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ABSTRACT Because of the superiority in distinguishing the target from the background by learning
mechanism, discriminative classifier attracts a great deal of attention in target detection and tracking systems.
Generally, a discriminative classifier is learned from the initial image patch. However, the other algorithms,
using only one image frame inhibit the performance of the classifier. A novel training strategy of cascade
iteration, which is based on the multiple image frames, is used to initialize the discriminative classifier for the
purpose of weakening the initialization limitation and improving the algorithms’ adaptability and robustness.
Furthermore, to cope with the changes in natural images, online learning is usually adopted to enhance the
performance of classifiers, but it easily leads to tracking failures, especially in the case of full occlusion.
In order to attenuate the influence of full occlusion, a multi-classifiers parallel tracking algorithm is proposed
by designing the multi-classifiers and inducing extra constraints. The experiments are performed on the
visual tracking benchmark, and the proposed algorithm is more robust while the target is fully occluded. The
simulation results show that the proposed algorithm exhibits better performance compared to the state-of-
the-art trackers, especially with KCF, TLD, and STRUCK.

INDEX TERMS Visual tracking, cascade iteration, multiple classifiers, parallel tracking, correlation filters.

I. INTRODUCTION
Visual object tracking, tasked with locating a target in sub-
sequent frames automatically (given only its initial state),
is an utmost research direction in computer vision [1].
It is widely applied to activity analysis [2], intelligent
video surveillance [3], and human–computer interaction [4].
Although remarkable progress has been made in the past
decade [5]–[9], it is still a huge challenge for a robust tracking
due to illumination variation, occlusion or background clutter,
etc. [10].

As a core component of trackers, existing appearance
models are usually categorized as either generative or dis-
criminative. Generative models are ordinarily formulated
to search for a region that best matches a learned target
appearance [21]. Recent efforts in this domain include sub-
space learning [11], [12], sparse representation [13]–[16],
matrix decomposition [17], [18], graph regularization [19],
etc. By contrast, discriminative trackers treat tracking as a
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binary classification problem that distinguishes the target
from the background [22]. Various methods are developed
based on this tracking model, such as multiple instance learn-
ing [5], boosting [20], support vector machine [23], compres-
sive sensing [24], correlation filter [25], [29]–[31], etc.

Owing to the excellent performance of the discriminant
classifier, tracking-by-detection has become the most popular
framework for visual tracking. Kalal et al. [26] figured out
the long-term tracking by decomposing tracking into three
sub-tasks: tracking, learning, and detection, and derived the
well-known TLD algorithm. Hare et al. [27] proposed Struc-
tured Output Tracking with Kernels (STRUCK) algorithm
where the output space was defined as the translations of
the target relative to the previous frame. Tracking accuracy is
considerably improved in several benchmarks. Nevertheless,
STRUCK suffers from a high computational complexity of
its complex optimization and its training samples are still not
dense enough.

Recently, correlation filter based trackers have been
received great attentions for its real-time tracking [28].
Bolme et al. [29] proposed a correlation filter tracker via
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learning the minimum output sum of squared error (MOSSE).
Attributing to the high computational efficiency of cor-
relation filters, MOSSE achieves a significant improve-
ment in tracking speed. Henriques et al. [30] exploited
a circulant structure of shifted image patches in a kernel
space and proposed the circulant structure of tracking-by-
detection with kernels (CSK) method for tracking. Subse-
quently, Henriques et al. [31] extended the CSK to the kernel
correlation filters (KCF) algorithm with the multi-channel
HOG feature [32], which enabled further extension for high
dimensional features while remaining the real-time capabil-
ity, to improve the accuracy and robustness of tracker.

However, the aforementioned work can’t be well adapted
to dynamic backgrounds. By analyzing the KCF, we empir-
ically find that only one frame of the image is used to ini-
tialize classifier, which leads to lack of target interpreting
capability. Although additional information of the target is
slowly incorporated in later updating, the classifier is unable
to adapt to the rapid variation of the target and the robustness
is poor. Furthermore, the major defect of KCF is the updating
strategy, which directly fusions the weight of the new clas-
sifier and the target template with the old, can lightly lose
the original information of the target when the target is fully
occluded. As a result, the tracking fails at the last.

