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ABSTRACT Path planning is one of the most important process on applications such as navigating
autonomous vehicles, computer graphics, game development, robotics, and protein folding. It ensures that
a path is planned between an initial and final position on the collision-free region of a search space if one
exists. One of the most wide algorithms used for this purpose is the rapidly-exploring random tree (RRT),
in which each node of a tree data structure is generated from a search space by a random sampling
process, which originally follows a uniform spatial distribution. However, some authors claim that the
addition of a non-uniform/informed approach into the sampling process of the RRT could accelerate the
planning time of the algorithm. Actually, many works on literature propose different strategies to include
non-uniform/informed behavior on RRT-based algorithms. However, the large number of studies on path
planning subject impose difficulties on the identification of new solutions on a review process. The aim
of this paper is to structure a review process to deal with the massive volume of works on this subject,
by presenting the planning, development, and results of a systematic literature review (SLR), to investigate
non-uniform/informed sampling solutions applied to RRT-based algorithms on path planning literature.
A review protocol with two scientific questions was developed to guide the investigation. As a result, 1136
studies were selected in the path planning literature, of which 53 were identified as claiming to contain a
solution with non-uniform/informed sampling on RRT-based algorithms. As a specific work is considered a
scientific contribution only when it has not yet been explored in scientific circles, the results of the SLR can
be used as a tool to search for what has not yet been proposed, helping to identify opportunities to contribute
with new sampling processes of RRT-based algorithms. To the best knowledge of the authors, this paper
presents the first development of an SLR of a topic related to the RRT algorithm.

INDEX TERMS Non-uniform sampling, informed sampling, path planning, RRT, systematic literature
review.

I. INTRODUCTION
Path planning consists in describing a sequence of states
through a scenario to move objects from an initial state to
an end state, avoiding the non-navigable regions (obstacles,
danger zones, etc) of a search space. The object can be a
wheel robot, a robotic arm, a virtual agent, an unmanned
aerial vehicle, among others. Each state is an element of the
search space, which is the set of possible transformations that
can be applied an object, at each moment of its trajectory [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

In a simplified way, the state of a path can be defined as
a set of information related to the object, such as position,
inclination angles, speed, etc. The state of an object can
still be composed by other elements, depending on the type,
the level of detail of its mathematical modeling and context
of application.

The planning occurs by the exploration of the search space
regions. In the context of path planning by sampling-based
algorithms, it delimits where the new samples are collected
to construct new paths. The representation of the search
space depends on the application scope of the planning. The
samples can represent an element from the configuration
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space (robotics view), state space (control view) or spatial
position on an environment (artificial intelligence view) [1].
On robotics, the sample of a configuration space usually
gives the relative position of the robot to a referential frame,
represented as its spatial position and angular direction.
On control and dynamic systems applications, it is defined as
state space, where the motion constraints are verified during
the planning, incorporating kinodynamics constraints on the
sample (velocity, acceleration, curvature, etc). On artificial
intelligence, the sampling process usually imposes only geo-
metric constraints, where the sample is a position on the free
collision region of the search space. In practice, many views
are merged together to create the planning solutions.
Rapidly-Exploring Random Tree (RRT) algorithm [2] is

one of several techniques that can be applied to path plan-
ning on all cited application scopes by the search of feasi-
ble path steps. The RRT algorithm allows the planning of
paths for holonomic and non-holonomic systems, through
efficient exploration of multidimensional search spaces, with
convex and non-convex obstacles. Its operation consists on
expanding a tree-shaped data structure from a initial position
(root node) of the path to be planned, until one of its tree
branches reaches the final/goal position (last leaf node). Each
branch corresponds to a connection between two nodes, and
its length is an input parameter of the algorithm. A node can
be any collision free position in a search space and is obtained
through a random sampling process.

Many applications have been benefited by the proper-
ties of RRT-based algorithms. The RRT is used on vir-
tual reality planning as a high-degree virtual humans [3]
and a physics-based virtual reality [4]. In artificial intelli-
gence on game development, the RRT is a tool to quickly
plan random paths [5] and exploring levels [6]. In robotics,
a path can be designed for systems such as mobile robots,
manipulators, space robots, underwater robots, helicopters
and humanoids [7]. The work presented in [8] relates a
RRT-based planning algorithm to the estimation of the
movements of a dog-like robot. On [9], is presented a
arm robot with movements planned by a RRT-based algo-
rithm. A human-system interaction on industries processes
is presented in [10]. Path planning applications on space
robotics can be also found on [11]. On [12] and [13], appli-
cations on analog circuits and protein manifolds are pre-
sented, respectively. Path planners applied to many types
of autonomous vehicles were also built over RRT struc-
ture, as Aerial vehicles (Micro Vehicle Aircraft (AVM) [14],
Hypersonic Air Vehicles (HAV) [15], Blastless Unmanned
Aerial Vehicles (BUAVS) [16], Unmanned Aerial Vehi-
cles (RUAV) [17] and Combat Unmanned Aerial Vehi-
cle (UCAV) [18]), Unmanned Ground Vehicles (Unmanned
Terrestrial Vehicles (UGV) [19]) and Unmanned Surface
Vehicles (Autonomous Submarine Vehicles (AUV) [20],
Unmanned Maritime Surface Vehicles (USSV) [21]).

In the RRT algorithm, originally in [2], the random sam-
pling follows a uniform spatial distribution to collect new
samples. Thus, any position in the search space has the

same probability to be collected. However, some authors
argue that introducing non-uniform/informed behavior into
the sampling process would increase the convergence of
RRT to obtain a viable solution. In a non-uniform/informed
sampling, some positions of the search space have higher
probability to be collected than others. In [22], it is stated
that some authors believe that introducing the use of non-
uniformly/informed distributed sampling may satisfy param-
eters, such as dispersion, which have better performance than
randomized sampling with uniform distribution. The main
difference between these two types of sampling is that the
non-uniform distribution can direct the expansion of the RRT
to more promising regions of the navigation environment,
e.g., regions where a path has higher chance to be found, bias
towards the goal position, etc.

Although some authors have drawn attention to the
theme, as stated in [22], the study of effects of the non-
uniform/informed sampling in the RRT is a recent topic,
as pointed on [23], and new studies are needed to under-
stand its effects compared to the uniform approach. However,
the scientific community has already developed a consider-
able quantity of methods and applied to the sampling process
of RRT-based algorithms. The search for related academic
works, mainly to the RRT algorithm, is a very complex
task due the huge quantity of works proposed on literature.
Some bibliographic review methodologies can standardize
the method to research a particular topic in the literature to
deal with the huge volume of works that can be encountered
in a epoch like today of quick and large dissemination of
scientific information. One increasingly popular technique
that deal with these matters in several areas of research is the
Systematic Literature Review (SLR). A guide to perform this
type of review is described in [24].

SLR is a popular review methodology in the areas of Soft-
ware Engineering [24], [25] and Medicine [26]. This type of
bibliographic review is organized in a structured way, where
the search engines (websites were indexed academic works
can be queried), strings for the search, criteria used to include
and exclude a study, and all the information about the review
process are specified in the Review Protocol. The protocol
is developed together with a team of researchers with expe-
rience on the subject, which defines what type of scientific
evidence should be researched. The review is then carried
out respecting to the research protocol. Thus, in addition to
allowing an evaluation of the review process by a third party,
the interpretation bias caused by the personal vision of the
researchers involved in the review is diminished [24].

The objective of this work is to report the results of the
SLR methodology to address the study of different non-
uniform/informed sampling processes in the RRT algorithm.
This review prioritizes works in which non-uniform/informed
sampling strategies are used to reduce the planning time of a
path or optimize it in some specific aspect. This work only
consider strategies where the sampling process is biased in
some way. Another optimization strategies, as like sample
rejection [27], [28] and parallel approaches [29], [30], are not

50934 VOLUME 7, 2019



L. G. D. O. Véras et al.: Systematic Literature Review of Sampling Process in RRTs

considered, since the sampling process is not modified, but
other processes of the RRT. Usually, the modified algorithms
are the RRT and RRT* [31]. It is notable the increase of
academic interest on the last one, because of its optimal
asymptotic cost property. On [23], a review of general opti-
mizations of RRT*-based algorithm is presented.

The main contribution of this work is the use of an
SLR approach to the study of different processes of non-
uniform/informed sampling in RRT-based algorithms. Thus,
it must be clear that it is not our intended to provide an
exhaustive survey on sampling methods applied to RRT, but
report the SLR results, showing that is possible to extract
academic information from the vast literature available about
path planning. The solutions identified on SLR can then later
be applied to robotics, autonomous vehicles, game devel-
opment, virtual reality or another application which search
space can be explored by RRT in a biased way.

