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ABSTRACT Many nonlinear dynamic and statistic methods, including multiscale sample entropy (MSE) and
multiscale fuzzy entropy (MFE), have been widely studied and employed to fault diagnosis of the rolling
bearing. Multiscale dispersion entropy (MDE) is a powerful tool for complexity measure of time series,
and compared with MSE and MFE, it gets much better performance and costs less time for computation.
Since single-channel time series analysis will cause information missing, inspired by multivariate multiscale
sample entropy (MMSE) and multivariate multiscale fuzzy entropy (MMFE), refined composite multivariate
multiscale dispersion entropy (RCMMDE) was proposed in this paper. After that, RCMMDE was compared
with MDE, MMSE, and MMEFE by analyzing synthetic signals and the results show that the RCMMDE has
certain advantages in terms of robustness. A hybrid fault diagnostics approach is proposed for rolling bearing
with a combination of RCMMDE, multi-cluster feature selection, and support vector machine. Also, the
proposed method is compared with MDE, MMSE, and MMFE, as well as multivariate multiscale dispersion
entropy-based fault diagnosis methods by analyzing the experimental data of rolling bearing, and the result
shows that the proposed method gets a higher identification rate than the existing other fault diagnosis
methods.

INDEX TERMS Multiscale entropy, multiscale fuzzy entropy, multivariate multiscale dispersion entropy,

refined composite multivariate multiscale dispersion entropy, rolling bearing, fault diagnosis.

I. INTRODUCTION

Rolling bearing is one of the most common part of rotating
machines, which is usually used in industrial and mechanical
applications. It is important to study the fault diagnosis tech-
nologies of rolling bearings [1]-[3]. In general, the vibration
signals of rolling bearing will present strong non-stationary
and nonlinear characteristics when some localized failures
occur on rolling bearings [4], [5]. Traditional linear and sta-
tionary signal analysis methods inevitably have some limi-
tations in analysis of non-stationary and nonlinear signals.
In recent decades, the entropy-based parameters that aim
at evaluating complexity of raw signals have been exten-
sively applied in fault diagnostics of rotary machines [6]-[9],
such as multiscale sample entropy (MSE) [10]-[12],
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multiscale permutation entropy (MPE) [13] and multiscale
fuzzy entropy (MFE) [14]-[16]. MSE was utilized study [17]
to extract failure related features from raw signals of rolling
bearing. In [16], Zheng et al applied MFE to reveal faulty
characteristics of rolling bearing. MPE was applied to fault
feature representation of rotary machines and was compared
with MSE through analyzing experiment data of rolling
bearing. However, the existing nonlinear dynamic tools for
complexity or irregularity measure still have some intrinsic
limitations when used to real world data analysis. For exam-
ple, sample entropy (SampEn) is computationally inefficient
for long data and has a large variation in similarity measure.
In MPE the relationship of adjacent amplitudes is uncon-
sidered. Recently, dispersion entropy (DisEn) was proposed
by Rostaghi and Azami [18] to overcome the defects of
SampEn and PE. The superiority of DisEn to SampEn and
PE is verified by analyzing simulation and biological signals.
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Later, DisEn was extended to multiscale dispersion
entropy (MDE) [19] and then is enhanced by refined com-
posite multiscale dispersion entropy (RCMDE) in [20].

However, at present, lots of fault diagnosis methods of
rotary machines are generally founded based on single chan-
nel or one direction vibration signals, while the other channels
or directions of vibration information are often ignored. Take
gearbox vibration as an example, the common used fault
diagnosis methods by many scholars are generally based on
vibration signals acquired from vertical body direction of
gearbox. Although the information of vibration signals in
single direction or channel usually can effectively identify-
ing the diagnostics of local fault, due to the complexity of
transmission paths of gearbox, the signals collected from
different directions also contain important fault information.
Therefore, it is necessary to develop multi-channel data based
fault diagnosis method to improve diagnosis effectiveness.
The assessment of dynamic relationship between different
channels from a multi-channel synchronous data has become
predominant in field [21]-[23]. Therefore, the fault informa-
tion hidden in multi-channel vibration signals can provide
much more information related with fault, as well a chance
for getting a much higher identification rate of fault modes.