A. CONTRIBUTIONS
In this paper, we tackle these issues in recent Discriminative
Correlation Filter trackers, while restoring their hallmark
real-time capabilities. Themain contributions of the proposed
algorithm can be summarized as follows:

The first contribution is that we propose an adaptive learn-
ing method for classifier initialization, which is an iterative
classifier based on the cascademodel.Multiple image frames,
which contain the original information and the transformation
information of the target, are utilized to initialize classifiers
to make up the shortcomings that the classifier can’t adapt to
the target variance when it is initialized with a single sample.

The second contribution is the parallel tracking using
multi-classifiers, that can prevent the loss of the original
information during the variations of the target or background.
The strategy, using three classifiers, which independently
estimates the location of the target, can not only retain a
variety of information of target, but also make the classifier
perfectly adapted to the various variations.

The third contribution is to induce extra constraints to
minimize the pseudo target information and maximize the
performance of classifiers. The response of the classifier will
quickly increase after a rapid decrease, and the classifier will
be trained with pseudo target information when the target is
occluded. Therefore, it’s necessary to formulate an effective
measure to minimize the pseudo target information and max-
imize the performance of classifiers.

The fourth contribution is the extensive evaluation of the
state-of-the-art algorithms on benchmark data sets, where the
proposed algorithm achieves robust tracking performance.
Therefore, a significant improvement over state-of-the-art is

derived based on the experimenting on more challenging
datasets.

The rest of the paper is organized as follows. Section II
reviews the work related to the kernelized correlation filters
tracking. Section III introduces the implementation of multi-
classifiers parallel tracking algorithm in detail. Section IV
then performs a number of comparative experiments on visual
tracking benchmark [33]. Section V finishes this paper with
contributions and suggestions for future researches.

II. BASELINE APPROACH: THE KCF TRACKER
We base our approach on the kernelized correlation fil-
ters (KCF) [31], which achieves the highest speed and pre-
cision among the recent top-performing trackers. The key of
KCF tracker is that the skill of using cyclic matrix structure
to enhance the discriminative ability of track-by-detector
scheme, which makes the algorithmmore efficient. The over-
all tracking procedure can be summarized into Algorithm 1.
In the following, we briefly review the key idea of KCF
tracker.

In KCF, the tracking problem is treated as the classification
problem. The classifier is trained with a image patch x of
size M × N that is centered around the target. The patch is
twice larger than the size of the target. The tracker considers
all cyclic shift xi, i ∈ {0, . . . ,M − 1} × {0, . . . ,N − 1} as
the training examples for the classifier. The matching score
yi ∈ [0, 1] is generated by a Gaussian function, and the
classifier f (x) = 〈φ (xi) , ω〉 is trained by minimizing the
ridge regression error:

ε = argmin
ω

m∑
i=1

|yi − 〈φ (xi) , ω〉|2 + λ ‖ω‖2 (1)

where φ(x) is the mapping to a Hilbert space induced by the
kernel κ , and λ ≥ 0 is a regularization parameter that controls
the complexity of themodel and avoids overfitting. The larger
λ ≥ 0, the sparser the parameters.

Defining kernel function κ(x, x ′) = φ(x)Tφ(x ′), and
expressing the solution ω as a linear combination of inputs:
ω =

∑
i
αiφ(xi), the discriminant function of kernel function

space is expressed as

f (z) = wT z =
n∑
i

αiκ(z, xi) (2)

The closed-form solution to the classifier in kernel space
is given by [34]

α = (K + λI )−1y (3)

where K is the kernel matrix with elements Kij = κ(xi, xj),
I is the identity matrix, y represents a vector whose elements
are yi, and α is the vector of coefficients αi.
In this case, the analytical tool, namely circulant matrices,

can be used to avoid the ‘‘curse of kernelization’’. Since K is
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TABLE 1. The KCF Algorithm.

a circulant matrix, α̂ can be simplified as follow by diago-
nalizing K [35],

α̂ =
ŷ

k̂xx + λ
(4)

where k̂xx is defined as kernel correlation in [31]. ˆ denotes
the Discrete Fourier Transform (DFT).

In the KCF tracker, we adopt the Gaussian kernel

K(x, x ′) = exp
(
−

1
α2
‖x − x ′‖2

)
which can be applied to the circulant matrix trick as below:

kxx
′

= exp
(
−

1
σ 2

(
‖x‖2 + ‖x ′‖2 − 2F−1

(
x̂�x̂ ′

)))
(5)

As the algorithm only requires dot-product and FT/IDFT,
the computational cost is in O (n log n) time.