To the best of our knowledge, this is the first work that
uses an SLR procedure to review a path planning technique.
No evidence was found that SLR has ever been applied to
the topic addressed in this study, or that such review was per-
formed for the RRT sampling process. The search engines for
this evidence are the same as those specified in the research
protocol considered in this review. However, the closest
theme to this work addressed by an SLR is presented in [32],
where the results of a Systematic Mapping Study (A type
of SLR with a broader theme) on modeling techniques of
systems for control of mobile robots is shown. RRT-based
algorithms surveys are available on [23] and [33]. However,
neither of these works has focused on non-uniform/informed
sampling processes of RRT-based algorithms.

This work is organized as follows: a review of path plan-
ning algorithms is presented in section II; in section III,
the RRT algorithm is described; the influence of uniform and
non-uniform distributions on the RRT is discussed in section
IV; section V presents the modeling of the SLR protocol
based on the use of non-uniform sampling processes in RRTs;
section VI describes the development of the SLR through
the protocol modeled and a validation of review process; in
section VII, the selected papers as the result of the execution
of the SLR are indicated and discussed; section VIII presents
the conclusion of this work.

II. PATH PLANNING ALGORITHMS
The complexity of a path planning problem depends directly
on the computational model adopted to represent the search
space [34]. Initially, methods with explicit representation of
the search space were used in path planning problems. Algo-
rithms such as cell decomposition [35], potential fields [36],
visibility graphs [37], Voronoi diagrams [38] and those pre-
sented in [39]–[41], use the explicit representation of the
search space. However, these algorithms can generate exces-
sive computational effort, especially when there are a lot of
obstacles in the search space [42]. A class of algorithms,
known as Discretization methods, can be applied to fragment
the search space into small pieces represented by cells,

reducing the complexity of a planning problem [43]. The
complexity of the planning problem is reduced because it
can be resolved in each cell at a time until a complete path
between two positions can be planned. These cells have an
intrinsic relationship to each other that form a graph structure.
Search algorithms such as A* [44] and Dijkstra [45] can
be used to find the path with smallest cost associated to
the edges of these structures (cost can be represented by
edge length, for example), as can be seen in [46]. Some
search methods in dynamic graphs are also used as D* [47],
AD* [48] and Life-Long A* (LPA*) [49]. However, the effi-
ciency and effectiveness of the search methods in graphs
depends on the resolution adopted in the search space dis-
cretization. In addition, representations of the search space at
high discretization resolutions generate a high computational
cost for planning [33]. Artificial intelligence techniques were
applied as an alternative in path planning, many of them being
biologically inspired. Examples of these techniques are Arti-
ficial Fish School Algorithm, [18], Fuzzy Logic [50]–[52],
Ant Colony Optimization [53]–[55], Machine Learning [1],
Neural Networks [56] and Genetic Algorithms [57]. Cur-
rently, the most commonly used methods are sampling based
algorithms, due to their efficiency and ease in coupling
the planning with the kinodynamic constraints of a sys-
tem. The main sampling-based path planning algorithms
are Probabilistic Roadmaps (PRM) [58], Rapidly-exploring
Random Tree (RRT) [2], Expansive Space Trees (EST) [59],
Ariadne’s Clew [57] and Fast Marching Tree (FMT) [60].
Many of the planned paths by the mentioned methods may
not be viable for navigation due to the dynamics and kine-
matics restrictions of the considered system for which it
was generated. The methods usually employed smooth these
paths by generating curves that allow this system to run
its trajectory along the planned path. Some techniques used
for path smoothing are clothoids [61], β-spline [62], Bézier
curves [63], [64], Pythagorean-Hodograph (PH) curves
[65]–[68], logistic curves [69] and Support Vector Machine
(SVM) [70].

III. RAPIDLY-EXPLORING RANDOM TREE (RRT)
The RRT algorithm for path planning is described in Alg. 1.
RRT plans a navigation path in a Q configuration space,
which is the set of points/positions of a navigation envi-
ronment. Q is divided in two subsets, Qfree, representing
the navigable regions of the navigation environment, i. e.,
the regions without obstacles and collision risks, and Qobs,
the spatial representation of the obstacles.

The root node of the tree qinit ∈ Qfree is the starting
point of the path to be planned. The algorithm works by
expanding a G tree randomly from the root node until one of
its branches reaches the final point qgoal ∈ Qfree of the path
to be planned, or until a maximum number of iterations n is
reached. Since each node is a sample/point of the navigation
environment and has the information about its predecessor
node, the path is planned from the qinit point to the qgoal
origin point, adding each node that connects them to a path
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Algorithm 1 RRT Algorithm Pseudocode
1: procedure RRT(Q, qinit , qgoal,1q, ld , n)
2: G← {}
3: R← {}
4: s← 0
5: i← 0
6: while (s = 0) and (i ≤ n) do
7: i← i+ 1
8: qrand ← RAND_CONFIG(Q)
9: qnear ← NEAREST_VERTEX (qrand ,G)
10: qnew← NEW_CONFIG(qnear , qrand ,1q)
11: if qnearqnew do not intercept Qobs then
12: EXTEND(G, qnear , qnew)
13: if d(qnew, qgoal) ≤ ld and (qnewqgoal) do not

intercept Qobs) then
14: EXTEND(G, qnew, qgoal)
15: s← 1
16: R← ROUTE(qinit , qgoal)

R. A leaf node qnew is a point of the straight line segment
qnearqrand , such that: qgoal ∈ Qfree is a point generated as a
random sampling of the navigation environment; qnear is the
closest node to qrand ; the distance between qnear and qnew has
the constant value1q; and the straight line segment qnearqnew
is collision-free, that means it does not intercept any obstacle
of Qobs of the navigation environment.
Several extensions of the RRT algorithm have been

published over the years: RRT-Connect [71], Resolution
Complete Rapidly-Exploring Random Tree (RC-RRT) [72],
Real-time Closed-loop Rapidly Exploring Random Trees
(CL-RRT) [73] and its derivation Closed-loop Random
Belief Trees (CL-RBT) [14], Execution extended Rapidly
Exploring Random Tree (ERRT) [74], Chance-Constraint
Rapidly Exploring Random Tree (CC-RRT) [75], RRT Star
(RRT*) [31], CC-RRT*-D [76], Adaptative RRT Based on
Dynamic Step (DRRT) [77], Fast RRT [78], among others.
Therefore, the variability of studies focused on improv-
ing or adapting some aspect of the RRT algorithm is
remarkable.

IV. ROLE OF SAMPLING IN RRT
In the literature, the following two types of sampling are con-
sidered: uniform and non-uniform. In the first type, the search
space samples are randomly collected, considering a uniform
spatial distribution. In the second type, the sample collection
process can be biased by determining the most promising
regions of the search space. In this way, a path can be planned
more efficiently within the context of the problem in which
the sampling methods are applied. Further discussion of sam-
pling issues in path planning can be found in [79].

The best performance of non-uniform sampling, regard-
ing uniform sampling, can be observed by the best conver-
gence for a solution in a search space [79]. Usually, two
approaches are used to implement the non-uniform sampling

in RRT. In the first one, the expansion of RRT can be region-
ally biased, collecting samples next to the major regions
of interest on the configuration space. This approach is
called importance sampling. In the second, the sampling
is changed during the planning, depending on the restric-
tions that may be encountered in the navigation space. This
last approach is called adaptive sampling. By adopting one
of these approaches, the sampling process is biased by
a non-uniform distribution, which reduces the amount of
samples needed to find a feasible path. Both approaches
can be used together or individually. However, implicitly,
non-uniform sampling is usually a fusion with uniform
sampling. Therefore, the application of a non-uniform dis-
tribution in concomitance with the uniform distribution is an
indispensable requirement to guarantee a successful perfor-
mance of methods based on non-uniform sampling [79].

In the standard RRT [2], sample collection is governed
by a uniform spatial distribution. As the number of samples
collected in configuration space increase, the possibility of
finding a collision-free path will increase [79]. As described
in this literature review, some researches study the role
of non-uniform distribution in RRT. We investigated the
improvements, as pointed out in the literature, in path plan-
ning using RRT sampling techniques based on informed/non-
uniform distribution.

V. SYSTEMATIC LITERATURE REVIEW PROTOCOL
This section describes the protocol that guides the SLR pro-
cess of collecting scientific evidences in the literature, about
the solutions of non-uniform/informed sampling processes
applied to RRT-based path planning algorithms.

To find works that help to answer the scientific questions
developed to this review, an SLRwas developed to understand
how the subject is currently explored. Within the context of
this kind of review, some concepts are followed to define
the types of works that should be returned and which of
them should be included into the review results. These con-
cepts follow the guidelines stated in [24]. The works are
then classified as following: those that present innovative
methods, results, procedures, technology, or schema related
to the review subject are called primary studies; reviews and
comparative studies are secondary studies; the reviews of
secondary studies are considered tertiary studies. The SLR
that is elaborated in this paper considers only the primary
studies as an evidence of the solution.

