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ABSTRACT Deep learning is a growing trend in medical image analysis. There are limited data of
deep learning techniques applied in Chest X-rays. This paper proposed a deep learning algorithm for
cardiothoracic ratio (CTR) calculation in chest X-rays. A fully convolutional neural network was employed
to segment chest X-ray images and calculate CTR. CTR values derived from the deep learning model
were compared with the reference standard using Bland—Altman analysis and linear correlation graphs,
and intra-class correlation (ICC) analyses. Diagnostic performance of the model for the detection of heart
enlargement was assessed and compared with other deep learning methods and radiologists. CTR values
derived from the deep learning method showed excellent agreement with the reference standard, with mean
difference 0.0004 £ 0.0133, 95% limits of agreement —0.0256 to 0.0264. Correlation coefficient between
deep learning and reference standard was 0.965 (P < 0.001), and ICC coefficient was 0.982 (95% CI 0.978—
0.985) (P <0.001). Measurement time by deep learning was significantly less than that of the manual
method [0.69 (0.69-0.70) VS 25.26 (23.49-27.44) seconds, P < 0.001]. Diagnostic accuracy, specificity,
and positive predictive value were comparable between the two methods. However, deep learning showed
relatively higher sensitivity and negative predictive value (97.2% vs 91.4%, P = 0.004; and 96.0% vs 89.0%,
P = 0.006; respectively) compared with the manual method. Performance of this computer-aided technique
was demonstrated to be more reliable, time and labor saving than that of the manual method in CTR

calculation.

INDEX TERMS Machine learning, deep learning, object segmentation, X-rays application, cardiomegaly.

I. INTRODUCTION

Chest X-ray is the most commonly used modality in clinical
practice for screening for lung and heart diseases. As a first-
line imaging tool, Chest X-ray is cheap, readily available
and easy to interpret. Cardiothoracic Ratio (CTR) derived
from Chest X-ray is a widely used radiographic index to
assess cardiac size and provide prognostic information in both
congenital and acquired heart diseases [1]-[3]. Enlarged CTR
often indicates structural cardiac abnormalities and cardiac
enlargement related diseases, and has been shown to associate
with functional status and adverse clinical outcomes [3].
However, manual calculation of CTR in routine clinical prac-
tice is subjective and time consuming, and may introduce
large variations across interpreters. Emerging computerized

The associate editor coordinating the review of this manuscript and
approving it for publication was Tomasz Trzcinski.

tools applied to medical image processing help improve diag-
nosis and simplify expert workflow. As for Chest X-ray,
however, accurate interpretation in computer-aided diagnos-
tic schemes is extremely challenging due to the complexity
of anatomical structures. Lung and heart boundaries need
to be accurately identified in Chest X-rays before further
analysis including CTR calculation. Automatic lung and heart
fields segmentation in computer-aided diagnostic systems is
an important and challenging task.

Recently, with technical advances in computer science,
machine learning has been increasingly used in the medical
imaging field. As one type of machine learning, deep learn-
ing is emerging as the leading machine-learning algorithm
in medical imaging analysis and computer vision domains
and is a growing trend in medical big data analysis [4]-[6].
It has been successfully applied in medical imaging field
with impressive performance, including image classification,
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FIGURE 1. Examples of various heart and lung segmentation by radiologists. These figures show high shape variability and boundary
ambiguity of the lung field and heart borders due to individual differences.

segmentation and object detection [7]-[12]. A typical
approach of deep learning called convolutional neural net-
works (CNNs) automatically learns mid-level and high-level
abstractions obtained from raw data, and has demonstrated to
be a powerful method for tasks related to medical image pro-
cessing [5]-[6]. Automated segmentation of liver and tumors
and other structures in the brain from CT and MR imaging has
been reported using CNNs with promising results [9]-[11].
However, there has been limited application of the exciting
deep learning technique in Chest X-rays [13]-[14]. Auto-
mated analysis of Chest X-ray images can be well performed
by the deep learning method. Reference [25] attempts to use
the deep learning classic structure U-net on a limited data set
to calculate CTR, and obtains good results.

