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ABSTRACT Dyadic wavelet transform is useful in analyzing electrocardiogram (ECG) signals due to its fast
computation and its multiresolution ability. In order to improve the feature extraction performance of dyadic
wavelet transform, a new construction example of centralized multiresolution (CMR) is proposed. The
proposed CMR example consists of two elements, namely, a dyadic part and a non-dyadic part. The dyadic
part, based on the maximal overlap second generation wavelet packet transform (SGWPT), generates dyadic
wavelet packets. The non-dyadic part engenders ensemble wavelet packets by postprocessing on the dyadic
part. The produced wavelet packets and ensemble wavelet packets are combined to realize continued spectral
refinement around fixed central analysis frequencies. Numerical simulation and a case study of ECG signal
decomposition are utilized to validate the enhancements of the proposed CMR example. The processing
results of the CMR example are compared with those of the dual tree complex wavelet transform and the
conventional SGWPT. It is validated this CMR example achieves better feature extraction performances due
to the presence of the exact translation invariance property.

INDEX TERMS Wavelet transform, electrocardiogram, centralized multiresolution analysis, translation

invariance.

I. INTRODUCTION

Heart disease and heart stroke is a major threat to human
life [1]. The electrocardiogram (ECG) is the acquisition
of cardiac activities using noninvasive techniques. It pro-
vides valuable information about bio-electric potentials cor-
responds with the contractions and relaxations of the heart
muscle [2]. The ECG forms the core amongst the lifesav-
ing diagnostic tools in the heartcare segment [3]. Therefore,
long-term monitoring of this physical process is highly rec-
ommended for patients who are suffering from the cardiovas-
cular disease.

Typically, an ECG signal is composed of characteristic
features of P, QRS complex and T points (Figure 1) [4]. In the
literature, numerous methodologies have been developed to
investigate these characteristic features such that cardiac dis-
eases can be revealed [5]. However, the ECG signal is by
nature a multi-component and non-stationary time series.
On the other hand, the measured ECG signals are usually
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FIGURE 1. The basic pattern of a typical ECG signal.

corrupted by interferences such as baseline wanders, power
line interferences and physiological artefacts. To eliminate
negative effects induced by these noises, ECG feature detec-
tion methodologies enhanced by preprocessing stages and
postprocessing stages are necessary. A comprehensive review
of ECG detection methodologies is presented in Refs. [S]-[8].
The existing ECG detection methodologies aim to improve
the detection accuracy via sophisticated signal processing
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techniques. Some of the popular detection methodologies
can be numerated as spectrum analysis methods (Fourier
transform and short-time Fourier transform) [9], [10], math-
ematical morphology [11], wavelet transform (WT) [12],
empirical mode decomposition (EMD) [13], blind source
separation [14], and sparsity based strategies [15].

WT is derived from the conventional Fourier transform by
introducing multiresolution analysis [16]. It has proven to be
an effective and efficient tool in biomedical fields [17]-[19].
In the past decades, a number of variations of WT have been
developed and applied in biomedical signal analysis applica-
tions [16], [17]. In many researches, WT is usually adopted
in preprocessing stages of ECG feature analysis. Hamaneh
attempted to remove electrocardiographic artifacts using a
technique based on the combination of independent compo-
nent analysis and continuous wavelet transform (CWT) [19].
However, a major disadvantage of CWT is its high compu-
tational burden. Comparatively, discrete wavelet transform is
more efficient because it decomposes an input signal into a
few frequency subbands using a single scaling function and
a single wavelet function [20], [21]. Benzid utilized discrete
wavelet transform in the ECG signal decomposition [22].
Poungponsri and Yu proposed an adaptive filtering approach
based on the discrete wavelet transform and the artificial
neural network for ECG signal noise reduction [23]. Zou
et al. designed a low power biomedical device to implement
discrete wavelet transform for QRS complex detection [24].
Yu and Chen studied the electrocardiogram beat classifica-
tion problem through high order statistics on six wavelet
components extracted from ECG signals [25]. Hassan and
Haque utilized a data-adaptive signal decomposition scheme
(tunable-Q wavelet transform) to decompose segments of
ECG signals [26]. Thomas et al. proposed a dual tree complex
wavelet transform (DTCWT) based feature extraction tech-
nique for automatic classification of cardiac arrhythmias [12].
Kumar et al. employed flexible analytic wavelet transform to
extract multiscale features of ECG signals in diagnosis of the
coronary artery disease [27].