During the tracking stage, the circulant matrix trick can
also be applied to detection to speed up the whole process.
A patch z is cropped out in the subsequent frame. The match-
ing score of z can be evaluated via

f̂ (z) = k̂xz � α̂ (6)

The position of the target in the next frame is estimated
by (6), that is, the position of the maximum response is the
target position.

Intuitively, for a single input z, calculating f (z) for all sam-
ples can be regarded as a temporal (spatial) filter, and f (z) is a
linear combination of kxz weighted by the learned coefficient.
Since this is a filtering operation, it can be formulated more
efficiently in the Fourier domain.

The classifier model α̂ and the target appearance model xi
are thus updated with a learning rate µ frame by frame as

αi = (1− µ)× αi−1 + µ× α
′

i

xi = (1− µ)× xi−1 + µ× x
′

i (7)

III. OUR APPROACH
In this section, we first propose an adaptive learning method
for classifier initialization, which improves the target inter-
preting capability and the tracking performance. Then we
present a novel design of multi-classifiers parallel tracking.
Furthermore, we induce extra judgment constraints for classi-
fier to enhance the robustness of the tracker. Finally, we intro-
duce the multi-channel HOG feature, that can simplify the
recently-proposed multi-channel correlation filters.

A. CASCADED ITERATIVE TRAINING MODEL
The adaptive learning initialization method, which is based
on cascaded iterative classifier model, utilizes multiple image
frames to initialize classifiers. In the first iteration, a weak
classifier is derived by fusing classifiers with equal-weighted,
which are trained with each sample. Then, the obtained weak
classifier is inputted with multiple initialization frames, and
the hypothesis probability of the target is adaptively adjusted
according to the response of weak classifier. Finally, a strong
classifier is composed of weak classifiers with appropriate
weights. The specific process is illustrated as follows.

With training N basic classifiers α′n with N initialization
frames xn,n = 1, . . . ,N , the corresponding weight vectors
of the weak classifier are defined as

Wm = {wm1,wm2, . . . ,wmN } , m = 1, . . . ,M (8)

In (8), when m = 1, w1n = 1/N , n ∈ [1,N ]. m denotes
the number of iterations. A weak classifier is trained at each
iteration. The weak classifier is expressed as

αm =

N∑
n=1

wmn · α′n (9)

The weak classifier is evaluated on initialization frame xn
to estimate target position P′mn. The estimated position is
compared with the actual target position Pn, and the detection
error is given by

em =
N∑
n=1

wmn · I (P′mn 6= Pn) (10)

In (10), the value of I
(
P′mn 6= Pn

)
is 1 when P′mn 6= Pn,

otherwise the value of I
(
P′mn 6= Pn

)
is zero. ( P′mn 6= Pn is

considered if the predicted target position P′mn is within a dis-
tance threshold of the actual target positionPn). The detection
error em denotes the sum of weights of basic classifiers while
the false detection emerges. Then the weight of the weak
classifier obtained in the mth iteration is given by

βm =
1
2
log

(
1− em
em

)
(11)

In (11), when em ≤ 1/2, βm ≥ 0, and βm decreases with
em increasing. It means that the weak classifiers with more
false detection have weaker effects in the strong classifier.

Adjust the weight vectorWm + 1 in the next iteration,

w(m+1)n =
wmn
Qm

exp
(
−βm · S(P′mn = Pn)

)
(12)

VOLUME 7, 2019 63101



D. Feng et al.: Cascaded Iterative Training Model and Parallel Multi-Classifiers for Visual Object Tracking

FIGURE 1. Original image frame.

where S(P′mn = Pn) represents that its value is 1 when
P′mn = Pn, otherwise its value is zero.Qm is an normalization
factor, which can be calculated by

Qm =
N∑
n=1

(
wmn · exp

(
−βm · S

(
P′mn 6= Pn

)))
(13)

The new weight vector Wm + 1, obtained by (12), will
distribute a higher weight to the basic classifier which is
trained with the samples of error detection. Accordingly,
in next iteration, it will be highlighted in the corresponding
weak classifier.

The basic classifier is fused again with the new weight
vector to model a new weak classifier. AfterM iterations,M
weak classifiers are obtained. Finally, combining theM weak
classifiers with the weight β, a strong classifier can be derived
as.

α =

M∑
m=1

βm · αm (14)

In (14), the strong classifier α, which is initialized with
multiple image frames, is able to accommodate to the change
of target.

B. INITIALIZATION OF THE CLASSIFIER
In the previous section, the classifier initialization model and
its calculation method are given in detail. In the coming sec-
tions, we will show the initialization of the classifier from two
aspects: preprocessing and training the taking of a ‘‘Coke’’
video is used as an example.