In the present study, we proposed a deep learning algorithm
to segment lung and heart regions in Chest X-rays and calcu-
late CTR accordingly. The performance of this computerized
method was evaluated in terms of accuracy and speed of
computation. This work is a demonstrations of deep learning
applied to cardiovascular problem diagnosis on X-ray images.

Il. MATERIALS AND METHODS

A. DATASET

This study was performed at the Radiology Imaging Center
of our hospital. The study complied with the Declaration of
Helsinki and was approved by the Institutional Review Board.
A total of 5000 postero-anterior chest X-rays of 5000 patients
in different age groups were consecutively collected from
picture archiving and communication systems. Substantial
varieties were observed across different patient age groups,
pathological conditions, as well as imaging sizes in this
dataset. In order to protect the patients’ privacy (e.g., patient
name, age, date of examination), all the images were desen-
sitized before using.

B. TRAINING AND VALIDATION SET

This dataset was randomly split into two parts: 4000 (80%)
for training and 1000 (20%) for validation. The training set
was used to train our model while the validation set was used
to estimate how well our model had been trained. In this work,
the images for training and validation were labeled with lung
and heart segmentation. As shown in Figure 1, the regions of
red, green, blue are represented for the right lung, left lung
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FIGURE 2. Measurement of transverse diameter of thorax and heart. The
longest line measures the internal diameter of the chest as “T".
Transverse heart diameter is determined by summing the lengths of
“T1” and “T2” where “T1” is the transverse diameter on the right side of
the heart and “T2" is the one on the left side.

and heart respectively. In this process, a software called
ITK-SNAP [15] was adopted for experts to draw and edit the
masks conveniently.

C. TESTING SET

Additional 500 X-ray images were later collected to assess
the CTR calculation performance of our model, for which,
CTR calculation both by deep learning and manual method
was performed. We invited two experienced radiologists to
measure the transverse thoracic diameter and the transverse
heart diameter independently. An example of measurement
is shown in Figure 2. Reference standard of each CTR was
determined by calculating the average CTR from the two radi-
ologists’ measurements. A third measurement was performed
to achieve a final consensus result if the difference of CTR
values was less than 0.05.In addition, a separate radiologist
was also invited to measure the 500 X-ray images and calcu-
late CTR independently, performance of this manual method
was compared with the deep learning model. Furthermore,
100 chest X-ray images were randomly selected to evaluate
intra- and inter-observer agreement of manual measurements
of CTR.
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FIGURE 3. Overview of our proposed framework.

D. DEEP LEARNING

Our automatic calculation of CTR was based on accurate lung
and heart segmentation. It mainly contained two steps: 1) lung
and heart segmentation, 2) CTR calculation. In this work,
we used deep learning techniques to automatically perform
segmentation task. Specifically, a fully convolutional neural
network inspired from Unet [16] was employed to segment
left lung, right lung and heart region from an X-ray image.
After extracting contours from left-right lung and heart seg-
mentation masks, interest points were located to measure
heart transverse diameters and chest transverse diameters for
CTR calculation. Figure 3 shows overview of our proposed
framework.

E. DATA PREPROCESSING

Due to heterogeneity observed in the scale of image intensity,
we performed gray-scale transformation for image normal-
ization. For every single image, we used window center wc
and window width ww stored in its dicom lookup table to map
the output pixel values to a gray scale of 0 — 255. For each
pixel p in a single dicom, the gray transformation process to
p was defined as follows:

1) threshyi, = we —ww/2 and threshy,, = we + ww/2

2) p=255,if p > threshpgy

3) p=0,if p < threshy,,

4) p= % if threshyin < p < threshygy
where wc is the window center and and ww denote its win-
dow width of the dicom image. As a result, this process
adjusted all the images to achieve the desired effect for
visualizing heart and lung field.