Based on multidimensional embedding reconstruction
theory, MSE and MFE were extended to multivariate frame-
work, i.e. multivariate MSE (MMSE) [10] and multivariate
MFE (MMFE) [24] were developed to measure complexity
of time series in multi-channel data taking into account the
mutual predictability. In MMSE and MMFE, the dynamic
relationship of multi-channel data was investigated in con-
sidering long range correlation, complexity as well as mutual
correlation prediction [25], [26]. Also nonlinear internal cou-
pling characteristic of multi-channel data was presented.
Since the benefits of multi-channel signal analysis had
been recognized, MDE was further upgraded to multivari-
ate MDE (MMDE) [27] and was compared with MMSE
and MMFE. The superiority of MMDE was proved by ana-
lyzing biomedical times series. In this paper, the refined com-
posite multiscale dispersion entropy (RCMMDE) is proposed
to improve the performance of MMDE and then is employed
to extract nonlinear fault feature of rolling bearing.

After that, since the extracted RCMMDE in different scales
often contain redundant features and it is unreasonable to take
all RCMMDE values as inputted features of classifier. It is
necessary to refine the fault features into a low dimension
space. Multi-cluster feature selection (MCFS) recently pro-
posed in [28] is a dimension reduction tool, which maintains
data clustering structure and realize an unsupervised or super-
vised dimensionality reduction of data. MCFS was utilized
to reorder the extracted fault features from vibration signals
of rolling bearing according to their significance. Several
most sensitive extracted fault features were shortlisted to
train and test multi-class classifier in order to perform intelli-
gent fault diagnosis of rolling bearing [29]. Finally, based on
RCMMDE, MCEFS and support vector machine (SVM) [30],
a new fault diagnosis method for rolling bearing is proposed
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in this paper. The effectiveness of the proposed fault diagnosis
method is verified by comparing with single-channel MDE,
multi-channel MMSE, MMFE and MMDE based fault diag-
nosis ones through experimental data analysis.

The rest of this paper is structured as following. In section 2
multivariate dispersion entropy (MvDE) and MMDE are
briefly reviewed. RCMMDE was proposed in section 3 and
its comparison with MDE was given by analyzing simulation
signals. The proposed fault diagnosis method of rolling bear-
ing and its application analysis in experimental data are given
in section 4. Conclusions are discussed in section 5.

Il. MULTIVARIATE MULTISCALE DISPERSION ENTROPY
A. MULTIVARIATE DISPERSION ENTROPY
To quantify complexity of multivariate time series, Based on
multivariate embedding theory, dispersion entropy (DisEn)
was extended to multivariate dispersion entropy (MvDE) and
the detailed steps are shown as follows.

(1) A multivariate time series X = {x. ,} e 1 2 :

toY = {ykl}k 12 be

Ny , is mapped

i = uk)

;= ZUk l
Yk, ak«/_/ ey

where p is expectation and o2 is Vanance

(2) Y is mapped to Z = {z. ,};C 1122

linear transform

(from 1 to ¢) by a

Zk,i = R(c - yk,; +0.5) )

where c represents the class and R is the rounding function.
(3)According to multivariate embedding theory, the time
series Z is reconstructed as follows.

Zn(j) = [21,j, 21 j+dy» - - - » 21 j+-(my —D)dy »
22,5 22j4das - -+ 22, Hma—D)das -+ - »
Znjs Tnjobdys -+« - s L jt(my—1)dy ] 3)

wherej € [1, N—(m—1)d],m = [my, ma, ..., m,] represents
embedding dimension and A = [Aq, A2, ..., A,] represents
time delay.

(4) For every Z,(j), all combinations of m elements
in Z,,(j), termed ¢, 1(j) (g €[1, C}}"], I €[1,m] ), are created,
where the C;"" is the number of all combinations of mn
numbers with length m.

(5) Each ¢, [(j) is mapped to a dispersion pattern
Tygryvm V. = 1,2, ..., ¢) where ¢4, (j) = vo, ¢q,() = Vi,

» §g 1) = vm—1. Since myy, ..y, consists of m digits
and each m has c classes, there are totally ¢ dispersion
patterns. The total number of combinations of each Z,(j)
is C"". Therefore, there are [N — (m — 1)d] C))" dispersion
patterns for all n channel data.

(6) The probability of each dispersion pattern can be
computed by

Number(myyv,..v,,_1)

P(Tvgvy.vyy) = (N — (m — D)d)Cmn @
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where Number in Eq. (4) denotes the number of 7y, .y, ,
in ¢4 1(j).