A. DEFINITION OF THE SCOPE OF THE RESEARCH
REVIEW QUESTIONS
The main objective of this review is to report the set
of evidences that show what is being investigated about
RRT-based algorithms with informed/non-uniform sampling
processes through a systematic review of the literature.
In this paper, only proposed informed/non-uniform sam-
pling strategies are considered. During the execution of the
SLR, a sampling strategy will be considered informed/non-
uniform if it generates random samples that do not follow
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TABLE 1. Research questions developed in systematic literature review.

a uniform distribution, i.e., they are biased. It is impor-
tant to emphasize that the random samples determine the
growth direction of the tree of the RRT. In this way, if the
samples are biased by an informed/non-uniform sampling,
the tree of the RRT will be biased as well. To be selected
in the SLR, a primary study should introduce a new non-
uniform/informed sampling strategy with one of the follow-
ing objectives: to accelerate the convergence of RRT plan-
ning for a path, reduce its planning time, or optimize some
other characteristic of RRT-based algorithms. To compare
and identify if a selected study introduces some modification
that adds biased behavior in some RRT-based algorithms,
the Random_state procedure of the RRT algorithm in [2]
and Rand_config in Alg. 1 are considered as the canonical
sampling.

Modifications and optimizations in RRT algorithm pro-
cesses other than sampling will not be considered in the
SLR, for example, edge reconfiguration, parallelization, node
reduction by rejections, collision detection optimizations,
and kinodynamic optimization. Although these processes
directly influence the planning performance of RRT-based
algorithms, they are not related directly to sampling pro-
cess, and are coupled independently of other processes on
sampling-based algorithms. In addition, the subject of this
review is limited only to methods applied to sampling pro-
cesses of RRT-based algorithms. In the case of path plan-
ning with kinodynamic constraints in RRT-based algorithms,
some proposed strategies can be selected in the SLR. Prob-
lems of path planning with kinodynamic constraints are quite
complex, since many dimensions may be necessary to repre-
sent their search space, and not every state can be consid-
ered valid or reached from a previous one, as in the case
of non-holonomic systems [80]. However, traditionally the
planning process in these cases is accomplished by reject-
ing or adapting a random sample to the generation of a tra-
jectory that meets the constraints of the movement of a given
system or path smoothing [33], which will not be considered
an informed sampling strategy/non-uniform in this review.
On the other hand, if the state space of this system is used
to model or influence the distribution of the random samples
in the RRT, then the proposed strategy will be considered
informed/non-uniform. The study presented in [81] corre-
sponds to the last described situation.

Different search engines for scientific papers were con-
sulted to find related studies to the theme. The data extracted
from these studies were compared and analyzed to identify
the main contributions of the use of non-uniform sampling
as an alternative to the traditional uniform sampling of RRT.

The review protocol that guides the process of this review is
described below.

B. REVIEW PROTOCOL
The review protocol that guides the process of collecting
scientific evidence is composed by six elements: research
questions; terms of research; queries for primary studies;
search engines; selection criteria for primary studies; and data
extraction.

1) RESEARCH QUESTION
A research question conditions the whole process by present-
ing the main discrepancies about the non-uniform sampling
methods used in RRTs for path planning. To assist in the
process of defining the research questions, the methodology
proposed in [82], called PICOC (Population, Intervention,
Comparator, Outcome, Context) was used. To the problem of
the use of non-uniform sampling processes in RRTs, the fol-
lowing values were defined for each parameter of the PICOC
methodology:
• Population: RRT-based path planning algorithms.
• Intervention: Addition of non-uniform/informed strat-
egy into RRT sampling to obtain better path cost and/or
convergence/time in path planning process.

• Comparator: Non-uniform/informed strategy used in
the RRT sampling process.

• Results: Existing works in the literature on non-
uniform/informed sampling applied to RRT and its char-
acteristics improved by the approach used.

• Context: Academic research on any application context.

Thus, two research questions were developed to meet these
parameters. These issues are presented in Tab. 1.
The first question is ‘‘Which are the proposed solutions to

include non-uniform/informed behavior into the RRT sam-
pling process found in the path planning literature?’’. This is
the main problem of the review. To discover the answer, it is
necessary to identify primary studies in which the problems
that the authors propose to find solutions involve improv-
ing some property (usually planning time and/or path cost
optimization [33]) of the RRT, using as the main strategy the
change of its uniform sampling process. This is the expec-
tation of the review; however, there may be studies with
different approaches that fit the review criteria.

The second question is ‘‘Which is the RRT-based algorithm
to which a proposed non-uniform/informed sampling solu-
tion is applied to improve its planning performance?’’. This
question is related to the method from which the solution,
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TABLE 2. Research queries structured for systematic literature review.

proposed in a given primary study, was originated. The meth-
ods can be the RRT itself or some of its variants (RRT*,
DRRT, RRT-Connect, etc). The answer to this question will
help to identify which type of RRT is used as the basis of the
studies to reduce its randomness, whether the new aspects that
the variants include are considered, or whether versions that
already have reduced planning time are taken into account in
the literature of path planning.

The SLR results obtained from the above research ques-
tions will allow the analysis of which informed/non-uniform
sampling solutions proposed to the RRT can yield the most
promising results in path planning, which may help research
teams in initial experiments of future research. For example,
a non-uniform sampling strategy may have been proposed for
RRT, but its convergence acceleration efficiency for a path
may not have been verified along with some RRT*-based
algorithm, which has asymptotic optimality. Analyzing the
SLR results, a research team can verify what has already been
proposed as an informed/non-uniform sampling solution for
specific versions of the RRT algorithm and identify what
has not yet been. Beyond that, a technological project team
can take knowledge of which strategies exists through the
proposed SLR and analyze which of them can fill some
requirements of its project.

2) SEARCH STRINGS
Search strings should be related to the scientific problem
of interest. In this way, the probability of retrieving a work
related to the subject is greater. Each string is also a compo-
nent of the search query applied to search engines. Consider-
ing variations between similar keywords and terms, the fol-
lowing strings were used in this work: ’’Rapidly-exploring
Random Tree’’, ’’Rapidly exploring Random Tree’’, ’’RRT’’,
’’Sampling’’, ’’Dispersion’’, ’’Path Planning’’, ’’Trajectory
Planning’’, ’’Motion Planning’’.

3) QUERIES FOR SEARCH PRIMARY STUDIES
Through strings and defined search questions, queries were
formulated to be used in the search engines considered in this
review. A query is the representation of a search question in
a format suitable for the search engines consulted.

Queries are structured using search strings and logical
operators, which are acceptable in all search engines con-
sidered in this review. Using the search strings previously
defined, two queries related to the research questions were
structured to search the primary studies for the SLR. In the
Tab. 2 are summarized the research queries created for this
SLR. All works/primary studies returned by the execution of
these queries must be analyzed and extracted.

TABLE 3. List of search engines as source of primary studies for
systematic literature review.

4) ENGINES CONSIDERED IN THE PROCESS REVIEW
The process of researching primary studies involves the def-
inition of the search engines, which are the tools that index
the publication source of these works. The primary studies
returned by these engines are filtered according to the inclu-
sion and exclusion definitions considered for the review, and
are described in the next section. On the Tab. 3 are listed the
search engines used in the SLR elaborated in this work.

5) CRITERIA FOR SELECTING PRIMARY STUDIES
Through the query results in the search engines, a filtering of
which studies are related to the search questions is performed.
To guide this task, one inclusion criteria and a set of exclusion
criteria was defined. These two types of criteria help to decide
which work is relevant or not for the review. The following
inclusion criteria was defined for the review in question:

• Academic works with real contribution to path planning
by the RRTmethod. The solutions presented should pro-
pose improvements on RRT sampling process through
non-uniform/informed strategies, focusing on reducing
planning time or improving parameters and related char-
acteristics.

In contrast to the inclusion criteria, the set of exclusion
criteria was defined to decide what types of papers returned
by search engines are not included in the review, even if they
meet the inclusion criteria. For example, survey documents,
white papers, gray literature, etc. can be returned, and this
review does not include them in its results. The defined
exclusion criteria are:

• paper does not present solution applied to path planning;
• paper does not include new solution to sampling process
of the RRT algorithm;

• paper only presents comparison or tests between meth-
ods based on RRT;

• presentation documents (slides);
• secondary and tertiary studies;
• paper is an older version from another one, with same
authors and problem;

• paper is not written in English;
• abstract only;
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FIGURE 1. SLR development process: – in the 1st Phase, the scope of the
review is outlined; – in the 2nd Phase, first filtering of the primary studies
returned by the search engines is executed; – in the 3rd Phase, data from
primary studies are extracted and analyzed to report results.

• duplicated outcomes. These works are counted just
once;

• white paper, and gray literature.

6) DATA EXTRACTION
To analyze and compare the primary studies returned by the
review, a list was made of data/characteristics that should be
extracted from each of them. These characteristics of the pri-
mary studies are: title, publication year, journal, conference,
congress, symposium, or workshop where the evidence was
published; authors; RRT methods used as a base to develop
the presented solution; sampling method used; other RRTs
methods compared with the presented solution to test its
effectiveness; completeness; optimality; acquired improve-
ments resulting from proposed solution.

