step
recurrent prediction, with which the decoder gives n steps
predictions directly in every time step. For instance, when
n = 3, it means the decoder predicts the hourly air quality

in future 3 hours at each time step, so when n = 1 it is iden-
tical with original recurrent prediction. Applying the n-step
recurrent prediction to seq2seq reduces the total time steps of
the decoder. Therefore, the accumulated errors are reduced
and the training process is accelerated. The illustration of the
n-step recurrent prediction is shown in Figure 2. The pro-
posedmethod is based on attention mechanism, so it is named
n-step Attention-based Air Quality Predictor (n-step AAQP).

The contributions of this paper are summarized as follows:
• The RNN encoder is replaced with the FC encoder to
accelerate the training process of seq2seq.

• N-step recurrent prediction is applied to the decoder of
seq2seq to improve its accuracy.

• We also compared the performance of seq2seq based on
GRU and LSTM.

• Different recurrent prediction steps were applied to the
AAQP and their performance were analyzed.

The rest of this paper is organized as follows.
Section 2 introduces the proposed AAQP. Section 3 describes
the experimental settings and discusses the results of the
experiments. Section 4 gives the conclusion of this paper and
future work.

II. METHODOLOGY
To better introduce the AAQP, we use a dataset D = X,Y ,
where X is all the input sequences and Y is all the target
sequences. For an input sequence x ∈ RS×Q, its length is
S and for each time step, it has Q features. For each target
sequence y ∈ RT , its length is T . In practice, y can contain
several targets at each time step.

A. RECURRENT NEURAL NETWORK
RNN [37] is a kind of deep neural network, whose basic
structure is unit. The unit of vanilla RNN is shown in Figure 3.
At each time step, the same unit is used and the input consists
of the data of the current time step and the hidden state of
the previous time step. The hidden state at time step s can be
calculated as follows:

hs = tanh(W ∗ [hs−1, xs]+ b) (1)

where hs−1 is the hidden state of previous time step, hs is
hidden state of current time step, the bracket represents the
concatenation of vectors,W and b are the weights and biases,
respectively, and they are shared at each time step. Typi-
cally, for a regression problem such as air quality prediction,
the final hidden state can be used to obtain the final prediction
by:

p = Wp ∗ hS + bp (2)

where p is the final prediction, hS is the final hidden state
of RNN,Wp and bp are weights and biases.

B. LONG SHORT-TERM MEMORY UNIT
However, the vanilla RNN has two shortcomings [38]:
exploding gradients and vanishing gradients. The exploding
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FIGURE 2. The n-step recurrent prediction. The predictor takes the last n-step as the input and outputs the n-step results.

gradients problem is when the norm of the gradients grows
exponentially large during training. The vanishing gradients
problem is when the norm of the gradient decreases expo-
nentially to 0 during training. The former problem can be
addressed using gradients clipping, which means that the gra-
dients are constrained within a small range. The latter prob-
lem can be addressed by using the Gated Recurrent Neural
Network (GRNN). The most typical GRNN is vanilla RNN
whose unit is replaced by LSTM [39]. The structure of LSTM
is shown in Figure 4. LSTM is comprised of a cell, an input
gate, a forget gate and an output gate. The responsibility of
the cell is to memorize information. The input gate controls
how much new information can enter the cell, the forget gate
controls how much old information should be preserved, and
the output gate controls how much information of cell will be
outputted. The hidden state of sth time step can be computed
as follows:

is = σ (W i ∗ [hs−1, xs]+ bi) (3)

f s = σ (W f ∗ [hs−1, xs]+ bf ) (4)

os = σ (Wo ∗ [hs−1, xs]+ bo) (5)

C̃s = tanh(W c ∗ [hs−1, xs]+ bc) (6)

Cs = f s ∗ Cs−1 + is ∗ C̃s (7)

hs = os ∗ tanh(Cs) (8)

where is is the input gate, f s is the forget gate, and os is the
output gate. C̃s is a candidate cell value that represents new
information, Cs represents the cell value, hs is the current
hidden state, hs is the previous hidden state. xs is the data
of sth time step. Cs−1 is the cell value of the previous time
step, and it represents old information.W and bwith different
subscripts represent the different weights and biases. tanh (·)
is a nonlinear function, which is defined as follows:

tanh (x) =
ex − e−x

ex + e−x
(9)

σ (·) represents the logistic function, which is defined as
follows:

σ (x) =
1

1+ e−x
(10)

FIGURE 3. The structure of vanilla RNN unit. The ⊕ denotes
concatenation.