(7) Finally, according to the definition of Shannon entropy,
MvVDE of multivariate data X is calculated by

o

MvDE(x,m,c,d) = — Zp(ﬂvovl...vm,l)lnp(n'vovl..‘vm,l)
r=1

&)

In [27] three algorithms of MvDE were introduced. How-
ever, these algorithms were not used because of their low
computational efficiency and the need for a large amount of
storage space. The relationship of different channel data is
considered in MvDE and it is more reliable and accurate than
single-channel DisEn. However, MVDE was limited to the
analysis of single-scale data, MvDE in multiscale framework
was introduced to overcome this challenge [27].

B. MULTIVARIATE MULTISCALE DISPERSION ENTROPY
The steps of MMDE is firstly to implement the coarse-
grained time series of original multivariate data, then MvDE
of each multivariate coarse-grained time series is computed.
The steps of MMDE are given as follows.

(1) For n channel data U= { uk,b} with length L, the coarse-
grained multivariate time series for scale factor t is calcu-
lated by

. 1 it
i=s )

wep, 1 <i<L/t, 1<k<n (6)
U pm(i—Dyr+1

(2) MVDE of each coarse-grained multivariate time series
{x,f i} is computed under the same parameters.

MMDE was obtained by expending MvDE from signal-
scale to multi-scale and get more information from multivari-
ate coarse-grained time series in different scales. However,
in the above coarse graining multivariate time series at scale
factor T of MMDE, only information of coarse graining mul-
tivariate time series starting with u 1 is considered and the
remaining 7 — 1 multivariate time series are missing. MMDE
does not consider the relationship between coarse-grained
time series and causes the lack of statistical information.

Ill. REFINED COMPOSITE MULTIVARIATE MULTISCALE
DISPERSION ENTROPY

A. RCMMDE ALGORITHM

The detail steps of RCMMDE are given as follows.

(1) For n channel multivariate time series U= {uy 5} with
length Lk = 1,2,...,n, b = 1,2,...,L), the coarse-
grained multivariate time series are calculated for a given
scale vector T and elements of the a—th coarse-grained time

: T __ T T :
series X = {)ck’i’1 S Xpi } is calculated by
1 a+it—1
T —_—
Yeia =7 Z U b @)
b=a+t(i—1)

wherel <i<L/t,1<k<nl1<a<r.
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(2) The RCMMDE of original multivariate time series U
can be calculated by

RCMMDEU,m,c,d, t)

Cm

==Y Pty vy VNP vy)  (B)

=1

where p(mygp,..v, ) = %Zf pr represents the mean fre-
quency of Ty, ..v,,_, in all X7 (p} is the frequency of disper-
sion pattern 7y, .., , in a—th multivariate coarse-grained
time series X} ).

In RCMMDE algorithm, the parameters including class c,
embedding dimension m and time delay d need to be preset.
It was recommended in [18] tosetm = 2 or3 and ¢ € [4], [8].
If ¢ is too small, two different amplitudes may be assigned to
the same class and if ¢ is too large, a very small error will
result in the change of its class. Besides, since too small m
will cause RCMMDE insensitive to the dynamic changes of
the original signal while too large m will make RCMMDE
unable to detect small changes, m usually takes 2 or 3. Last,
time delay A is set as 1, as when A is larger than 1, some
important information may be lost. Therefore, c = 6, m = 3
and A = 1 were set as recommended by [18].

B. COMPARISON ANALYSIS OF SYNTHETIC SIGNALS

In this section, the performance of RCMMDE is investigated
by analyzing synthetic signals. Also it is compared with other
multivariate complex measure methods to verify its effective-
ness and superiority. White Gaussian Noise (WGN) and 1/f
noise are two kinds of random signals that are widely used
in complexity analysis. It has been validated that generally
the structure of 1/f noise is more complex than that of WGN,
which leads to that WGN gets a large entropy at lower scale
and the entropy values will decrease with the increase of scale
factor, while the entropy values of 1/f noise will be stable at a
constant value and get larger values than that of WGN at most
scale factors. Correspondingly, for the multivariate data, if we
use WGN and 1/f noise to construct multivariate synthetic
signal, the more channels occupied by 1/f noise, the more
complex the multivariate signal is. Without loss of generality,
WGN and 1/f noise are used to construct different kinds of
multivariate synthesis signals with three channels, they are:
a) three channel WGN signals, b) two channel WGN signals
and 1 channel 1/f noise, ¢) 1 channel WGN and 2 channel
1/f noises and d) three channel 1/f noises. We take each
kind of multivariate synthesis signals 30 samples with length
2048 points.