1) PREPROCESSING
The ensemble samples are replaced with the cyclic shifts of
the base sample in the sampling process. Taking into account
the integrity of the target after cyclic shifts, the tracking
region is generally centered as the position of estimated tar-
get, and doubles the size of the target to provide some context
and additional negative samples.

As shown in Fig. 1, the two-dimensional image f is a
frame of the video, and the beverage bottle is the target to be
tracked.

FIGURE 2. Target template.

FIGURE 3. Results of windowed function. (a) Original image. (b) Result of
windowed function.

In Fig. 1, the dotted rectangle represents the position and
size of the target, while the solid rectangle denotes the target
template. The tailored target template x1 is shown in Fig. 2.
Since the Fourier transform is periodic, all calculations are

performed in the frequency domain, and the image boundary
is not sufficiently considered [36]. For aperiodic images,
the high-frequency noise is generated at the image bound-
aries. As the standard of correlation filters, the input patches
are weighted by a cosine or sine window. The processing of
a cropped n× n image xraw is given by

xij = (xrawij − 0.5) sin
(
π i
n

)
sin
(
π j
n

)
∀i, j = 0, . . . , n− 1 (15)

After processed by Eq. (15), the pixels near the boundary
are given 0 weights, which can smoothly remove discontinu-
ities. The results are shown in Fig. 3.

Fig. 3 (a) is a gray target template, and Fig. 3 (b) is the
result of windowed function. It can be seen that the windowed
function eliminates most of the background interference in
the target template and only retains the target, which makes
base sample undistorted during cyclic shifts, and improves
the accuracy of classifiers.

2) TRAINING OF THE CLASSIFIER
As previously described, the training samples are composed
of the shift of a base sample, so we must specify a regression
target for each one in y. The regression target y simply follows
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FIGURE 4. Expected output.

a two-dimensional Gaussian function which takes a value of 1
for a centered target position (i′, j′) and smoothly decays
to 0 as the distance increases. Assuming that the spatial
bandwidth of the Gaussian function is s, the smaller s,
the steeper the Gauss function. That means that the maximum
value of the classification results is more prominent. How-
ever, if s increases, the samples closer to the target will get
higher scores. The expected output of the classifier y is given
by

yij = exp
(
−

((
i− i′

)2
+
(
j− j′

)2)
/s2
)

∀i, j = 0, . . . , n− 1 (16)

According to the target template in Fig.3 (a), the expected
output is shown in Fig. 4.

The peak of the Gaussian function in Fig.4 is the posi-
tion of the target. Gaussian targets are smoother than binary
labels, and have the benefit of reducing ringing artifacts in the
Fourierdomain, which will receive a more accurate position
estimate than binary labels.

The continuous 15 frames of Coke are used to initialize the
classifier. The target template is extracted from each image
frame. As formulated in (4), α′n that represents 15 basic clas-
sifiers is trained by the kernel circulant matrices (sample set)
and expected output (sample label), where n = 1, 2, · · · , 15.
Here, the initial weights of these basic classifiers are w1n =

1/15. Then, with the initial weight, these basic classifiers are
fused to derive a weak classifier α1. The calculation flow of
the weak classifier is shown in Fig. 5.

Next, the weak classifier is utilized to estimate the position
of the target in the above 15 initialization frames. According
to the actual position of the target, the detection error can be
calculated. Then we can calculate and update weights vector
of weak classifiers by the detection error. The whole process
is shown in Fig. 6.

A weak classifier can be obtained at each iteration process
(shown in Fig. 5 and Fig. 6). By iterating 10 times, we can
derive 10 weak classifiers and their assigned weights. Then
these weak classifiers are fused to obtain a strong classifier
α (Eq. (14)). The strong classifier α contains the original
and transformation information of the target, so the adapt-
ability and anti-interference of the algorithm is improved.

In addition, it does not require any prior knowledge about the
target in the process of training the classifier [37], [38].