FIGURE 4. The structure of LSTM unit.

The output range of σ (·) is (0, 1), so the output ranges of
the gates of LSTM are (0, 1) too. If the values of these gates
are close to 0, almost nothing enters the cell and almost all
the old information is forgotten and almost nothing will be
outputted. If the values of these gates close to 1, they act the
opposite behavior.

C. GATED RECURRENT UNIT
GRU [40] is a simplified version of LSTM and some
researchers have implemented GRU for air quality predic-
tion, but few researches have compared their performance
of seq2seq for air quality prediction. The structure of GRU
is shown in Figure 5. There are only two gates in GRU: an
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FIGURE 5. The structure of GRU unit.

update gate and a reset gate. Moreover, the cell state merges
with the hidden state, so there is only a hidden state in GRU.
The update gate controls how much new information enters
the cell. The reset gate controls how much old information
enters the cell. The hidden state hs can be computed as
follows:

us = σ (Wu ∗ [hs−1, xs]+ bu) (11)

rs = σ (W r ∗ [hs−1, xs]+ br ) (12)

h̃s = tanh(Wh ∗ [rt ∗ hs−1, xs−1]+ bh) (13)

hs = (1− us) ∗ hs−1 + us ∗ h̃s (14)

where us is the update gate, rs is the reset gate, and h̃s is
the candidate hidden state. The other notations are similar
to LSTM. When the value of the update gate approaches 0,
almost all new information is discarded. When the value of
the reset gate approaches 0, old information hardly influences
new information. If the values of these gates close to 1, they
perform the opposite behavior.

D. SEQUENCE-TO-SEQUENCE MODEL
The seq2seq was proposed by Sutskever et al. [41] for
machine translation and soon another advanced structure,
which was used by us, was proposed by Cho et al. [42].
The seq2seq model has an encoder and a decoder and its
structure is shown in Figure 6. It. The encoder encodes the
input sequence into a context vector and then the decoder
decodes the context vector into target sequence. The encoder
acts totally the same as original RNN and the final hidden
state hS is the context vector. The context vector is added into
the input of decoder at each time step. The input of the first
time step of decoder is the observation value of air quality.
Taking GRU as an example, the hidden state of decoder at tth
time step is computed by:

ut = σ (Wu ∗
[
ht−1, pt−1,hS

]
+ bu) (15)

rt = σ (W r ∗
[
ht−1, pt−1,hS

]
+ br ) (16)

h̃t = tanh(Wh ∗
[
rt ∗ ht−1, pt−1,hS

]
+ bh) (17)

ht = (1− ut ) ∗ ht−1 + ut ∗ h̃t (18)

FIGURE 6. The structure of seq2seq.

where pt−1 is the prediction of previous time step. The pre-
diction of current time step pt can be computed by:

pt = Wp ∗ [ht ,hS ]+ bp (19)

E. N-STEP ATTENTION BASED AIR QUALITY PREDICTOR
To accelerate the training speed of seq2seq, a FC encoder
replaces the RNN encoder, but the FC layer will lose the
sequential information of the input sequence. To address this
problem, position embedding [43] is introduced. A position
embedding is a variable that has the same dimension as an
input sample. Each row of the position embedding learns and
stores the sequential information of each time step of input
sequence. Thus, the encoder-hidden state at sth time step is
computed by the following:

h̄s = tanh(W e ∗ (xs + PEs)+ be) (20)

where W e and be are the weights and biases of encoder
respectively and they are shared in each time step. PEs ∈ RQ

is the position embedding of sth time step. This operation for
every time step can be executed simultaneously so it is more
efficient. Although this combination may be not as powerful
as RNN, the sequential information of the input sequence is
easier to extract than that of target sequence.

The RNN decoder is preserved since the sequential infor-
mation of target sequence is harder to extract than that of input
sequence. However, n-step AAQP cannot obtain context vec-
tor from the last encoder-hidden state because a FC encoder
replaces the RNN encoder. Therefore, the context vector is
derived from AM and it is not added to the input of decoder
RNN but still participates in the process of obtaining final
prediction. On top of that, AM can give a greater weight to
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FIGURE 7. The illustration of τ th time step of the n-step AAQP. The
encoder-hidden state and decoder-hidden state are used to compute the
context vector using the attention mechanism. The context vector and
decoder-hidden state are used to obtain the air quality prediction.

the encoder-hidden state that has greater impact on decoder.
Furthermore, n-step recurrent prediction is applied to decoder
in order to improve the accuracy of prediction and reduce the
training time. The value of n should be divided exactly by T,
which is the length of target sequence. Thus, the number of
time steps of decoder changes to T/n.