VI. DEVELOPMENT OF THE SYSTEMATIC
LITERATURE REVIEW
This section describes the development of the Systematic
Literature Review (SLR) based on the review protocol previ-
ously described. With the application of the review process,
we expected to obtain only the studies related to the review
scope to answer the research questions, thus reducing the bias
caused by the reviewer’s personal view on traditional review
process. Fig. 1 summarizes the SLR process developed in this
paper.

A. PHASES DESCRIPTION OF THE SYSTEMATIC
LITERATURE REVIEW
The SLR is divided into three phases: in the first phase,
the scope of the review is outlined by a research team; in
the second phase, the first filtering of the primary studies is
return by the search engines; in the final phase, the data of
primary studies are extracted and analyzed. Then the results
of the review are disseminated through a report document,
which corresponds to this paper.

In the first phase, initially the scientific questions of inter-
est are defined as described in Section V-B1. The second
step was to develop the review protocol. This should be built

together with a team of experts on the reviewed subject.
Protocol reformulations before reaching a final version can be
performed. These formulations are consequences of insights
on how to improve the results of the returned studies, obtained
in the later steps of the review development. The last step of
this phase is to access the website of each search engine and
insert search queries formed by search strings in each of them.
A set of 1136 preliminary works were returned, considering
the sum of the results of all search engines.

The second phase starts by eliminating duplicated results.
The works that were returned more than once by the search
engines were removed. A total of 403 duplicate papers were
identified and removed, resulting in 733 unique items. In the
next step, the inclusion and exclusion criteria were applied
by reading the title, abstract, and keywords of each work.
The works resulting from the application of such criteria are
considered to be works with potential solutions related to the
theme of the review. After this phase, 143 potential works
from 733 unique studies were selected.

In the third and last phase, the data was extracted and the
review is finished. The first step of this phase was to gain
access to the full text of the selected studies. The second step
consisted in the complete reading of each study to identify
and extract the data required for the review, as described in
subsection V-B6. After the data extraction, those works that
violated the inclusion criteria or that met the set of exclusion
criteria are removed from the review. At the end of the SLR
process, 53 primary studies were selected. Finally, the last
step was to disclose the results of the review through some
report, which in the case of this review, is this article.

B. VALIDATION OF THE SYSTEMATIC LITERATURE REVIEW
All the process of leading the SLRwas executed by just one of
the authors in this work. The other authors contributed on the
development review protocol, working mainly as supervisors
of the review. Thus, a bias on the studies’ selection can be
strongly presented on the performed process. As a mean to
identify possible misunderstanding of which studies attend
the scientific questions, a validation process was performed,
as suggested on [24]. This SLR validation consists of a cal-
ibration of the query search processes by identifying if the
most cited/relevant works of the literature were returned on
the review process.

The query calibration process is important to ensure that
search engines return relevant articles to the research question
considered in this review. Initial queries were performed and
the returned results were analyzed based on the scientific
topic addressed in the review. The queries weremodified until
relevant works could be returned.

It was identified that studies like [22] and [83] were
returned. These are considered important for the RRT sam-
pling theme, which according to their authors, bring the
first attempts to further discuss the importance of non-
uniform/informed sampling on RRT, giving a historical
insight of the discussions about biased sampling on the
based-sampling algorithms. In addition, one of the most
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TABLE 4. Evidence collected in systematic literature review process that fall on goal-biased sampling class.

recent and successful algorithms proposedwith bias sampling
strategy, the Informed-RRT* algorithm [84], was returned on
the SLR process. Even some extensions of it were identified
through the SLR. Also, as stated on [23], one of the most
recent review works of RRT-based algorithms, the RRT*
algorithm has been actively researched on path planning
community on the last few years. Many works listed [23]
that are identified as proposing novel non-uniform/informed
sampling on RRT* are actually returned by the SLR as
well. Even more RRT*-based algorithms with biased sam-
pling extensions were identified on SLR compared to [23].
Therefore, we believe that were assembled queries that
considerably covered the possibilities of works about non-
uniform/informed sampling on RRT-based algorithms.

VII. RESULTS OF THE SYSTEMATIC LITERATURE REVIEW
This section presents the results of the review process guided
by the review protocol developed. As described earlier,
the subject of interest in this review is the use of non-
uniform/informed samplings strategies that results in a biased
behavior of the sampling process of RRT-based algorithms.
The data about each strategy were extracted from the selected
papers in the review process. These data were analyzed and
summarized to show the solutions that were returned by the
SLR execution.

During the data extraction of the selected primary studies,
was possible to identify common characteristics between
various proposed biased sampling strategies. On [85], a clas-
sification of the kinds of non-uniform/informed sampling is
given. Some examples of classes of sampling bias are given
on [33], [84], and [86] too. Inspired by theseworks, the results
were clustered on classes, considering the two approaches of
sampling introduced on [79]: importance sampling and adap-
tive sampling. Thus, each class can be considered a subset
of a approach defined on [79]. The primary studies solutions

were classified by sampling strategies that shares similar
mechanisms. The importance sampling classes identified on
the SLR were: goal-biased sampling, obstacle-biased sam-
pling, region-biased sampling, path-biased sampling, nar-
row passage-biased sampling. The adaptive sampling classes
identified on the SLR were: sampling by reduction of the
search space, bias by sampling distribution.

A. IMPORTANCE SAMPLING
1) GOAL-BIASED SAMPLING
In this class of bias sampling the RRT grow is drove towards
the goal region of the search space. Usually the strategies
proposed use the goal position of planning explicitly to extend
the tree to a given frequency during the planning. In contrast,
another strategies apply methods that captured the relations
between the obstacles and the goal position, which makes
the collection of new samples to this region implicit, as the
case of the Potential Fields Method (APF). The primary
studies selected that fall into this class are listed next and
in Tab. 4.

On [87], the algorithmMultipartite RRT (MP-RRT) is pro-
posed over the foundation of the ERRT and DRRT algorithms
to planning on a search space with static and dynamic obsta-
cles. The algorithm maintains a forest that is disconnected
from the tree that contains the planning initial position (prin-
cipal tree). As the tree grows, the new samples are collected
between the roots of the forest trees to a given probability
value. If the obstacles on the search space has their position
changed, the principal tree is reinitialized and its nodes are
stored to the forest, that will be used to on future iteration of
MP-RRT. Also, a probability chance of goal bias sampling is
given. If random generated probability value p is lesser than
a predefined threshold, so the sampling is biased to the goal
region. Otherwise, if p is lesser than the probability of the
goal bias threshold plus the forest bias threshold, than the new
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sample is collected from the forest sampling. Finally, if all
checks fail, a random sample is collected.

The Multi-RRT-GoalBias is proposed on [88], which is a
goal biased version of the Multi-RRT algorithm. Its sampling
strategy utilizes a goal probability threshold, a value that
defines when the goal bias sampling is applied on the path
planning. When used, the tree is expanded on the direction
of the goal position. The authors offer also a neural network
based approach to define the optimal threshold value to a
given search space.

The proposed algorithm ERRT [89] inserts a probability
value to decide if the sampling process is defined by the goal
position or by uniform distribution. If a value p is higher than
a certain parameter, so the goal position is defined as the
sample to bias the RRT grow.

The Goal-oriented test generation method is proposed
in [12]. The method plans a path in a two-dimensional search
space representing the states of an analog non-linear electrical
circuit. In this method, RRT tends to grow towards regions
where most samples of states of the circuit occur in its search
space. To this, two phases are added to RRT: (a) a learning
phase, where the state samples are collected to identify the
regions of interest on the circuit search space; (b) exploration
phase, where RRT has its expansion oriented to these regions
of the greatest interest. In the learning phase k samples of the
search space of the analog circuit are collected. So the search
space is partitioned in a network with equally-sized grids.
These grids are then clustered by the quantity of samples
that relies on each one of them. Grids with the same number
of samples are related to a same cluster. The cluster with
the higher number of grids is defined as the goal to where
the expansion of the RRT must be biased/oriented. In the
exploration phase the samples of the cluster are used as bias
to grow the RRT. At each iteration, a sample is collected from
one of the selected clusters. Thus, the RRT converges faster to
these regions, which could be associated with fail states of the
circuit. Thus, paths between the initial and final states of the
circuit can be generated in a faster way. The paths planned by
RRT are used to execute circuit tests, which manually could
be exhausting.

The RRT-based method introduced on [90], called Two
Stages RRT, apply an initial decomposition of the search
space, and then, based on decomposition result, the RRT is
constructed. In the first stage, the proposed method utilizes
a scent pervasion algorithm to construct a discrete represen-
tation of the search space. A scent information is diffused
through the neighborhood regions of the search space starting
from the goal region, which is the scent source. This way, tags
are given to each cell of the discretized search space, that
represents the intensity scent, an information of proximity
between a cell and the goal region. After the discretization
stage, the RRT is constructed based on the scent information.
The cells that are less selected and has lesser value of tags,
has more preference to be selected to expand the tree. Its
supposed by the authors that this process grow the RRT more
quickly into direction of the goal region.