Since chest X-ray images we collected exhibit substan-
tial variety in image sizes where image widths and heights
ranging from 2000 to 3100 pixels, image resize process was
required to unify the image size before feeding images into
the network. In order to keep sufficient image visual details
for delineating heart and lung contours, we simply cropped
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and rescaled images. Firstly, we center cropped to the largest
square region of images. Secondly, we downscaled all images
to 800 x 800 pixels.

While data augmentation has been widely used in deep
learning to improve segmentation performance, we found that
augmenting images by rotating and zooming images did not
improve our segmentation results in our early trials. This may
be due to the fact that images in the dataset we observed are
rarely rotated. Hence, data augmentation was not considered.

F. FULLY CONVOLUTIONAL NEURAL

NETWORK FOR SEGMENTATION

We adopted a 2D U-Net [16] architecture to perform lung
segmentation and heart segmentation in our work. Our cus-
tomized U-net (shown in Figure 4) model is a 32-layer fully
convolutional neural network. It takes a chest X-ray image
as an input and outputs the probabilities of being each class
(background, left lung, right lung, and heart) at each pixel.
Unlike vanilla U-Net, we replaced the transposed decon-
volution network with upsampling and convolution layers
following the strategy proposed in [17]. Subsequent exper-
iments proved that these changes could improve the network
compared to vanilla U-net. The main elements of architecture
are depicted in Figure 4. All convolutional layers use batch
normalization [18], ReLLUs [19] and zero-padding.

The whole network consists of two parts: one is fea-
ture extraction branch and the other is feature aggregation
branch. In the left part of the network architecture, images
are fed through a series of convolution and pooling layers
where it can extract features at different scales and different
levels, from low-level features (e.g. edge, corner etc.) to
high-level semantic information such as shape. On the right,
the network adopts multi-scale feature aggregation fashion
to nonlinearly combine feature learned at different image
levels via blocks of upsampling, concatenating and convo-
lutional layers. Through this “skip connection” procedure,
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FIGURE 4. Our adapted U-net architecture. Each blue box corresponds to
a single convolutional layer. The size and number of convolution kernels
are stated inside each box(e.g. conv3-64 means there are 64

3x3 convolutional filters). Each yellow box represents concatenate
operation which simply concatenates a copy from left branch output
feature maps with upscaled feature maps from the right branch. Red
Arrows denote max-pooling layers while blue arrows correspond to
upsampling layers. Both max-pooling and upsampling will change the
output feature map sizes. Sizes of feature maps from different level are
only provided when it changed.

spatial information loss caused by max-pooling layers will
be recovered level by level. In the end, the output prediction
for each class carries class-specific shape information with
fine details, which benefits for precise segmentation.

Given a chest X-ray image from a patient, our trained net-
work will output the probability of each pixel for each class
via a softmax function. The final segmentation made by the
model is performed by assigning each pixel to the class with
the highest probability. The borders of segmentation masks
are then refined by dense Conditional Random Field(dense
CRF). The details of how dense CRF works is illustrated in
the next section.

G. POST-PROCESSING

In the post-processing stage, we use fully-connected
CRF [23] to smooth region boundaries of segmentation
masks. As aresult, any holes occurred in the candidate masks
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are filled and mask boundaries will become more smooth.
After that, the largest region is kept to mask organs (left
lung field, right lung field, and heart). Fully-connected CRF
calculates pairwise energy between all pairs of pixels in the
image in order to refine dense segmentation masks. The
energy function is described as follows:

E(x) =) 0ux)+ Y _ 0p(xi, x;). (1)
i i,j

where x is the pixel-wise label assignment. We use the
label assignment probability p(x;) to calculate the unary
potential 9,,(x;):

Ou(xi) = —logp(xy). €5

where p(x;) is actually the final output from our U-net seg-
mentation network. The second term of this equation is
pairwise potential which allows for efficient inference even
in a fully-connected graph. The second term formula is as
follows:

2 2
Op(xi, xj) = |:w1exp (— lpi = pill” _ Ili = 4l )

202 20[}%

L 12
+woexp (—%)} . 3)
4 XX

where p denotes pixel position and I denotes intensity. This
formula consists of two penalty terms weighted by wy and w,
which only taking those nodes with different labels into
account. The first one models the similarity (both pixel loca-
tion and RGB color/intensity and spatial proximity) while
the second one only cares about spatial proximity. The degree
of the similarity is controlled by the scale of Gaussian Kernel
O, 0g, and o,,. By minimizing the energy, fully-connected
CREFs force pixels with similar color/intensity and position to
have similar labels and enforces smoothness.