In this paper, we utilized the improved version of AM,
which was proposed by Luong et al. [44]. The τ th time step of
decoder with AM is shown in Figure 7. Before applying AM
to seq2seq, the hidden state of decoder should be computed.
TakingGRUas an example, the calculation of decoder-hidden
state at time step τ is shown below:

uτ = σ (Wu ∗
[
hτ−1, pτ−1

]
+ bu) (21)

rτ = σ (W r ∗
[
hτ−1, pτ−1

]
+ br ) (22)

h̃τ = tanh(Wh ∗
[
rτ ∗ hτ−1, pτ−1

]
+ bh) (23)

hτ = (1− uτ ) ∗ hτ−1 + uτ ∗ h̃τ (24)

To weigh the encoder-hidden state, a score is defined to
measure the importance of different encoder-hidden states.
The score is defined as follows:

score
(
hτ , h̄s

)
= hTτ h̄s (25)

where hτ is the hidden state of the decoder at time step τ ,
and h̄s is the hidden state of the encoder. To ensure that the
summation of the weights equal 1, a softmax function is used
to normalize the scores:

aτ =
exp(score

(
hτ , h̄s

)
)∑S

s′=1
exp(score

(
hτ , h̄s′

)
)

(26)

The context vector cτ is obtained by using the weighted
average of the encoder-hidden states according to aτ . Finally,
the context vector cτ can be used to obtain the air quality
prediction via:

pτ = Wp ∗ [hτ , cτ ]+ bp (27)

We used mean squared error (MSE) as loss function and
since mini-batch optimization is usually used, the loss func-
tion is defined as:

loss =
1
M

M∑
m=1

T/n∑
τ=1

||pmτ − [ymn(t−1)+1, . . . . . . , y
m
n∗t ]||

2 (28)

where M is the number of samples of a mini-batch. Finally,
gradient descent is used to minimize the loss function until
it converges. The complete training process of the AAQP
is shown in Algorithm 1. When some data need to be pre-
dicted by trained model, execute the step (A) and (B) of
Algorithm 1 for each outer loop.

III. RESULT AND DISCUSSION
The experiments were carried on a computer with I7 6770HQ
CPU, 16GB RAM and GTX1060 GPU. The deep learn-
ing algorithms were implemented by tensorflow 1.8 with
python 3.5. ANN and SVM were implemented by scikit-
learn. All the deep learning methods used Adam as optimizer;
the batch size was 512; and the learning rate was 0.001.
We also clipped gradient by norm and set it to 5. Dropout
was applied to all deep learning methods and its value is 0.5.
The epoch of GRU and LSTM were 100. We utilized non-
teacher forcing method to train seq2seq (include AAQP) so
the epoch of seq2seq (include AAQP) was 1000 in order to
ensure its convergence.

A. EXPERIMENT SETTING
1) DATASET
In this paper, we utilized the hourly air quality data and hourly
weather data of Beijing from April 2017 to March 2018. SO2,
CO, NO2, O3, PM2.5, PM10 are recorded in the air quality
data. The weather data include the precipitation, humidity,
temperature, wind force and wind direction. The air qual-
ity data of the previous 24 hours and the weather data of
the previous 24 hours were used as inputs to predict the
PM2.5 of the subsequent 24 hours. The recurrent predic-
tion needs prediction of previous time step so the seq2seq
model predicted all the air pollutants because pollutants are
significant information for PM2.5 prediction. Adding tar-
gets to the model can affect the training process since the
model was optimized based on all targets. Additionally, too
many targets may decrease the accuracy by leading to more
error accumulation so the prediction targets did not contain
weather factors. Furthermore, the hidden state can pass some
information about pollutants and weather but we still passed
pollutants to next time step in order to prevent the information
from being blocked by the gates. Therefore, the shape of
target sequence is 24 × 6 for one sample. However, we only
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Algorithm 1 Attention-Based Air Quality Predictor
Input: dataset D, step size n
Initialize all the parameters and position embedding
For every mini-batch do:
(A) compute the hidden state of the encoder: h̄s = tanh(W e ∗ (xs + PEs)+ be)
(B) For τ= 1 :T/n:

(a) Compute the decoder-hidden state hτ using equation (21)-(24) or the LSTM version of equation (21)-(24)
(b) For every s, compute the score function: score

(
hτ , h̄s

)
= hTτ h̄s

(c) Compute the normalized weight score vector using equation (26)
(d) Obtain the context vector cτ using the weighted sum of the encoder hidden
states according to aτ .