A solution to reduce the effect of randomness in RRT using
the Artificial Potential Fields (APF) technique is proposed
in [91] to create the Potential Guided Directional-RRT* (P-
RRT*) method. In the new algorithm, goal, samples and
obstacles emit forces of opposite polarities to drive the expan-
sion of the tree. Each node of the tree has the same polarity
of the obstacles, which creates a repulsion effect between
the samples on the extension of the tree, existing tree nodes
and the obstacles. In contrast, the iteration between new
samples and the goal point results in a force of attraction that
converges the RRT to solution. Thus, the P-RRT* maintains
the balance between an exploration of randomly collected
samples and the use of non-uniform/informed exploration.
According to the authors, the new method has better conver-
gence in the search for an optimized path planning solution
than RRT*, an RRT-based method that optimize the planning
path cost.

The Goal Oriented RRT (GO RRT) is proposed on [92].
The sampling process is biased by the goal region of the
search space by a strategy called Pre-GO sampling. This
sampling processing defines the size of the search space
based on the distance between the goal and its farthest node
on the tree. This distance is used as radius of a ball region
centered on goal position. New samples are collected on
the ball search space by a constant value that determines
the concentration/probability in the collect of a sample from
the goal trough the limit ball defined by the radius, with the
higher probabilities attached to the goal position.

A goal-bias based sampling is proposed on [93]. The sam-
pling scheme is applied to RRT algorithm. The proposed solu-
tion collect two random samples simultaneously. The nearest
sample between them from the goal position is selected to
expand the tree. Second the authors, this strategy avoids local
collisions caused by goal biaswhile improving the path length
and computing time.

A strategy based on potential fields is proposed on [94].
Potential fields methods is explored in two distinct way by
the proposed algorithm: on a stochastic manner and on a
deterministic manner. In the stochastic sampling strategy a
bunch of samples is collected per iteration, and that with the
lowest potential value is selected to extend the tree. In the
deterministic sampling, each node of the tree has a rank,
based on its relative position to a target and the obstacle
region. That node with the higher rank is selected and a
sample is collected into direction of the potential difference
with the goal position. Each strategy is selected given a
probabilistic value as a way to bring an equilibrium to the
use of the both. The proposed sampling strategy was devel-
oped to a manipulator application. According to authors, with
the proposed method the manipulator show better ability to
respond sudden situations during its movement process.

Huazhong et al. [95] extended the bidirectional RRT*
(B-RRT*) and Intelligent Bi-directional RRT* (IB-RRT*)
attaching to them the Artificial Potential Fields (APF)
strategy, creating the PB-RRT* and PIB-RRT* algorithms,
respectively. In these algorithms, a new random sample is
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TABLE 5. Evidence collected in systematic literature review process that fall on obstacle-biased sampling class.

potentially guided on the expansion of the B-RRT*. The
strategy decides if the APF bias will be biased related to initial
position or final position depending on if the iteration count
of the expansion is even or not.

2) OBSTACLE-BIASED SAMPLING
Many primary studies usually introduces bias by information
of the search space’s obstacles to reduces the path length dur-
ing the planning and to improve the sampling effectiveness on
difficult areas, as narrow passages. Here are the primary stud-
ies that present solutions based on obstacle-biased sampling.
Their data are listed too in Tab. 5.

In [96] a RRT-based algorithm is proposed where new
samples are collected near of danger zones of the space
search. This algorithm is called DRRT (Dangerzone
RRT) and presents a modified sampling process on the
RRT-ConCon algorithm. In a search space constituted from
obstacles and danger zones (a region that is collision free but
undesirable to navigation), the proposed sampling process
use triangle surfaces obtained from the danger zones. These
surfaces bias the tree grow after a first path is planned.
A triangle is selected randomly and a random sample is
generated over the surface of the triangle. This way, the tree
grows in direction of the danger zones boundaries.

The algorithm proposed on [97], called Danger zones RRT
(DRRT), extends RRT by existing techniques for danger
zones sampling and local planning. Two samples strategies
are applied on DRRT. In the first, a density measure is cal-
culated to each node of the tree whenever a new node if
generated. Thus, these nodes that has lower density is more
preferable to be selected to expand the RRT. Finally, a new
sample is generated on the neighborhood (defined as a circle
region on the search space) of the nodewith the lowest density
value. The second utilizes danger zones, regions of the search
space that are preferable not to collect samples. To extends the
tree, a random sample is collected from triangles that models
the obstacles of the danger zones. A triangle of a danger zone
is selected randomly, defining the direction to where the RRT
must grow on the danger zone. Thus, the nearest node of the
tree from the danger zone sample is selected to extend the
RRT. Second the authors, the effect to apply these sampling
strategies is a more effective planning (total nodes of the tree,
total planning time) on scenarios with danger zones.

The RRT-based algorithm proposed on [98] use the infor-
mation about the obstacles that are touched by the segment
formed by the initial position and final position of planning.

In the proposed sampling process, each one of the touched
obstacles are classified as valuable to the planning process.
In the boundaries of these obstacles are generated samples
that corresponding to its mid points. The obstacle that is
nearest to the initial position are selected to extend the tree.
Thus, one of its mid points are selected randomly to be added
as a new sample of the RRT. This way, the tree is biased
into the goal direction and a path with reduced length can be
obtained quickly.

On [99], an algorithm with an obstacle bias sampling
that generate denser sample distribution near obstacles with
underlying uniform spreed, called BIT*-H, is proposed as
extension of the BIT* algorithm. The sampling strategy is
hybrid with two possibilities of processes to be executed.
In the first, the ellipsoidal-based sampling of BIT* is used.
However, when a sample is generated uniformly inside the
ellipse, a neighborhood sampling is executed to explore local
information around uniform samples. Finally, the mean of
the neighborhood is collected as the sample to extends the
tree. If this mean sample is no collision free, a new sam-
ple is generated around the uniform sample by a Gaussian
distribution. These nodes collected by Gaussian distribution
are defined as navigators by certain criteria. In the second
process, the navigators are used to bias the tree grow. The
use of each sampling process is defined by a dynamic ratio
between the optimal cost and current cost of the planning
solution. This ratio defines the proportion of use of each
sampling process over the planning by the BIT*-H.

3) REGION-BIASED SAMPLING
On region-biased sampling more important regions on plan-
ning, as lesser cost regions, regions, has more probability
to be samples collected. Usually, pre-information about the
search space is given to define the classification of the most
promising regions. Sampling learning are used to discovery
these regions or hypotheses are made to infer what are the
most promising regions to be explored on the search space.
Next, the primary studies of this class returned by the SLR
are listed and their extracted data are in Tab. 6.

Two planning algorihtms based on the concept of
Voronoi bias is proposed by [83]. The first approach, called
Volume-based RRT (VB-RRT), approximates the size of the
Voronoi areas to decide where to expand the tree. To avoid
explicitly Voronoi Diagram construction, which is computa-
tionally expensive, a strategy to collect uniformly k samples
on search space is proposed. Thus, the tree expansion is
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TABLE 6. Evidence collected in systematic literature review process that fall on region-biased sampling class.

biased into direction of the mean point of the k samples.
The second approach, called Dispersion-based RRT (DB-
RRT), incorporates an expansion behavior that exhibit a
degree of the Voronoi bias based on dispersion of k col-
lected samples from the search space. The hypothesis of the
approach is that growing the RRT toward the sample farthest
from the tree between the k random samples, the algorithm
will show an exact Voronoi-bias behavior. To implements
this behavior, the algorithm sort the k samples in decreasing
order of distance from their nearest node in the tree. The
farthest random sample between the nearest nodes of the tree
is selected to expand the RRT.

The Multi-Sample RRT (MS-RRT) method is proposed
in [22]. In this approach, k samples are collected at the same
time during the RRT expansion, in contrast to the traditional
RRT sampling process in which only one sample is collected
at a time. The tree is then biased to the mean point of the
collected samples. Two algorithms are introduced based on
the multi-sampling scheme. In the first, called MS-RRTa,
the parameter k defines how many times random samples are
collected per RRT iteration. For each one of these randomly

sampled points, its nearest neighbor node is computed. The
node of the tree that was more frequently selected as the
nearest neighbor, is defined as the best node for the tree
expansion. Thus, the tree is extended by it. The second multi
sample-based approach is the MS-RRTb. It uses a defined
set of k samples that are used to estimate the Voronoi bias
to the tree expansion too, but these samples are uniformly
selected just when the planning starts. Thus, the set is reused
on every iteration of the tree expansion, unlike MS-RRTa.
The authors’ hypothesis is that using a same set of samples
that went uniformly selected has a similar bias effect than
selecting them on each iteration.