Among the multiple variations of discrete wavelet trans-
form, there are still some inevitable shortcomings [28], [29].
For both of the dyadic wavelet decomposition and the associ-
ated discrete wavelet packet decomposition, no matter which
wavelet basis is chosen, their frequency-scale paving patterns
are identical and fixed [30], [31]. Their performances are
relatively poor in extracting transition band features [21].
For overcomplete discrete wavelet transform characterized
by a few free parameters, nonconventional upsampling
operators and nonconventional downsampling operators are
introduced [17], [21]. However, more than one wavelet
decomposition is usually required to make a comprehen-
sive investigation of the hidden features [28]. In 2018,
an improved theory of centralized multiresolution (CMR)
analysis was proposed by Chen and Zeng [20], [21]. The
CMR is a novel type of wavelet decomposition constructed
based on dyadic wavelet analysis. A concrete construc-
tion example was given by postprocessing of DTCWT.
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CMR can engender multiresolution around some specific
spectral bins [32]. Although this construction example inher-
its many merits of DTCWT, it is still not of exact translation
invariance, which plays an important role in nonstationary
feature analysis.

In order to address this problem, we attempt to construct
another concrete example of CMR, which is equipped with
property of exact translation invariance, based on the second
generation wavelet theory [33]-[36]. In the new construc-
tion example of CMR, the input signal is firstly decom-
posed by maximal overlap second generation wavelet packet
transform (MOSGWPT) into dyadic wavelet packet sub-
spaces. To enhance the analyzing performance for transi-
tion band features, an ensemble wavelet packet generating
strategy is introduced to produce ensemble wavelet pack-
ets (EWPs) whose central analysis frequencies (CAFs) are
located at edges of the dyadic frequency-scale pattern. Prop-
erties of the new construction example (frequency-scale pat-
tern, time-frequency atom, and exact shift invariance) are
studied to show its superiorities. The frequency-scale pattern
of the new example is investigated to reveal the valuable
merit of centralized multiresolution. The property of exact
shift invariance is verified by applying decompositions on
shifted discrete Dirac sequences. Moreover, it is also found
that time-frequency atoms of both dyadic wavelet packets and
EWPs are symmetric, therefore reducing distortions in the
multiscale decomposition [37], [38].

The new construction example was used to decompose
ECG signals from MIT-BIH arrhythmia database. As com-
parison, the DTCWT and the conventional second generation
wavelet packet transform are also employed to process the
same ECG signals. It is validated that properties of central-
ized multiresolution and the property of exact translation
invariance are both beneficial in feature extraction of ECG
signals.

Il. FUNDAMENTALS OF CONVENTIONAL DISCRETE
WAVELET THEORY

A. DYADIC WAVELET TRANSFORM

In wavelet analysis, dyadic wavelet transform (DWT) is
widely used due to its fast computation. Wavelet coefficients
are obtained using inner product transforms between input
signals and time-frequency atoms.

1 oo t—>b
WT,p(x) = %/ x(Oy <T> dt, (D

where x(?) is the input signal and y(¢) is the time-frequency
atom.

The time-frequency atoms of dyadic wavelet transform
are generated via dilations and translations from a scaling
function ¢(¢) and a wavelet function (). ¢; 1 (t) and v; x (¢)
can be expressed as

@un=¢@&—m
Yix(t) = (2t — k), 2)
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where the integer j denotes the decomposition stage; the
integer k denotes the translation in the time domain; and Z
denotes the set of complex number. Let the corresponding
discrete finite impulse response functions of ¢(z) and ¥ (¢)
be represented as i(n) and g(n), two-scale relationships exist
for these time-frequency atoms.

¢(1) = Y h(m)p(2t —n), 3)
nez

Yt =Y gyt —n). )
nnez

The implementation filterbank of the dyadic wavelet trans-
form is shown in Figure 2, where H(w) and G(w) represent
Fourier counterparts of finite support filters h(n) and g(n).
As can be observed, the DWT decomposes the low frequency
bands iteratively. It should be noticed that downsampling
operations in the decomposition process and upsampling
operations in the synthesis process will cause a side effect
of translation variance in signal analysis.
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FIGURE 2. Filterbank structure of dyadic wavelet transform: (a) the
decomposition process; and (b) the frequency-scale paving.