C. DESIGN OF MULTI-CLASSIFIERS
When the target is occluded, the target template will be
gradually updated to the pseudo target, which is utilized to
train the classifier. It will contribute to a loss of the original
information. Then, the pseudo target will be tracked due to the
trained classifier, and the real target will be lost. In order to
tackle this problem and combining with the temporal context
information, we propose a novel multi-classifiers parallel
tracking method on the bases of the kernelized correlation
filter. On account of the importance of previous video infor-
mation, three classifiers are designed and trained to adapt to
the dynamic variations and occlusion in the process of target
detection and tracking.
a) The first classifier α1 , a benchmark classifier, is used to

detect the occurrence of the object with initial state, which is
never updated in the further detection and tracking.
b) The second classifier α2 is configured to update the

target template when the target attitude changes or non-rigid
deformation occurs, and is updated when the responses of
α1 and α2 are greater than that of the third classifier. The
two classifiers contain the original information and trans-
formation information of the target, which can ensure the
comprehensiveness of the target information even if the target
is occluded.

c) The third classifier α3 is used to update the target
template (pseudo target template) with occlusion. Before the
target disappears, it ensures that the tracker will not lose the
position under the circumstances of the target is occluded.
In addition, it also can prevent α1 and α2 from updating with
the pseudo template. When the occluded target reappears, the
first and second classifiers still can successfully detect the
real target.

The above three classifiers are initialized with the strong
classifier as described in section III-A. Then the target loca-
tion is estimated independently. A robust classifier can not
only retain multiple information, but also adapt to various
variations of the target.

D. MODEL ONLINE UPDATE SCHEME
To obtain a robust performance, extra constraints that are dif-
ferent from prior work in KCF is induced in the update stage
to further enhance the robustness of the proposed algorithm.

Since target changes slowly during the movement, the dif-
ference of two adjacent frames is relatively small. The output
response of the classifier decreases when the target or back-
ground varies. However, there are great shortcomings on the
updating strategy of directly weighted fusion.When the target
is occluded, the target template will be gradually updated to
pseudo-target and the classifier will be trained with pseudo
target information. Then the response will quickly increase
after a rapid decrease. At this moment, the target template
already contains more pseudo target information, and the
classifier treats the pseudo target as a real target that is to be
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FIGURE 5. Iteration diagram of weak classifier.

FIGURE 6. Schematic diagram of weight vector calculation.

tracked. In order to minimize the pseudo target information,
we induce extra constraints for the updating of classifiers and
target template. That is,

fmin(1,2,3) > T (17)

In (17), fmin(1,2,3) denotes the minimum output response
of the three classifiers. T is a threshold that distinguishes
between slow and large variations in the target. When the
response is greater than the threshold, it indicates that the
changes in the target between adjacent frames are small.
The classifier and the template are updated when the output
responses f1, f2, f3 are all greater than the threshold T , which
can prevent classifiers from integrating non-target informa-
tion.

Asmentioned in previous section, the first classifier retains
the original information. It is utilized to estimate the position
of target with initial state and never be updated in the subse-
quent detection and tracking. It can prevent the second and
third classifiers from losing the original information caused
by updating.

The second classifier is updated when the output responses
of the classifiers satisfy the condition,{

fmin(1,2) ≥ f3
fmin(1,2) > T .

(18)

where fmin(1,2) represents the minimum value of the responses
of both the first classifier and the second classifier. It means
that there is no occlusion or partial occlusion in the moving
progress. The information of changes of the target is used to
update the second classifier and the target template.

The other case is that the third classifier is updated when
the responses of the classifiers meet the condition,{

T > fmax(1,2)

f3 ≥ fmax(1,2).
(19)

In this case, the target changes greatly with the movement,
such as occlusion or larger deformation. The information of
changes of the target is used to update the third classifier and
the target template, so as to ensure that the search region of
the classifier stays near the position where the target greatly
changes. Under this circumstance, the correct detection is
performed.

E. MULTI-CHANNEL HOG FEATURES
It can be Noticed that all kernels’ correlation are based on
either dot-products or norms of the arguments, so we can
easily extend the single-channel to multi-channel and replace
the natural gray pixels of the original imagewithmore dimen-
sion features. If the description of the image contains multiple
channels, it allows us to sum the result for each channel in
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the Fourier domain. The kernel correlation filter uses multi-
channel HOG features to get a better tracking performance.

Assume that a vector x concatenates the individual vectors
for C channels(e.g. 31 gradient orientation bins for a HOG
variant [26]),

x = [x1, x2, . . . , xc] (20)

In (20), xi denotes a single-channel feature descriptor,
and C channels are combined together to describe a pair
of images. According to the response, we can estimate the
position of the target because multi-channel filters [39] allow
multiple inputs simultaneously, but only one output.