H. CTR CALCULATION

Cardiothoracic ratio was automatically computed based on
these boundaries derived from organ masks. We identified the
internal diameter of the chest as “T”’ by finding the longest
horizontal distance between right lung and left lung. Instead
of adding the right side of the heart transverse diameter “T1”’,
and left side of heart transverse diameter ““T2”, we simply get
the transverse diameter of heart by measuring the horizontal
distance “Th” between the most left points and the most
right points on the heart contours(see Figure 5). CTR was
calculated as the ratio of the transverse diameter of the heart
to the internal diameter of a chest. The formula is shown as
follows:

CTR = Th/T. )

I. EXPERIMENTAL SETTING

The weights of the network were initialized using Xavier Ini-
tialization method [20]. The whole network was trained end-
to-end using batch stochastic gradient descent (SGD) [21]
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FIGURE 5. CTR calculation.

method with a batch size of 4 and we set the initial learning
rate to be 0.001. We trained the model with cross-entropy
loss. To accelerate the training process, we employed batch
normalization [18]. Our proposed model was implemented in
MXNet [22] with two 1080 Ti GPUs. Our trained network
output the probability of each pixel for each class via a soft-
max function. The final segmentation made by the model is
performed by assigning each pixel to the class with the high-
est probability. The borders of segmentation masks would be
refined by dense conditional random fields (CRF) [23].

J. STATISTICAL ANALYSIS

Statistical analysis was performed with SPSS version 16.0
(SPSS Inc., Chicago, IL, USA). Kolmogorov Smirnov tests
were used to evaluate the distribution of the data. Paired t
test (for normally distributed variables) and Wilcoxon signed
ranks test (for not normally distributed variables) were used
to compare CTR values as well as measurement time between
paired groups. Reliability of CTR calculation was determined
using intra-class correlation (ICC) analyses. Excellent agree-
ment was defined as an ICC coefficient of > 0.8.

In addition, diagnostic performance of the deep learning
model for detection of cardiomegaly was assessed using a
binary approach (using CTR > 0.5 as a cut-off), and was
compared with that of manual method.

Ill. RESULTS

A. CTR DERIVED FROM OUR METHOD AND

OTHER DEEP LEARNING METHODS

In the testing set, all 500 chest X-rays were successfully
processed by the deep learning models, including automatic
lung and heart segmentation and CTR calculation. Since [25]
directly uses the U-net architecture, our comparison with the
U-net is equivalent to the comparison with [25]. Table 1
shows the comparison results of our proposed method with
U-net and U-net + CRF. Our method shows better perfor-
mance in all aspects than U-net.

B. CTR DERIVED FROM THE DEEP LEARNING

MODEL AND MANUAL METHOD

CTR values derived from the deep learning method showed
excellent agreement with the reference standard (as shown
in Table 2 and Figure 5). Paired difference between deep
learning and reference standard showed no statistical signifi-
cance (P = 0.552), with mean difference 0.0004 4 0.0133,
95% limits of agreement —0.0256 to 0.0264. Correlation
coefficient (r2) between deep learning and reference standard
was 0.965 (P <0.001), and intra-class correlation (ICC) coef-
ficient was 0.982 (95% CI 0.978-0.985) (P < 0.001). As for
manual method, however, mean difference was —0.0083 +
0.0187 with statistical significance (P < 0.001), 95% lim-
its of agreement —0.0450 to 0.0284. Correlation coeffi-
cient (%) between manual method and reference standard
was 0.929 (P < 0.001), and ICC coefficient was 0.957
(95% C10.928-0.972) (P < 0.001).