B. DYADIC WAVELET PACKET DECOMPOSITION

The wavelet packet decomposition (WPD) is developed as
an extension of the dyadic wavelet transform. In WPD,
the higher frequency subbands are further decomposed via the
iterated tree-structured implementation filterbanks displayed
in Figure 3. Let x(n) be a discrete time series of length L and
fs be the sampling frequency. The frequency-scale pattern of
multi-stage WPD is shown in Figure 4. It can be inferred
that each wavelet packet possesses a unique CAF, which
is marked by the purple dashed line. As such, either DWT
or WPD is not perfect in extracting transient band features
whose spectral counterparts lie in transition areas of dyadic
grids (Figure 5).
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FIGURE 3. The tree-structured filterbank structure for WPD.
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FIGURE 4. The frequency-scale pattern of dyadic wavelet packet
decomposition.
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FIGURE 5. Implementation structure of maximal overlap lifting scheme.

IIl. NOVEL CMR CONSTRUCTION EXAMPLE BASED ON
SECOND GENERATION WAVELET TRANSFORM

A. MAXIMAL OVERLAP LIFTING SCHEME FOR WAVELET
PACKET DECOMPOSITION

The second generation wavelet is essentially a biorthogo-
nal wavelet transform that can be implemented not only by
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the tree-structured filterbanks but also by a special lifting
scheme. To ensure translation-invariance, a maximal overlap
lifting scheme (MOLS) is utilized. Let the prediction operator
and the update operator be represented by P and U respec-
tively, the MOLS (Figure 5) can be implemented via the
following framework. That is to say, the numbers of samples
in each wavelet packet coefficient series are identical to that
of the input signal.

In Figure 5, The coefficient of P! and U! are obtained
by padding the original P, of length Np and U by zeros, of
length Nyy.

Pl=p1, 0...0, p2ooo . pNp-1: 0.0, pyy] ()
201 201

U'=lu1, 0...0, p2.oo..png-1, 0.0, piy1 (6)
201 201

For an input series x(n), a j-stage MOSGWPT can generate 2/
wavelet packet coefficient series, namely {d; 1, d;2, ... dj,2i}~
In the forward transform, the algorithm can be divided into
two sub-steps.

Step 1) Predict step

(Np—1)2/ 41
dig 1) =digmy— DY POdxn+0 (7
=1
Step 2) Update step
‘ (Np—=1)2+1
djok-1(n) = di(n) + Z POdja(n+6)  (8)
=1

The algorithm of the inverse transform can be divided into
three sub-steps.
Step 1) Inverse update step

(Ny—D2Y+1
digk ) =dig1m— > WOdamn+0 9
e=1
Step 2) Inverse predict step
(Np—1)2+1
dinm=dnm+ Y  POduin+e) (10)
=1
Step 3) Merge step
A 1~ ~(i
G = 3 [ 0 + G | an

The flow chart of this algorithm is shown in Figure 6.

B. CONSTRUCTION OF NON-DYADIC ENSEMBLE
WAVELET PACKETS
A novel strategy is introduced to construct non-dyadic
wavelet packet subspaces. The algorithm can be divided into
the following steps.

Step 1) MOSGWPT of the input signal {x(n)}, represented
as

x(n) > wpej = {diymlk =1,2,...,27}.  (12)
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FIGURE 6. Implementation structure of maximal overlap lifting scheme.

Step 2) Single branch reconstruction of wpc;.
s rjoim}. (13)

Step 3) Reorder the elements in wpr/ using Gray code
mapping such that the elements are placed in ascending order
of CAF value.

wpcj > wprj = {rj1(n), rj2n),...

wpcj = wpj = {wpj1(n), wpj2(n), ..., ij’z,-(n)}. (14)

Step 4) Generate ensemble wavelet packets by superposi-
tion of adjacent wavelet packets

ewpj () = wpj 2 (n) + wpj 2k (n). (15)

The flow chart of the proposed algorithm is shown in Figure 6.
For an integer k, the procedure of the mentioned Gray code
mapping is shown as below. In binary coding, the integer i is
expressed as

i= Zank, (16)

k=0

where the variable is ranged in {0, 1}. Then another integer
is defined as

j—1
i=Y 2. (17)
k=0
The mapping between {r;} and {7;} is described as
- ny fork=j—1
nr =
“T I mod(m + mis1,2) fork=0,1,..., j—2,

(18)

where mod, -) stands for the modular

mathematics.

operation in
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TABLE 1. Comparisons of CAFs and pass band frequency.

Decomposition Central analysis Pass band width
Method frequency (CAF) (PBW)
Dyadic wavelet k4 0.5 1
packet Wp,, Y 1) ;f
Centralized k 1
multiresolution F A F £,
ewp,

IV. PROPERTIES OF THE CMR CONSTRUCTION EXAMPLE
In this section we investigate properties and merits of the
novel construction example of CMR. The properties include
a centralized frequency-scale pattern and the exact translation
invariance.