The work on [100] proposed, called Rapidly Explor-
ing Evolutionary Tree (RET), apply a evolutionary algo-
rithm (EA) that generates individuals (points on the search
space) and fitness values that determines how efficiently these
individuals cause the RRT to grow. Thus, a bidirectional RRT
is generated where the new samples are collected based on
the EA individuals. A sample has 50% to be collected by EA
individuals, otherwise it will be collected by uniform random
sample.
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A new sampling scheme is proposed on [101] to overcome
situations that RRT is trapped by Voronoi bias on obstacles
with maze shape. The proposed algorithm, called Density
Avoided Sampling RRT (DDAS-RRT), where the tree is
biased to escape from high density areas. A density (quantity
of neighbors nodes of it) parameter is added to each node of
the tree, that informs an estimated free space associated to it.
The node of the tree with the lowest density value associated
is selected to expand the tree. Thus, a neighborhood area
around these nodes will be the region where a new sample
will be collected. A random procedure collect a new sample
inside this region.

The proposed Voronoi StRRT on [102], a modified version
of Spatiotemporal-RRT (StRRT), has a sampling process
based on generalized Voronoi diagram. The new collected
samples are biased just toward the boundaries of the local
Voronoi diagram, to reduces computational time in pres-
ence of static and dynamic obstacles on the search space.
To reach this results, the Voronoi StRRT apply two steps.
First, a collected sample is moved on the opposite direction of
its closest point on an obstacle boundary. Second, the amount
of movement is estimated based on the distribution neigh-
boring obstacle and its distance of its nearest boundary point
of obstacles. As result, a new sample is placed near of the
Voronoi boundaries and safer paths are planned.

The algorithm proposed on [103] called extended bidi-
rectional RRT (E-RRT) is an extension of the Bi-RRT.
The sampling process of the algorithm is biased by a
goal-oriented bias and an N-dimensional cuboid. On each
iteration, the algorithm attempt extend the tree in direction
of the goal position. Then, if the tree is not yet connect with
the goal position, its is expanded by N-dimensional cuboids.
Over the expansion of the RRT, each new node added has a
cuboid added to it. This cuboid is generates to a given offset
from the latest added node on the tree. Thus, on the sampling
step of the RRT, a new random sample is collected then inside
of the cuboids from the last extended node of the tree.

The proposed algorithm on [104] is called Local Principal
Component Analysis RRT (LPCA-RRT).Models a cost func-
tion based on a dynamic system state space to improves local
planning by a bias on its discretized search space sampling.
The strategy is a two-step approach. The first step learns the
direction of the propagation points on the discretized search
space when the system are simulated on these points. In the
second, the sampling process of RRT is biased to the regions
where the points on the first step propagated. This way, RRT
converge to the regions of the search space of the system that
are more probably to occurs.

In the Cloud RRT* algorithm proposed on [105],
the search space is first decomposed on a set of spheres
with different radius sizes. Each one of the spheres has a
unique selection probability value, which give the weight to
be selected on the sampling process. The spheres position
on the search space and its probability values are initially
defined by a Generalized Voronoi Graph (GVG) based on the
distance visibility of the initial planning position, Voronoi

vertices and edges and overlap optimization between the
spheres. In the sphere selection by the sampling process,
a new sample is uniformly collected inside on it. During the
planning by Cloud RRT*, new spheres are created based on
previous paths. Thus, the path length is optimized by the
samples obtained by spheres based on previous nodes.

To overcome the randomness of RRT and improves its
search efficiency, [106] propose the Exponential Back-off
sampling Rapid-exploring Random Tree (EB-RRT) algo-
rithm. It biases the sampling trough collision-free regions
of the search space denominated middle zones. They are
Voronoi regions that are not poorly explored and not
overwhelmed explored, they are median explored regions.
To induces the RRT grow to them, a back-off sampling
operation is executed when a collision on extend operation
occurs. The back-off sampling operation consists in increase
e reduces the sampling area of the search, which is associated
to the goal position of the exploration. The effect is that the
tree grows around obstacles.

The algorithm proposed on [107], named moving-window
rapidly exploring random tree (WM-RRT), use unilateral
Gaussian sample generator to collect new samples near nodes
that are more probable to be fresh nodes to the tree. The
hypothesis of the authors is that exists a higher probability to
the tree expands from late added nodes than old added ones.
Also, they state that samples collected around the segment
line formed by initial position and goal position optimizes
the length of the planned paths.

The Theta*-RRT [108] is a algorithm with a sampling
process biased by a pre-planed any-angle path generated by
Theta* search grid algorithm. A strip of width W centered
around the pre-planned path is used to generate new samples
randomly collected inside of it Each new sample has an
associated angle direction randomly defined given an angular
interval. The tree grows around the any-angle path. This way
a shorter and smoother path can be planned rapidly on the
continuous search space.

The algorithm proposed on [109], creates a 2D GVD to
extract the spatial distribution of obstacles on 3D search
space. Thus, points are distributed locally around 2D Voronoi
edge nodes and are selected according to a cost function to
grow the RRT in each iteration. TheVoronoi nodes with lesser
costs are sampled to bias the RRT grow.

Inspired by the studies of drivers’ visual behavior, a con-
cept that humans utilizes two viewpoints to guide a vehi-
cle in curves, a far one and a near one, the work on [110]
proposes a biased sampling algorithm called Drivers’ Visual
Behavior-guided RRT (DV-RRT). The algorithm is applied
on the context of a car-like vehicle. The far and near points
of drivers’ visual behavior are utilized to bias the sampling
process of RRT to collect samples that are more suitable to
the vehicle’s motions. Thus, one of the points are selected
given velocity criteria and new samples are generated given
a Gaussian distribution around it. Second the authors, this
strategy simplifies the path by avoiding the generation of
useless samples to the vehicle motion.

50944 VOLUME 7, 2019



L. G. D. O. Véras et al.: Systematic Literature Review of Sampling Process in RRTs

TABLE 7. Evidence collected in systematic literature review process that fall on path-biased sampling class.

A RRT-based algorithm to tunnel detection on protein
structures is proposed on [13]. The sampling method of the
algorithm maintain a Voronoi vertices regions list of the
search space. The region size of the Voronoi vertices is
defined by its distance from their nearest obstacle (on the
problem domain is an atom). Thus, new samples are collected
around the Voronoi vertices that are new on the tree. When
the tree has already explored a Voronoi vertices region, it is
deactivated from the sampling process.

The RRT algorithm with Dynamic Window Approach
(DWA) is proposed on [111] to autonomous vehicles’ path
planning, introducing a algorithm called RRT-DWA. A sam-
pling scheme based on goal-bias sampling selection based
on probability value is used by it. The probability value
is defined given the obstacles density on the search space.
If a random generated value is higher than the probability
value, the sampling is goal-biasing. Otherwise, the sample is
collected randomly. DWA is used to local planning of velocity
of the vehicle, which takes its dynamic into consideration.

The use of sampling probabilities and fuzzy logic to obtain
collision information and guide the expansion of RRT is con-
sidered in [112]. In the method, the search space is cluttered
by cell decomposition and each cell are associated with prob-
abilities and, according to their classification, some regions of
the search space becomes more important than others. Based
on this, two planners, where probabilities information are
used as RRT advisors on the expansion process, are proposed
by [112]: a boundary bias planner; and a fuzzy bias planner.
In the boundary bias, regions classes are defined given the
neighborhood relation of the regions/cells of the search space
with the nodes of the RRT. Regions with lesser tree nodes
are more important to sampling. In the fuzzy bias, weight
values are calculated to each region/cell by fuzzy rules based
on collision information. Second the authors, these strategies
reduces the RRT grow to local minima situations (samples
on the search space with no possibilities of exploration) and
induces a better exploration of the search space.

4) PATH-BIASED SAMPLING
Previous planned paths can be used to generate promises
candidates samples to accelerate the convergence to better

paths during planning. Usually, the nodes of the previous
paths are used to bias the sampling of new node candidates.
The strategies proposed by the primary studies in this class
are discussed below and listed in Tab. 7.

On [113] a local sampling strategy is proposed to Bi-RRT*.
The proposed algorithm use three sampling strategies, where
which one is executed based on a probability value. They
are: bias in direction of the goal position; the standard uni-
form random sampling; and the local bias that is presented
as follows. When a path is planned, the local sampling is
executed to bias the tree grow. First, a node of the path
is selected randomly. Thus, its parent node and child node
are obtained. These two node are represented as vectors.
Based on this representation, the vector that represents the
middle point between the parent and child nodes is calculated.
Finally, a new sample is generated from the selected node
of the tree in direction of the middle point calculated by a
random generated distance between maximal and minimum
defined values. The authors argue that this strategy generate
straighten paths than uniform random sampling, whichmeans
that optimized paths are generated faster.

On [114], an adaptive sampling scheme based on
cross-entropy (CE) method [115], a global stochastic opti-
mization, is proposed to the RRT* algorithm. In the proposed
strategy, initially the optimal path is obtained without con-
siderations about constraints. Thus, the optimal path is used
to feed the probabilistic model, based on Gaussian mixture
model, to indicate the regions with the lowest cost on the
search space that generates constrained optimal paths to an
autonomous system. Two versions of the RRT* algorithm
with CE sampling are proposed. The first is the trajectory-
cross-entropy RRT* (TCE), where a distribution is update
with the bests parameters of trajectories with the lowest costs
and better trajectories (instead of samples) are generated.
The second is the state-cross-entropy (SCE) RRT*, where
samples are collected from the search space directly by the
distributions modified by cross-entropy method.