C. INTRA- AND INTEROBSERVER REPRODUCIBILITY

OF MANUAL MEASUREMENTS OF CTR

Intra- and interobserver reproducibility of manual measure-
ments of CTR was assessed in 100 randomly selected chest

TABLE 1. Diagnostic performance between our method and other deep learning methods.

U-net U-net + CRF Our method
Accuracy 94.5% 94.9% 95.3%
Sensitivity 96.1% 96.1% 97.2%
Specificity 92.2% 93.2% 92.7%
PPV 94.4% 95.1% 94.8%
NPV 94.5% 94.6% 96.0%

PPV = positive predictive value; NPV = negative predictive value.

TABLE 2. Diagnostic performance of deep learning and manual method for detection of heart enlargement.

Deep learning method, % (n/N) Manual method, % (n/N) P value
Accuracy 95.3 (477/500) 93.8 (469/500) 0.259
Sensitivity 97.2 (284/292) 91.4 (267/292) 0.004
Specificity 92.7 (193/208) 97.1 (202/208) 0.107
PPV 94.8 (284/299) 97.8 (267/273) 0.116
NPV 96.0 (193/201) 89.0 (202/227) 0.006

PPV = positive predictive value; NPV = negative predictive value. Deep learning method refers to our

method proposed in this paper.
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TABLE 3. Paired t test results and agreement between paired groups.

Mean values

Paired differences P values 95% limits of agreement ICC coefficient (95% CI)

Deep learning 0.5233 £0.0711 0.0004 + 0.0133
Manual method

Intra-observer(n=100) 0.5152 +0.0674 -0.0024 + 0.0141

0.552 -0.0256 ~ 0.0264
0.5146 £ 0.0700 -0.0083 +£0.0187 < 0.001
0.099 -0.0299 ~ 0.0253
Inter-observer(n=100) 0.5282 +0.0647 0.0163 £0.0196 < 0.001

0.982 (0.978 ~ 0.985)
0.957 (0.928 ~0.972)
0.978 (0.968 ~ 0.985)
0.927 (0.704 ~ 0.970)

-0.0450 ~ 0.0284

-0.0221 ~ 0.0547

Values are reported as mean + standard deviation. ICC = intra-class correlation. 95%CI = 95% confidence interval.

X-rays in our study. As shown in Table 3 and Figure 5,
good intra-observer reproducibility was observed for manual
measurement of CTR. Mean difference between twice mea-
surements by one observer was —0.0024 + 0.0141 with no
statistical significance (P = 0.099), 95% limits of agreement
—0.0299 to 0.0253. Correlation coefficient (r2) between the
intra-observer measurements was 0.957 (P <0.001), and ICC
coefficient was 0.978 (95% CI 0.968-0.985) (P < 0.001).
As for interobserver reproducibility, however, mean differ-
ence between the two observers was 0.0163 £ 0.0196 with
statistical significance (P < 0.001), 95% limits of agreement
—0.0221 to 0.0547. Correlation coefficient (r2) between the
2 observers was 0.913 (P < 0.001), and ICC coefficient was
0.927 (95% CI 0.704-0.970) (P < 0.001).

In addition, measurement times of CTR both by deep
learning and manual method were recorded and compared
in the 100 chest X-rays. Measurement time by deep learning
method was less than 1 second for all the samples, which was
significantly less than that of manual method [0.69 (0.69 -
0.70) VS 25.26 (23.49 - 27.44) seconds, P < 0.001].

D. DIAGNOSTIC PERFORMANCE

Diagnostic performance of the deep learning method for
detection of cardiomegaly (using CTR > 0.5 as a cut-off) was
assessed and compared with those of manual method. In this
analysis, CTR values derived from the reference standard
were taken as reference. There was no statistically significant
difference with regard to diagnostic accuracy, specificity and
positive predictive value between the two methods (Table 2).
However, deep learning method showed relative higher sen-
sitivity and negative predictive value (97.2% vs 91.4%, P =
0.004; 96.0% vs 89.0%, P = 0.006; respectively) compared
with manual method.