A. NON-DYADIC FREQUENCY-SCALE PAVING

The frequency-scale pattern of the new construction example
is shown in Figure 7. With the increasing of decomposition
stages, the frequency resolutions of EWPs are continuously
refined by a factor of 1/2, which is similar with DWT and
WPD. However, it is found that there are groups of EWPs
sharing identical CAFs. In other words, a phenomenon of
multiresolution around some specific CAFsis observed. This
phenomenon is referred to as the novel concept of centralized
multiresolution. In Table 1, we list the CAFs and pass band
widths of subspaces belonging to SGWPT and those of the
CMR example. The CAFs of the CMR example are located
at edges of pass band of dyadic wavelet packets, which is
beneficial in extracting transition band features mentioned
above.

. Scale (Af),
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4 T 16
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I
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FIGURE 7. Frequency-scale pattern of the new construction example.

B. EXACT TRANSLATION INVARIANCE
The property of exact translation invariance is benefi-
cial in analyzing periodical and nonstationary features.

42326

To demonstrate the exact translation invariance of the con-
struction example, the discrete Dirac function, whose defini-
tion is given in Equation (19), is used.

1 n=0
8(n) = 19
) [O others, (19
where n, ng € Z. By performing multiscale decompositions
on shifted discrete Dirac sequences §(n — np), we have the
decomposition results in Figure 8.

Amplitude

Amplitude

Amplitude

Time

FIGURE 8. Exact translation invariance of ensemble wavelet packets.

V. INVESTIGATIONS OF CMR CONSTRUCTION EXAMPLE
IN MULTISCALE DECOMPOSITION

In this section, we investigate the superiority of the new CMR
example in multi-component signal analysis. A simulation
signal comprising multiple simple harmonic waves is simu-
lated as below.

x(t) = cos(2w90t) + cos(2mw 340t)
+ cos(2w650¢) + cos(2r910¢). (20)

The sampling frequency and the sampling length of the signal
are set as 2000 and 2000 respectively. The time domain wave-
form and the associated Fourier spectrum are plot in Figure 9.
The spectral resolution of the signal is calculated at 1Hz.
The decomposition results of the simulated multi-
component signal using the CMR construction example is
shown in Figure 10. The four extracted components are

{cemr1(M),  cemr2(), Cempr3 (), Cemra(n)}. 21

It can be observed from the figure that the four simple har-
monic components coupled in the time domain are success-
fully separated with relatively small waveform distortions.
As comparisons, the simulated signal is also decomposed by
the dual tree complex wavelet analysis. The four extracted

components are
{cari(n),  carn(n), caz(n), cqa(n)}. (22)

In Figure 11, we plot the waveforms of the four extracted
components. The results by the DTCWT and those of the
CMR construction example are very similar. The reason for
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FIGURE 9. The simulated multi-component signal.

Frequency

) 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

FIGURE 10. Decomposition results by the new CMR construction example.
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FIGURE 11. Decomposition results by the new CMR construction example.

their similarities lies in the fact that the DTCWT is nearly
translation invariant and nearly analytic.

The conventional second generation wavelet packet trans-
form is also employed to process the simulated signal. The
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four extracted components are

{ngl(n)v csg2(n), csg3(n), ng4(n)}- (23)

Their waveforms are shown in Figure 12. Owing the lack
of translation invariance, considerable waveform distortions
occur on the single branch reconstruction signals. Especially
for slow-varying wavelet packets, the phenomenon of arti-
ficial modulation is detected, which severely corrupt the
extracted components.

Frequency

h h h h I I h h h |
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Time [s]

FIGURE 12. Decomposition results by conventional second generation
wavelet packet transform.

To make further comparisons, the indicator of correlation
coefficient (CC) is utilized. The mathematical definition of
the correlation coefficient between the input series of x(n) and
y(n) is given as below.

E[(x — px)(y — /'Ly)]

Corr[x(n), y(n)] = oo )
xOy

(24)

where u, and u, denote the mean value of the input series;
oy and oy denote the standard variation of the input series;
and the operator E[-] means the mathematical expectation
in statistical analysis. Higher values of CC indicate higher
similarities between the two input series. For each decom-
position method, we calculate the CCs between the original
components and the extracted components. The results are
listed in Table 2.

TABLE 2. Correlation coefficients generated by the three decomposition
methods.

Extracted Extracted Extracted Extracted
component component component component
1 2 3 4
CMR 0.9998 0.9998 0.9998 0.9999
DTCWT 0.9997 0.9989 0.9993 0.9998
SGWPT 0.9701 0.9138 0.9318 0.9861

Another visual representation of the data in Table 2 is
shown in the bar plot of Figure 13.