By linearity of the DFT, a dot-product can be computed
by simply summing the individual dot-products for each
channel. We can apply this reasoning to the linear kernel
K(x, x ′) = xT x ′, obtaining the multi-channel analogue of
(21),

kxx
′

= F−1
(∑

C

x̂∗C � x̂
′
C

)
(21)

As a concrete example, the multi-channel extension from
the previous section simply yields

kxx
′

=exp

(
−

1
σ 2

(
‖x‖2 +

∥∥x ′∥∥2 − 2F−1
(∑

C

x̂∗C � x̂
′
C

)))
(22)

IV. EXPERIMENTS
We present an outline of our method in Algorithm 2 and more
implementation details are discussed as follows.

A. EXPERIMENTAL SETUPS
1) IMPLEMENTATION
In this section, our algorithm is implemented in MATLAB.
The experiments are performed on a PC, equipped with Intel
(R) Core i5-3470 running at 3.2GHZ and 8G memory. Then
we compare the proposed method with several the state-of-
the-art visual tracking methods and all the tracking results are
using the reported results to ensure a fair comparison.

2) DATASET
Comparative experiments are performed on standard visual
tracking dataset: OTB-2013, which contains many sequences
annotated with ground truth bounding boxes. It comprises a
large variety of environments, including illumination vari-
ation(IV), occlusion(OCC), scale variation(SV), in-plane
rotation(IPR), out-plane rotation(OPR), background clut-
ters(BC), deformation(DEF), fast motion(FM), etc. These
attributes represent the challenges in visual tracking, so this
dataset has been frequently used to evaluate the general per-
formance of visual trackers.

3) PARAMETERS SETTINGS
Our tracker requires few parameters whose values are given
and fixed for all videos. We set the regularization parameters

TABLE 2. Multi-classifiers Parallel Tracking Algorithm.

λ to 10−4. Spatial bandwidth s = 0.1, is used to generate
the Gaussian function labels. The adaptation rate is set to
0.02 and the feature bandwidth is 0.5. We set extra area
surrounding the target to 2 for providing some context and
additional negative samples. The threshold T is set to 0.25
for all sequences except, the threshold of ‘‘Basketball’’ is set
to 0.4.

4) EVALUATION METHODOLOGY
On the one hand, for the quantitative analysis, all trackers are
evaluated by the metric of frame per second (FPS). The FPS
plotted indicates the numbers of frames which are processed
per second. On the other hand, for the qualitative analysis,
all trackers are evaluated by the metric of precision. For
precision plot, one frame is treated as a successful tracked
frame once the Euclidean distance between the center of
predicated bounding box and corresponding ground-truth box
is lower than a specified threshold [40]. A higher precision
at low thresholds demonstrates the tracker is more accurate.
Precision at threshold 10 pixels is chosen as the representative
precision value.

B. QUANTITATIVE ANALYSIS
In this section, we provide a comprehensive comparison
of our algorithm with other 6 state-of-the-art trackers,
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TABLE 3. Running speed on video sequences.

TABLE 4. Representative precision value.

namely KCF [31], TLD [26], STRUCK [27], MOSSE [29],
WMIL [41] and CT [7]. The running speed demonstrating
the computational efficiency of our framework is shown
in Table 3, where the processing time is from reading the first
frame of video to the end of tracking the last frame (excluding
video display and error calculation).

In addition, we also record the representative precision
value is shown in Table 4. By combining Table 3 with table
4, we can synthetically evaluate the tracking performance.

It can be seen that our approach improves the real-time
capability and precision significantly. Although the run-
ning speed is only second to MOSSE, it is worth to men-
tion that the tracking precision of our algorithm surpasses
MOSSE by a relatively large margin. Similarly, precision of
STRUCK is slightly higher than our algorithm on ‘‘Girl’’ and
‘‘Sylvester’’, but the tracking speed of our algorithm is about
20 times faster than that of STRUCK.

C. QUALITATIVE ANALYSIS
In order to visualize the tracking performance of the pro-
posed algorithm in various interferences, we provide tracking

results of some representative frames, and draw the precision
curve to directly reflect the tracking performance.

1) ROTATION SCENE TESTING
In order to validate the tracking effect under the condition of
target rotation, the ‘‘MountainBike’’ video is selected as the
test sequence, where person and vehicle are the target to be
tracked. The tracking results are shown in Fig. 7.

Although the target rotates during the movement, it can be
seen that our algorithm does not deviate and lose the target
in the whole process, and the tracking effect is robust. The
tracking precision curve is shown in Fig. 8 that shows that
the accuracy of the proposed algorithm is higher than other
algorithms.