IV. DISCUSSION

This is the first study to present a deep learning technique to
segment lung and heart regions in Chest X-rays and calculate
CTR automatically. Deep learning is a subfield of machine
learning characterized by the use of multilayer artificial neu-
ral networks, originally inspired by human neural systems.
A classical deep learning architecture known as the convolu-
tional neural networks (CNNs) has recently proved to be pow-
erful tools for a broad range of computer vision tasks. With
availability of big medical data, enhanced computing power,
and new algorithms to train the CNNs, CNNs are increasingly
applied to medical image processing with impressive per-
formances, such as detection of mammographic lesions [7],
lung nodule segmentation from computed tomography (CT)
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images [8], automatic segmentation of magnetic resonance
brain images [10], [11], classification of interstitial lung dis-
eases patterns with high-resolution chest CT [12]. To date,
however, there has been limited research of CNNs applied in
Chest X-rays. In this study, we proposed a fully convolutional
neural network to segment chest X-ray images and calculate
CTR automatically.

In this study, we used large training set to train and validate
the deep learning model, all the images for training and
validation were labeled with lung and heart segmentation.
Our adapted U-net architecture exhibited excellent perfor-
mance in chest X-ray image segmentation. Based on precise
segmentation, CTR calculation was performed automatically.
In the test set, we demonstrated excellent performance of
the deep learning model, CTR values derived from the deep
learning method showed excellent agreement with the refer-
ence standard, the intra-class correlation coefficient achieved
0.982 between the deep learning method and reference stan-
dard. As for manual method, however, slight mean difference
was observed with statistical significance between manual
method and reference standard, even though their agreement
was high.

In addition, measurement time by deep learning method
was less than one second for all the CTR calculation, sug-
gesting that the computerized approach is more reliable, time
and labor saving compared with traditional manual method.

This study demonstrated excellent diagnostic performance
for both deep learning and manual method for detection of
heart enlargement, diagnostic accuracy, specificity as well
as positive predictive value were comparable between the
two methods. It is interesting to note that, deep learning
method showed relative higher sensitivity and negative pre-
dictive value compared with manual method in this analysis.
Mean CTR values derived from the manual method were
slightly less than that of reference standard with statistical
significance. This might lead to relatively lower diagnostic
sensitivity and negative predictive value for detection of heart
enlargement. And variations across interpreters should be
taken into account.

V. STUDY LIMITATIONS

There were several limitations in the present study. First,
the deep learning model was designed for automatic segmen-
tation of heart and lung in chest X-rays and CTR calculation,
other image interpretations were beyond the scope of this
article. Whether the deep learning technique is well suited
to identify various pathologic findings in chest X-rays merits
further investigation. Second, having a balanced dataset of
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categories is important for the network [13], [24]. Although
diverse pathological conditions were included in our training
set, there were not enough examples to train for some rare
pathology, such as images with obvious fat pad of peri-
cardium and pleural effussion. The model sometimes has
limited ability to distinguish clearly fat pad of pericardium
from the real left heart boundary, and lung region can be
wrongly identified when there exists obvious pleural effus-
sion. CTR calculated by the model in these conditions might
be inaccurate, and might generate more false positives than
human readers in detection of cardiac enlargement. Addi-
tional training cases from these relative rare conditions might
help form a robust training set for the network to learn from.
Third, performance of the deep learning model for CTR
calculation was demonstrated excellent in this retrospective
study, whether the model can be well applied in clinical
practice should be prospectively validated in further study.
In addition, other deep neural network architectures can also
be developed and compared with the present model.

VI. CONCLUSIONS

The deep learning model was successfully employed to seg-
ment chest X-ray images and calculate CTR automatically.
Performance of this computer-aided technique was demon-
strated to be more reliable, time and labor saving com-
pared with the manual method in routine clinical practice.
Deep learning techniques might be powerful tools applied in
cardiovascular problem diagnosis.
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