(e) Compute the predicted value: pτ = Wp ∗ [hτ , cτ ]+ bp
(C) For every pτ , compute the loss function by equation (28)
(D) Perform gradient descent until convergence

FIGURE 8. (a) PM2.5 concentration variations along time in the Olympic center Station.
(b) PM2.5 concentration variations along time in Dongsi Station.

evaluate the performance of PM2.5 prediction due to the
fact that it’s the main reason of haze creation. The Olympic
Center station and Dongsi station are chosen as the target
stations because these stations are crowded and their data
are relatively complete. The PM2.5 has big fluctuations at
Dongsi and has smaller fluctuations at Olympic Center. The
PM2.5 concentration variations along time of the two sta-
tions is shown in Figure 8. The data from April 2017 to
February 2018 are taken as the training data, and the data from
March 1 2018 to March 7 2018 are the testing data.

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

2) EVALUATION CRITERIA
In this paper, we used the mean absolute error (MAE) and R2

as performance metrics. The MAE is defined as follows:

MAE =
1
n

n∑
i=0

|Oi − Pi| (29)

where O denotes the observation value, P denotes the pre-
dicted value, and n denotes the number of samples. The R2 is
defined as follows:

R2 = 1−

∑n
i=0 (Oi − Pi)

2∑n
i=0 (Oi − Ō)

2 (30)

where Ō is the mean of the observation values.

3) METHODS
The ANN, SVM, GRU, LSTM, seq2seq, seq2seq-mean,
seq2seq-attention and n-step AAQP are applied to the dataset.
TheANN, SVM,GRU and LSTMutilize the direct prediction
and the others utilize the recurrent prediction. The seq2seq
utilizes the hidden state of the final time step as the context
vector. The seq2seq-mean utilizes the mean of the encoder-
hidden state as the context vector, while seq2seq-attention
and the n-step AAQP utilize the AM to compute the context
vector.

B. PERFORMANCE EVALUATION
Tables 1-2 show the MAEs and R2s of the different meth-
ods and stations. From these tables, we can conclude that
the models with attention have better performance, and the
recurrent prediction has better performance than the direct
prediction.

At the Olympic Center station, the concentration of
PM2.5 has small fluctuations, so it is easy to be predicted.
The total performance, which utilized the information of all
the encoder-hidden states, are similar; however, if we look
closer, the MAEs of the models with attention in the pre-
vious 8 hours are smaller than those of the models without
attention, and the R2 of the models with attention in the
previous 16 hours is greater than those of the models without
attention. Whereas the results in the previous time steps are
more trustworthy than those over the latter hours; therefore,
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TABLE 1. MAE for the different methods and stations.

TABLE 2. R2 for the different methods and stations.

the attention models can provide better results. The proposed
AAQP (GRU)method has similar performance to the original
seq2seq model with attention, although the AAQP is simpli-
fied, and so the simplification is reasonable.

At Dongsi station, the concentration of PM2.5 has larger
fluctuations than that at the Olympic Center station, which
means it is hard for the models to get an accurate prediction.

Attention models have the best performance in both the pre-
vious time steps and the latter time steps. The AAQP (LSTM)
has the best performance in the previous 12 hours, and so
it is the best model for Dongsi station. At Dongsi station,
the AAQP gets a better result than the original seq2seq atten-
tion model, and thus this is an appropriate simplification for
the air quality prediction.
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TABLE 3. MAE for the different steps of AAQP.

Although GRU and LSTM extract the sequential informa-
tion from historical data, their performance is not always bet-
ter than ANN and SVM. This fact implies that the FC encoder
can extract sequential information, but when approximating a
tough curve, the ANN and SVM are not as powerful as GRU
and LSTM. The PE helps the AAQP to extract the sequential
information so the AAQP has better performance than the
other seq2seq models at Dongsi station. The seq2seq models
have better performance than LSTM and GRU, which indi-
cates that recurrent prediction is better than direct prediction.
Therefore, replacing RNNwith FC layer and preserving RNN
decoder are good choices.