2) PARTIAL OCCLUSION SCENE TESTING
The ‘‘Walking’’ sequence is selected for the testing to verify
the tracking effect when the target is partially occluded. The
pedestrian is the target to be tracked. The tracking results are
shown in Fig. 9.
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FIGURE 7. Results of rotation scene testing – MountainBike. (a) the 45th

frame. (b) the 70th frame. (c) the 95th frame. (d) the 118th frame. (e) the
175th frame. (f) the 213th frame.

FIGURE 8. Tracking precision curve-MountainBike.

In Fig. 9, we can conclude that although the target is
partially occluded by a street lamp (the 88th frame) during the
movement, the proposed algorithm still performs well. Track-
ing precision curve is shown in Fig. 10. We can discover that
the precision of the algorithm is higher than other algorithms.

3) ROTATION & PARTIAL OCCLUSION SCENE TESTING
In order to confirm the tracking of the target in the presence
of both rotation and blocking, Girl video is selected as the test
data. Fig. 11 shows the tracking results.

As shown in Fig. 11, the girl’s face is the target, and the
boy is the shelter. The tracking box does not deviate from the
target in the whole tracking process, even though the target
rotates and is occluded (the 427th frame). When the target
is occluded, the classifier and target template stop updating
when the output response of the classifier decreases to a

FIGURE 9. Results of partial occlusion scene testing –Walking. (a) the
60th frame. (b) the 88th frame. (c) the 180th frame.

FIGURE 10. Tracking precision curve –Walking.

certain threshold. So the classifier still retains the information
of the target, and the target is still detected successfully when
the target reappears.

The tracking precision curve is shown in Fig. 12. It can
be observed that the precision of the proposed algorithm
is higher than other algorithms and is only second to
the STRUCK algorithm. While the precision of the pro-
posed algorithm is slightly different from that of STRUCK
(Table 1), the running speed of our algorithm is 10∼ 20 times
faster than that of the STRUCK algorithm (obtainable from
Table 4).

4) ILLUMINATION VARIATIONS & ROTATION & PARTIAL
OCCLUSION SCENE TESTING
Based on the previous experiments, the tracking results on
‘‘Doll’’, which includes illumination variations, target rota-
tion and occlusion interference, are shown in Fig. 13. The
tracking precision curve is shown in Fig. 14.

We can see that the tracking box of the algorithm can track
the target accurately in the whole process (Fig. 13) and the
precision of our approach is higher than other algorithms
(Fig. 14).
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FIGURE 11. Results of rotation & partial occlusion scene
testing–Girl. (a) the80th frame. (b) the105th frame. (c) the155th

frame. (d) the427th frame. (e) the441th frame. (f) the447th frame.

FIGURE 12. Tracking precision curve –Girl.

5) ILLUMINATION VARIATIONS & FULL OCCLUSION SCENE
TESTING
The occlusion is divided into partial occlusion and full occlu-
sion. The experiment chooses Coke video, where the canned
beverage is the target to be tracked to carry out illumina-
tion variations and occlusion test. The result is displayed
in Fig. 15.

During the process of movement, the target is occluded in
a large area (the 39th frame), and reappears (the 45th frame)
with illumination variations. Despite these interferences, our

FIGURE 13. Results of illumination variations & rotation & partial
occlusion scene testing –Doll. (a) the 2341th frame. (b) the 2399th frame.
(c) the 2555th frame.

FIGURE 14. Tracking precision curve -Doll.

tracker can still accurately estimate the position of the target.
The target is fully occluded (the 258th frame) and lasts about
10 frames. In this case, the tracking box of the proposed
algorithm stays at the vanishing position of the target, when
the tracker searches the target. When the target reappears (the
268th frames), the tracker can still detect the real target and
track it successfully.

In this paper, the algorithm adopts multiple classifiers to
estimate the target position independently, avoiding losing the
information of the real target caused by using pseudo target
information to train and update the classifier when the target
is fully occluded. Therefore, the proposed algorithm has good
adaptability and robustness to full occlusion interference. The
tracking precision curve is presented in Fig. 16. It can be seen
that our method is more accurate than other algorithms.

6) ATTITUDE VARIATIONS SCENE TESTING
In order to validate the effectiveness of our algorithm to
attitude variations, ‘‘Sylvester’’ video is selected as the test
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FIGURE 15. Results of illumination variations & fully occlusion scene
testing -Coke. (a) the 39th frame. (b)the 45th frame. (c) the 175th frame.
(d) the 254th frame. (e) the 258th frame. (f) the 268th frame. (g) the 275th
frame. (h) the 288th frame.

sequence. Cat doll to be tracked has attitude variations due
to various rotations and pitching. The results are shown
in Fig. 17.