An approach based on intelligent sampling and path opti-
mization called RRT*-Smart is proposed in [116]. This algo-
rithm is applied to scenarios where path planning is executed
until the optimal path (the shortest path) to a search space can
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be encountered. The method works similar to the cost-based
algorithm RRT*. However, since a path is found between
the initial and final planning nodes, it is optimized by con-
necting directly visible nodes in the navigation environment.
To optimize the length of the planned paths, new samples are
collected near points named beacons, which are generated
close to nodes previous planned paths. After the first path is
encountered, the sampling process becomes based on these
beacons. The new samples are spawned within balls centered
on the beacons. According to the authors, the method accel-
erates the convergence time to find optimal solution and the
path maintains lower length compared to a path generated by
RRT*, considering the same pair of initial and final nodes.

On [81] are presented a combination of geometric planning
and kinodynamic planning calledGuided RRT. The algorithm
has to layers: one were the RRT plan the tree representing
geometric constraints and another that is sampled based on
the nodes of the first one. The nodes of the kinodynamic tree
is sampled from the geometric tree nodes given a probability
value p, otherwise its use a random sample. Each time a
node on the geometric node is selected by the kinodaynamic
sample, its selection probability is reduced. The Guided RRT
algorithm sampling of the kinodynamic tree is biased by the
nodes of the geometric tree that were less selected previously.

The sampling process proposed on [117] is based on a
directed acyclic graph (DAG) of waypoints constructed by
cell decomposition techniques and General Diagram Voronoi
(GDV). The waypoints of the DAG are utilized to expand
the RRT*. Two kinds of waypoints are maintained on the
DAG: traversed and frontier. When one of the waypoints are
added to the RRT, its ancestors are classified as traversed. The
descendants of the waypoint is classified as frontier. Thus,
the tree is expanded from the frontier with probability value
than the traversed waypoints. Authors argues that expanding
the tree by the frontier nodes optimize the cost of the planned
path.

The algorithm proposed on [118], introduces a sam-
pling strategy called biased path area sampling to the
Transition-based RRT* (T-RRT*) algorithm, creating the BT-
RRT* algorithm. The biased sampling starts after the first
path is planned or when a path with lesser cost than the
previous path is founded. The nodes of a planned path is used
on the sampling bias. To each one of the path nodes, a sample
is randomly generated around it given a radius distance value.
If each sample optimizes the local cost of the path considering
through possible connection with its neighbors, them it is
added to the tree. The process optimizing the global cost of
the path each time a path with lesser cost is founded by the
tree.

The algorithm presented on [119] introduces the focused-
refinement algorithm to bias the RRT* grow after a first
path is planned. To a given planned path, the algorithm uses
the maximal and minimum k-component value of the nodes
of the path. These values define the interval from which
a random uniform k-component sample are collected (for
example, the x component of the sample). Next, after the first

component definition, another k-component (for example,
y component of the sample) is defined based on the nearest
k-component node from the first previously selected. Then,
inside a range defined by the last k-component plus a shift
value, the last component is randomly generated and finally
a new sample is collected, defined by its all k-components.
This sampling scheme is executed based on a constant value
that defines its ratio of use with the random uniform sampling
on all search space. The work yet presents two additional
improvements to RRT*: The Goal tree and Grandparent-
Connection Modifications. The first is a tree rooted on goal
position to replan on scenarios with dynamical obstacle and
the second is an optimization path process that try connects a
node to it grandparent to reduces the quantity of nodes into a
path.

5) NARROW PASSAGE-BIASED SAMPLING
This kind of sampling bias is used to overcome the RRT gap in
explores difficult areas as narrow passages. Accelerating the
exploration of RRT into these regions locally, has a positive
effect on global planning time. The bias sampling strategies
proposed by the works into this class are listed below and in
Tab. 8.

The Interactive RRT in Contact (I-RRT-C) proposed
on [120], is an extended version of the human-autonomous
planning algorithm Iteration RRT (I-RRT) [121] to path plan-
ning on 3D search spaces. A new sample schema is added to
the tree based on the contact with the obstacles. When the
tree is near of an obstacle, the algorithm enter on the called
contact mode. On this mode, a local tangent plane to the
nearest obstacle is used to collect new samples. The samples
are collected randomly over the tangent, allowing the RRT
slide on the obstacles.

On [122], an algorithm based on RRT, called Retraction-
based RRT, is proposed with optimization sampling on nar-
row passages and another in-contact situations. The algorithm
utilizes a retraction based strategy when in a collision posi-
tion, translating the in-collision samples to the boundaries of
the obstacles, improving then the exploration on narrow pas-
sages. Initially, for a randomly generated in-colliding sample,
its nearest node on the tree is selected. This node will be the
initial guess for where the in-collision sample must be reposi-
tioned. In the narrow passage, the nearest selected node has a
high probability to be near the boundary of an obstacle. So a
new sample is generated by the optimization-based retraction
also near the boundary of the obstacle. Finally, sample is
added to the tree as a new node. This new node has probably
the highest density of Voronoi, so its more probable to it be
selected on the next iterations. This way, a sample created
by the retraction operation is almost ever selected on the
subsequent iterations, which to narrow passages accelerates
the exploration of the tree through these regions of the search
space.

In [123] the application of an optimized retraction-based
technique to bias RRT grow on narrow passages was studied.
The aim of the retraction-based approach is retract samples
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TABLE 8. Evidence collected in systematic literature review process that fall on narrow passage-biased sampling class.

TABLE 9. Evidence collected in systematic literature review process that fall on sampling by reduction of the search space class.

that occur in the obstacle region of the search space to a free
collision sample near or over the boundary of obstacles or the
medial axis, which is useful on situations of narrow passages.
The proposed algorithm based on this concept is called Selec-
tive Retraction-based RRT (SR-RRT). Two tests are proposed
to identify narrow passages by SR-RRT: bridge line-test and
non-colliding line-test. A bridge line-test consists in identify
the existence of a narrow passage through a straight line when
random samples are collected over the obstacle region of the
search space. Thus, a line generated from the nearest-node
of the samples is used to identify the narrow passage. If the
corridor is detected, so the retraction operation is performed
to collect a new sample over the boundaries of the obstacles.
The non-colliding line-test records wide-open free spaces in
the navigation environment and discard samples generated
within them and to generate more samples outside those
areas, which potentially towards RRT to narrow passages.
Second the authors, this strategy bias new sample collection
into direction of boundaries of the obstacles.

B. ADAPTATIVE SAMPLING
1) SAMPLING BY REDUCTION OF THE SEARCH SPACE
Many problems have a necessary restriction of maintain the
exploration capabilities of the RRT while improving perfor-
mance of planning. To allow this, many works proposed the
reduction of search space region. Then, new samples could be
collected just into this reduced space, disregarding samples
that probably could not improve the quality of the path.
Each strategy based on the reduction of the search space are
discussed below and listed in Tab. 9.
The Informed-RRT* [84] algorithm reduces the search

space based on the cost of the planned path. This cost defines
the size of a hyperellipsoidal subspace, from where new
samples are collected. The authors affirm that this ellipsoidal

region has a higher probability to contain the samples that
generates the best paths. The size of the ellipsoidal region is
reduced if the reduction of the path cost.

On [124] is proposed a modified version of the Informed-
RRT* algorithm called Wrapping-based Informed RRT*
(WIRRT*). A wrapping process is applied to accelerate the
reduction of the ellipsoidal region that limits the sampling
space. The wrapping process optimize a planned path replac-
ing its intermediate nodes by ones that is wrapped onto the
obstacles. Consequently, the cost of the path is optimized and
the size of the ellipse, that is dependent of this cost, is also
reduced.

Based on generation of the hyperellipsoide sub region on
Informed-RRT*, the Batch Informed Tree (BIT*) is proposed
on [125]. Initially, a Random Geometric Graph (RGG) is
defined by uniformly distributed random samples on the
non-collision region of the search space. A tree that con-
nects the initial position and the final position of planning
is heuristically searched over the RGG. The resulted tree is
used as a batch to generate an initial ellipsoidal region that
is a subregion of the search space that theoretically contains
the bests samples to optimize the path. Thus, the process is
restarted with a lesser subregion formed by the current tree
cost. Each time a tree with better cost is planned the new batch
is formed. The process continues as planning time allows.
This way, optimized paths are generated faster than others
planning algorithms based on RRT.