For each component, the results by the CMR construction
example exhibit the greatest value of correlation coefficient,
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FIGURE 13. Correlation coefficients between the original components
and the extracted components.

indicating the best feature multi-component separation per-
formances. While the CCs calculated from results by the
conventional SGWPT are smallest in value. It is sufficient
to conclude that better translation invariance ensures better
feature extraction ability.

VI. APPLICATION IN ECG SIGNAL ANALYSIS

The analyzed ECG data in this section is shared by Mas-
sachusetts Institute of Technology and Beth Israel hospital
(MIT-BIH) arrhythmia database. The ECG signal was digi-
tized at 360 samples per second. A record of signal of 10 sec-
onds is adopted in this case study. The time domain waveform
and its Fourier spectrum are shown in Figure 14.

N r T T .
o
'5 0.5F
£ o
<
0.5f
0 2 4 6 8 10
Time [s] (a)
0.06 . . . .
Q
E 0.04
=)
g 0.02
I
0 : L
0 10 20 30 40 50
Frequency [Hz] (b)

FIGURE 14. Information of the analyzed ECG signal: (a) the time domain
waveform; and (b) the Fourier spectrum.

In the time domain, noises are detected between the
impulses. It can be inferred from the Fourier spectrum that
the energy of the contents is spread in a wide frequency
range. Considering the nonstationary nature, the amplitude
distribution of the ECG signal using the continuous wavelet
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FIGURE 15. Amplitude distribution of the analyzed ECG signal using
continuous wavelet transform.
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FIGURE 16. Decomposition results of the ECG signal by the CMR
example: (a) cemr1(n); (b) cemp2(n); (€) €emp3 (n); (d) Cemra(n).
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FIGURE 17. Zoom-in plot of the denoised ECG signal.

transform is plot in Figure 15. In this figure, transient features
of broadband spectrum are also revealed.

The proposed CMR example was applied to decompose the
signal. The related single branch reconstruction signals are
shown in Figure 16. The noises are decomposed into wavelet
subspaces of higher frequency range. In the zoom-in plot
(Figure 17), the characteristic features of P, QRS complex
and T points are successfully extracted, while the noises in
the original measurement are effectively suppressed.

As comparison, the ECG signal is also processed by the
DTCTW and the conventional SGWPT. In the results gener-
ated by the DTCWT (Figure 18), although the noises in the
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FIGURE 18. Decomposition results of the ECG signal by DTCWT: (a)
cdt1(n); (b) cge2 (n); (¢) cge3(n): (d) Cgea(n).
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FIGURE 19. Decomposition results of the ECG signal by the conventional
SGWPT: (a) ¢sg7 (n); (b) €5g2(n); (€) C€sg3(n); (d) Csga(n).
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FIGURE 20. Energy ratios between the higher frequency subspaces and
the lowest frequency subspace.

lower frequency range have been suppressed, the mode of the
impulses has cracked into many subspaces. Comparing the
results of Figure 17 with those in Figure 18, it is confirmed
that the property of exact translation invariance is crucial in
multi-component separation applications.

VOLUME 7, 2019

The processing results of the ECG signal by the SGWPT
are given in Figurer 19. The mode crack phenomenon is also
found in subspaces in higher frequency range.

To make further and quantitative comparisons on the per-
formances of the above three method, the energy ratios
between higher frequency subspaces and the first subspace
are calculated. The results are shown in Figure 20. Because all
of the energy ratios are low in value, all of these three methods
can suppress the measurement noises. Checking the results
in Figure (16-20), it is confirmed that the property of exact
translation invariance can better preserve the original wave-
form as well as suppressing the mode crack phenomenon.

VII. CONCLUSION

In this paper, a novel construction example, capable of realiz-
ing centralized multiresolution, is proposed. The frequency-
scale pattern of the proposed CMR example is expanded by
a dyadic part and a non-dyadic part, where the latter pos-
sesses an improved performance in extracting transition band
features in the dyadic frequency-scale pattern. The proposed
example is based on the maximal overlap second generation
wavelet packet analysis, and therefore it inherits the attrac-
tive merit of exact translation invariance. A multi-component
signal is simulated to verify the superiority of this valuable
merit. It is found it can better preserve the feature waveforms
after single branch reconstruction in wavelet decompositions.
The proposed CMR example, the DTCWT, the conventional
SGWPT are used to process an ECG signal from MIT-BIH
arrhythmia database. The processing results show that the
proposed CMR example is equipped with better performance
in suppressing noises and extracting nonstationary features.
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