As is shown in Fig. 17, when it is vertically downward (the
1140th frame), the target attitude varies greatly which leads
to texture changes, so that the extracted features are fully
different from the original target. Eventuallymany algorithms
failed to detect the target. Our algorithm uses multiple image
frames to initialize the classifier, which makes the classifier
more expressive to the target, and has stronger adaptability to
the attitude variations. The tracking precision curve is shown
in Fig. 18. It can be seen that the tracking precision of the
proposed algorithm is slightly lower than that of the
STRUCK. However, the tracking speed of the pro-
posed algorithm is considerably faster than that of
STRUCK.

FIGURE 16. Tracking precision curve -Coke.

FIGURE 17. Results of attitude variations scene testing -Sylvester. (a) the
962th frame. (b) the 1017th frame. (c) the 1140th frame. (d) the 1175th

frame. (e) the 1195th frame. (f) the 1280th frame.

7) BACKGROUND CLUTTERS SCENE TESTING
‘‘Freeman4’’ video is selected for experimental testing to
verify the anti-interference and stability of the proposed algo-
rithm, the test results is provided in Fig. 19.

From Fig. 19, we can see that the face is the target that is in
a chaotic environment with a variety of interference factors,
such as constantly waving arms, newspapers and books and
other shielding. When the target is occluded (the 61th frame)
and reappears (the 63th frame), other trackers drifts except
our approach. In this case, the proposed algorithm adopts a
strategy that the third classifier is updated with the pseudo
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FIGURE 18. Tracking precision curve -Sylvester.

FIGURE 19. Results of background clutter scene testing -Freeman4.
(a) the 48th frame. (b) the 52th frame. (c) the 61th frame. (d) the 63th

frame. (e) the 68th frame. (f) the 78th frame.

target, and the first and second classifier are not updated,
so the rectangle box stays near the vanishing position of the
target. When the target appears again, it is detected accurately
by the first and second classifier, so the algorithm can still
track the target accurately even if the target is occluded
many times. The tracking precision curve of the algorithm
on the Freeman4 is shown in Fig. 20, which shows that the
precision of the proposed algorithm is much higher than other
algorithms.

In summary, we can conclude that the proposed algorithm
has strong adaptability and anti-interference to illumination
variations, occlusion and background clutter, etc. So the anti-
interference and adaptability of our algorithm is stronger than
other algorithms.

FIGURE 20. Tracking precision curve -Freeman4.

V. CONCLUSIONS AND FUTURE WORK
A. CONCLUSIONS
In this paper, we studies the problem of visual object track-
ing, in which the target or background varies frequently.
We propose a novel design of parallel tracking by multi-
classifiers. Three classifiers are used to estimate the position
of the target independently. Furthermore, for initialization
issues, we present an adaptive learning method for classifier
initialization. The method is an iterative classifier based on
cascaded iterative. Multiple image frames, which contain the
original information and transformation information of the
target, are utilized to initialize the discriminative classifiers
for the purpose of improving adaptability and robustness.
In addition, we also induce extra constraints for the classifiers
updating to minimize the pseudo target information and max-
imize the performance of classifiers. And an extensive set of
experiments is also performed. The results of the experiments
clearly demonstrate the superiority of our algorithm to other
state-of-the-art tracking methods. It is worth to emphasize
that our approach not only performs superiorly, but also runs
at a very fast speed that is extremely appropriate for real-time
applications.

B. LIMITATIONS AND FUTURE WORK
Although our approach has yielded satisfied results, there
are still some aspects that need to be addressed to get more
reliable and general system based on the proposed algo-
rithm. For instance, the implementation of our algorithm
only uses HOG features, but other feature descriptors can be
combined to improve the tracking performance in the future
research. In addition, the rapid movement of the target can
easily result in tracking failure, but this issue is not covered
in this paper. The target scale variations are not taken into
account either, and the tracking precision is seriously affected
when a target changes in the scale. Furthermore, the tracker
does not perform well when the position changes greatly
due to occlusion. In that case, it will cause the target to
detach from the search area. Eventually, the target is lost.
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However, our algorithm has no error correctionmechanism of
target loss yet, which needs to be designed in the subsequent
research.
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