The algorithm presented on [85] introduces a self-learning
of the search space to adapt the sampling depending on if the
region being explored it is a difficult one or an open onewhere
goal bias is more promising. The collision check process give
information about the distribution of the obstacles regions
into the search space. To achieve this, each node of the tree
has a disc containing several sectors with information based
on visibility of the search space generated by a virtual sensors
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TABLE 10. Evidence collected in systematic literature review process that fall on bias by sampling distribution class.

over the node. Each sector is classified based if is identified
by its associated sensor an obstacle inside its range. The
sectors that has visibility of an obstacle have its range of
visibility reduced. Also, the sector in direction of the goal
position is more important than others on the sample process.
The sampling by the proposed sampling scheme starts by
collecting a random sample and finding its nearest node
on the tree. Thus, the disc of this node is used to collect
a biased sample. Each sector has a probability chance of
be selected. Once a sector is selected, a node is randomly
selected inside of its area. Second the authors, is expected
that with the self-learning sampling the tree can explore the
search space more widely at the beginning of the planning
and then improve the branches more finely later.

2) BIAS BY SAMPLING DISTRIBUTION
Traditionally, the RRT algorithm randomly selects a new
sample from the search space following a uniform distribu-
tion. Thus, each position of the search space has equal prob-
ability to be collected. The strategies in this class modify the
sampling distribution to one that allows the collection ofmore
promising samples to include in the path. Usually, a modified
distribution can be defined since the planning starts or adap-
tive distribution can be changed based on previous collected
samples, increasing the efficiency of the sampling process
as the RRT grows. The strategies observed to fall into this
sampling class are listed below and their data are in Tab. 10.
In [126] is proposed a visibility-based RRT to evaluate

open spaces in a cluttered search space. A Gaussian-based
random distribution is considered to generate random sam-
ples around the surfaces of the obstacles. The distribution is
affected by the quantity of obstacle visible by the nodes of
the tree.With the expansion of RRT, eventually more obstacle

are ‘‘visible’’ by its nodes, changing the sampling distribution
accordingly. The algorithm also use sampling biased by the
goal position.

An adaptive scheme is proposed by [127] to change the
uniform sampling of the RRT algorithm. The adaptive sam-
pling algorithm begins with a biased search scheme and then,
if the tree is growing rapidly, maintain or increase the bias.
If the growth rate slows, a more uniform sampling strategy
is used. If the tree growth rate is fast, so the samples are
collected toward the unsafe regions. The level of uniformity
is adjusted by changing the standard deviation of a Gaussian
distribution. Then, the modified distribution is used to gen-
erate random samples to the tree. With the adaptive sampling
strategy, paths are generated faster than using strictly uniform
sampling.

A enhanced version of RRT algorithm is proposed
on [128]. Its informed sampling generate a new adaptive
biasing algorithm controlled by a factor that depends on how
often a collected sample is successful in extends the tree by
less costly edges. The quantity of iterations performed on
the planning defines when a Gaussian-like density function
is modified by this factor. Thus, subsequent samples are
collected given the recently modified distribution. Second the
authors, by this probability density function changing scheme
the adaptive biasing algorithm improves the efficiency of
RRT method compared to other fixed bias strategies rather
dramatically.

An approach based on sampling Poisson disks is proposed
in [129]. In this approach a pre-computed step is considered,
where random samples (discs centers) are collected given a
Poisson-disk distribution. The discs are sampled in a nested
and tightly way, separated by a minimum distance r between
the disk centers. The centers of the Poisson disks are used to

50948 VOLUME 7, 2019



L. G. D. O. Véras et al.: Systematic Literature Review of Sampling Process in RRTs

expand the RRT. This methodology has the objective to get
maximum sampling process, which means cover navigation
environment completely by Poisson disks. The authors state
that this new approach reduces the number of nodes in the tree
and can be implemented in parallel processing with multiple
threads. Also, was proposed on the work an on-construction
RRT sampling scheme to increase the ratio of samples
nears challenging areas of the navigation space, like narrow
passages.

On [130], a discovery approach of the search space is
proposed based on machine learning. The learned informa-
tion about the search space is used on an adaptive sampling
strategy and applied to RRT# [134]. The strategy works as
follows. A new sample is collected from the search space
based on uniform distribution. Thus, if the sample is collision
free or not, class density functions are approximated by a
classifier based on these collected samples. Thus, the density
functions (updated on each iteration) are used to determine
the position of the new samples added to the tree. As result,
the probability of generating free collision samples are higher
than on uniform random distribution.

A Gaussian Mixture Model (GMM) is proposed as sam-
pling process to RRT on [131]. GMM learns about collision
region of the search space by a clustering approach based
on the previous collected samples from which a distribution
can be estimated. Two GMMs are used: one to represents
the on collision samples; another to represents free collision
samples. The difference between then is used to estimate
collision positions. This way, the sampling by GMM has
a higher probability to generate samples on free region of
the search space, which can reduce the number of collision
checks and reduces the planning time. The GMM is updated
on each iteration of the RRT.

The algorithm presented on [86], called Ant Colony
Optimization RRT (ACO-RRT), determines the optimal sam-
pling distribution through ant colony optimization. The pre-
sented strategy works as follows. Initially, virtual ants are
distributed according to its relevance. Based on the cur-
rent exploration of the RRT*, these ants are updated, which
modify the sampling distribution of the algorithm. So based
on this estimated distribution, new nodes are sampled to
expand the tree. Next, their utility to improves the path
quality is evaluated based on the optimization of the current
solution and exploration of the search space to find new,
better solution. With these new information the ants are
updated and a new distribution are estimated. This process
follows until optimizing the capacity of exploration of the
RRT* and reduces the cost path faster than others RRT-based
algorithms.

On [132], the uniform random sampling process of RRT is
replaced by a Gaussian sampling process of the search space.
The mean value of the Gaussian distribution is set almost
close to the target position, making the sampling process col-
lect new samples on the goal region. The standard deviation
of the Gaussian distribution determines the effectiveness of
the proposed algorithm.

The algorithm proposed on [133] is based on Informed
RRT*. In the initial steps of the planning, initially a first
sample is collected uniformly over the informed region
of the space search (defined by an n-dimensional hiperel-
lipsoid). From there, sampling procedure follows over the
same informed region based on a Markov Chain Monte
Carlo (MCMC) process. The MCMC generate samples given
a target distribution that is estimated based on previous col-
lected samples and the cost that defines the informed region (a
characteristic of Informed-RRT*). The authors propose that
using MCMC reduces much more quickly the costs of the
planned paths on higher dimensions of the search space.

C. CONSIDERATION ABOUT SLR RESULTS
The description of the selected studies responds the Question
1 of the SLR. Question 2 is answered using data from pri-
mary studies. The collected data show that the RRT and its
RRT* variant are the principal bases considered in the pri-
mary studies on the use of non-uniform/informed strategies
in the sampling process. However, more recent RRT-based
are considered too, as Informed-RRT*, BIT*, RRT-ConCon,
etc. Possibly, there would be a variant method of an already
altered RRT-based algorithm, but with modification not in it
sampling process but in another of its processes, as in the case
with the RRT*, which introduces costs based reduction on
length of planned path for the insertion of a new node. How-
ever, they were removed from the results, primarily because
of scope of the scientific question of this review.

It is feasible to state that there are research opportunities
within the topic addressed. A considerable quantity of works
with RRT-based with non-uniform/informed samplings were
selected on the SLR, showing the evolution of the topic on the
last 14 years (considering the oldest works identified on the
SLR, [126] and [83], that are from the 2004 year). However,
53 works is not yet a quantity that could define a topic as
widely studied. Thus, could be inferred that the question of
sampling on RRT-based algorithms is yet on preliminary dis-
cussion. Thus, this review reinforced the existence of research
opportunities about this topic.

VIII. CONCLUSION
In this paper, a review of non-uniform/informed sampling
strategies for RRT-based algorithms was presented using a
review technical called Systematic Literature Review (SLR).
Quite popular in the areas of Medicine and Software Engi-
neering, this review methodology uses a research protocol
to guide the review process. Its purpose is to reduce the
revision bias inherent to the traditional revision approach,
where the literature works in a given area are selected by
the researcher’s experience and can lead to subjective and
non-objective selection.

First, two scientific questions were developed, outlining
the scope of the review. The research protocol was devel-
oped together with a team of expert researchers. Based on
it, the primary studies were consulted in several academic
search engines. The works returned by each search engine
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went through the selection process according to the inclusion
and exclusion criteria defined in the research protocol.

A total of 1136 studies were selected, of which 53 were
identified claiming to contain solution within the topic
addressed. The extracted data from them may help in new
research projects on the development of newRRT-based algo-
rithms applied to path planning.

In future work, a study of the methods found in the
review can be done for applications on the path plan-
ning for Unmanned Aerial Vehicles (UAVs). This type of
autonomous vehicle is usually controlled by systems that
produce responses in real time, which requires a fast enough
path planning method to do so. As found in the review,
the non-uniform/informed strategies on sampling process
shows the promising increase in planning efficiency by RRT,
which could initiate research about better path planning
time for UAVs, as others applications. Also, a comparative
study of the solutions proposed on the selected works on
the SLR could give insights over the efficiency of the differ-
ent non-uniform/informed sampling strategies on RRT-based
algorithms.
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