C. AAQP WITH DIFFERENT STEPS
The performance of the AAQP with different steps is shown
in Tables 3-4. The red numbers represent the best result
for a station, bold numbers represent the best results for a
method, and the row named ‘‘Best’’ is the best results of the
corresponding columns in Tables 1-2. In general, the 12-step
AAQP is the best since it always obtains the best performance
over the previous 8 hours. Almost all the best results are
obtained by the n-step AAQP, and so the n-step recurrent pre-
diction significantly helps the AAQP to improve. It is note-
worthy that there is no strict monotonic relationship between
n and the performance, although a bigger n usually performs
well over the previous 8 hours. After 8 hours, a smaller n is
more advantageous at Olympic Center station, and a bigger
n is more advantageous at Dongsi Station. 12-step AAQPs
always get the best performance at first 4 hours. In these

cases, the weights and bias of output layer only need to adapt
2 outputs, but in other cases, they need to adapt to many out-
puts. Therefore, 12-step AAQPs are easier to achieve higher
accuracy at first 4 hours. These tables also show us that 1-
step AAQPs have the worst result at latter hours in most
cases. The total performance of 1-step AAQPs are always the
worst or very close to the worst. These 2 phenomena indi-
cate that n-step recurrent prediction is helpful to reduce the
error accumulation if n is chosen appropriately. At Olympic
Center, models with a relatively small n have better total
performance. The reason is that the target of Olympic Center
station has small fluctuations, every time step has a smaller
error, the accumulated error is small. Whereas, a big n will
decrease the performance of latter hours and lead to poor
total performance. For example, the performance of 12-step
AAQPs are significantly different between previous 12 hours
and latter 12 hours. The target of Dongsi station has large
fluctuations, and the error of each time step is big, so a small
n will accumulate more error. In contrast, a big n will not
accumulate too much error. For instance, the performance
of 12-step AAQPs has no significant differences with pre-
vious 12 hours and latter 12 hours but decreases naturally
over time. In summary, if the target has large fluctuations,
a big n should be chosen for total performance; otherwise,
a small n should be selected. The 12-step AAQP (LSTM)
has the best result at Olympic Center because it has the best
performance over the previous 4 hours, and the performance
over the past 5-12 hours is very close to the best. The 12-step
AAQP (GRU) achieves the best result at Dongsi station, it is
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TABLE 4. R2 for the different steps of AAQP.

TABLE 5. Training and prediction time.

the best model over the previous 4 hours, and its performance
over the previous 5-16 hours is very close to the best.

D. TIME
Table 5 shows the training time and prediction time of dif-
ferent methods. AM is a time-consuming operation due to
the fact it needs to be operated every time step at decode
stage, so it needs 4 times the training time compared to
original seq2seq. The simplification of the encoder decreases
the training time, but it is still much longer than that of

the original seq2seq. Applying the n-step recurrent predic-
tion significantly reduces the training time because of the
reduction of the time steps in the decoder. A bigger n results
in a shorter training time. When n = 6, the training time
is very close to the original seq2seq, and when n = 12,
the training time is shorter than the original seq2seq. The
prediction time of every model are very short and have no
significant influence on real-time predictions.

E. VISUALIZATION
Figures 9-10 visualize the results at Olympic Center and
Dongsi station, and every subplot shows the different predic-
tions of different hours. Figure 9 is the visualization results of
the 12-step AAQP (LSTM), which has the best performance
at Olympic Center. At the first hour, the prediction is almost
equal to the real values. At the second hour the prediction
starts to lag behind the real values, but the lags are small.
Starting at the third hour, the lags become serious, and the
result is not trustworthy. Figure 10 is the visualization of the
12-step AAQP (GRU), which has the best performance at
Dongsi station. In the first hour, the prediction is very close to
the real values. At the second hour, small lags appear. Begin
with the third hour, the lags become obvious.

Predictions of all methods lag behind the observation val-
ues starting from the second hour, which is because the
accuracy decreases as the predictor predicts the PM2.5 at
the following hours. However, we had found two fairly good
modifications for this problem. One is adding layers, another
is using weather forecast. Therefore, we used 2 FC layers
in encoder and 2 RNN layers in decoder. The 4 layers had
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FIGURE 9. The visualization of the predictions at Olympic Center station.

FIGURE 10. The visualization of the predictions at Dongsi station.

64 units respectively. Additionally, we added hourly weather
forecast data as inputs. Although we didn’t have weather
forecast data, it is reasonable to use mock data which are true
data of future even if forecasting data are not as accurate as
true data because neural networks can adapt to the error of
forecasting data. Therefore, taking GRU as an example, the

computation of decoder-hidden state is changed to:

uτ = σ (Wu ∗
[
hτ−1,wf τ , pτ−1

]
+ bu) (31)

rτ = σ (W r ∗
[
hτ−1,wf τ , pτ−1

]
+ br ) (32)

h̃τ = tanh(Wh ∗
[
rτ ∗ hτ−1,wf τ , pτ−1

]
+ bh) (33)

hτ = (1− uτ ) ∗ hτ−1 + uτ ∗ h̃τ (34)
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FIGURE 11. The visualization of the predictions at Olympic Center station with two modifications.

FIGURE 12. The visualization of the predictions at Olympic Center station with two modifications.

where wf τ is weather forecast data of current time step τ .
12-step AAQP was used to show the effect of these mod-
ifications. The result is shown in Table 5-6 and the meth-
ods end with ‘‘M’’ are methods with the two modifications.
We can see that the total MAE and R2 are significantly
improved by the two modifications. The MAEs of first
4 hours slightly decrease while the R2s of first 4 hours

increase which means that the trend of prediction became
more similar to the observation value. From the tables we
can conclude that the 12-step AAQP (GRU) has better per-
formance than 12-step AAQP (LSTM) with two modifi-
cations. To show the details, the visualizations of 12-step
AAQP (GRU) of two stations are depicted in Figures 11-12.
These figures show that the lags have been significantly
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TABLE 6. R2 for the different methods and stations.

TABLE 7. R2 for the different methods and stations.

reduced except for large sudden changes. Moreover, at most
of times, the model can produce trustworthy predictions.
Thus, with sacrificing a little accuracy at first 4 hours, the lags
decreased obviously.

According to the above experimental results, it seems that
the predictors without two modifications did not approximate
the target but the prediction of first hour. Then, we can derive
an assumption of the apperance of lag. The lags appeared
since the predictor found that approximating the target could
not achieve high accuracy so the predictor found a strategy
to approximate the first output meanwhile make the first
output as accurate as possible. As a result, the first output
became extremely accurate and other outputs imitated the
first output. Because these outputs shared many parameters,
it was easy to approximate the first output. In this way,
the loss is smaller than approximating the target. By con-
trast, the weather forecast data gave more information to
the latter predictions so they could achieve higher accuracy
than imitation first output when they approximated the target.
More layers also helped the predictor improve its accuracy.
Besides, the predictor no longer focused on first output
because other outputs did not need to imitate it. Except for
our research, other researches [7], [20], [27], [45] that visu-
alized their predictions also have the same problem regard-
less of the deep learning or the machine learning. Particu-
larly, Du et al. [25] showed that their predictions hadn’t lag
with one output but the lag appeared when multioutput is
used. Therefore, the lag problem is common in air quality
prediction.

Our conclusion is that, the loss function needs to be
modified, so that the predictor can be restricted from

approximating first prediction especially for multioutput
scenario.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the n-step AAQP, which is an
attentionn-based seq2seq model, for air quality prediction.
The n-step AAQP had better performance than seq2seq
models. To accelerate the training process of seq2seq with
attention, a FC encoder replaced the RNN encoder of
seq2seq. In addition, position embedding was introduced
to help the FC encoder extract the sequential information.
Moreover, the performance of the AAQP was close to the
seq2seq with attention at the Olympic Center station and is
even better at Dongsi station. To overcome the shortcomings
of the accumulated errors as the time step grows, the n-step
recurrent prediction was applied. Through n-step recurrent
prediction, the performance of the AAQP was significantly
improved. In addition, the training of seq2seq was further
accelerated. The two promotions make seq2seq have more
accurate predictions and higher training speed. Particularly,
the AAQP can give a trustworthy alert 2 hours in advance
before sudden air pollution strikes. Additionally, the weather
forecast data are essential to improve the accuracy of air
quality prediction.

This work is focused on temporal attention and utilizes sin-
gle station information, but in practice, there are relationships
between different stations. Therefore, in the future, we will
work on spatial attention to further improve the performance
of the AAQP. In addition, we will find new loss function to
solve the lag problem and collect some weather forecast data
to improve the accuracy.
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