Next, for comparison purpose, MMDE, MMFE and
RCMMBDE are computed of the four kind multivariate synthe-
sis signals. The mean standard deviation diagram of MMDE,
MMEFE and RCMMD for the four kinds of signals are shown
in Fig. 1. It can be seen from Fig. 1 that the overall trends of
MMDE, MMFE and RCMMDE curves are very similar and
the overall relationships of MMDE, MMFE and RCMMDE
of four kinds of multivariate signals from second scale to end
are as follows: d) > ¢) > b) > a). Generally, the multivariate
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FIGURE 1. RCMMDE, MMDE and MMFE of multivariate synthetic signals.
(a) RCMMDE; (b) MMDE and (c) MMFE.

signal consisting of three 1/f noises is the most complex
one, and the following is the one consists of one channel
WGN and 2 channel 1/f noises, then the one with two chan-
nel WGN signals and 1 channel 1/f noise, last, the most
simple one with three channel WGN signals. The results
of MMDE and RCMMDE are very consistent with above
fact; however, the standard deviations of RCMMDE of four
kinds of multivariate signals are obviously smaller than that
of MMDE, which indicates RCMMDE is much more stable
and robust than MMDE. The overall trends of MMFE for
the four kinds of multivariate signals are same as that of
RCMMDE and MMDE, howeyver, the third class multivariate
signals (one WGN and two 1/f noises and the forth class
(three 1/f noises) are not clearly separated by MMFE and have
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overlap at most scales. Therefore, compared with MMDE
and MMFE, RCMMDE shows a better separating capacity
and higher stability and has more advantages in multivariate
signal feature representation than MMDE and MMFE.

IV. RCMMDE BASED FAULT DIAGNOSIS

FOR ROLLING BEARING

A. MULTI-CLUSTER FEATURE SELECTION

Based on the advantages of RCMMDE, in this paper, it is
employed to represent nonlinear complexity information
related with fault feature of vibration signals of rolling bear-
ing. However, RCMMDE:s at all scale factors may contain
redundant information, which will affect fault classification
and diagnostic efficiency. It is necessary to refine or select
the features related with fault from the obtained RCMMDEs
to fulfill a high fault effect. MCFS is a recently proposed
dimensionality reduction tool, which keeps the multi-cluster
structure of data well while choosing the feature and can real-
ize an unsupervised or supervised learning by using spectral
analysis technique. In [28], MCFS is compared with other
dimensionality reduction methods, such as Q-a algorithm,
maximum variance and Laplacian score and the results show
that MCFS has achieved remarkable results in clustering and
classification and the performance of MCFS is particularly
good when the number of features is less than 50. Therefore,
in this paper, MCFS is utilized to refine the extracted features
of vibration signals of rolling bearings.

B. THE PROPOSED FAULT DIAGNOSIS METHOD

Based on the advantages of RCMMDE and MCFS, the pro-
posed fault diagnosis method for rolling bearing is given as
follows.

(1) Suppose there are K classes multi-channel vibration
data of rolling bearing and each class have N; samples,
i.e. {Xk,n, n=1,2,...,Nr,k=1,2,... ,K}, where {an}
is the n—th p-channel vibration data of the k —th class. Totally,
we have N = Z,’le N samples and if let Ny =Ny = ... =
Nk and thus N = KN;.

(2) RCMMDE of all N multi-channel vibration data {X k,n}
is calculated with selected parameters and thus each multi-
channel vibration data {Xj ,} are mapped into the initial 3-D
feature sets {RCMMDE; (1)} with dimension K X N1 X Tmax
where T = 1,2,..., Tmax, Tmax 1S the preset largest scale
factor, k =1,2,...,K,n=1,2,..., Ng.

(3) For Ni samples of K classes, M; samples of each
class are randomly selected as training samples while the
remaining (N —Mjy) are seen as testing samples. i.e. the initial
3-D feature sets {RCMMDE ,(t)} is divided into training
samples {7y ()} and testing samples {Qy ; (7)}, where
m=12,... My, =1,2,..., Ny—Mp,k=1,2,...,K.

(4) The training samples {7y ,, (7)} are reduced into d
number of features by using MCFS, i.e. the number of feature
elements Tmax is reduced to d: {Tk m, ()} = {Tk.m (7))},
v/ =1,2,...,d,d < tmax. The testing samples (O, (T)}
are reduced into d number of features in the t direction.
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The selection of testing sample is consistent with that of
the training sample, i.e. the selected features are the same
as the training samples in the same order. i.e. {Qk ;,(t)} —
{Ok.1,(")}. The {Tk m,(t")} is the new training data sets and
{Ok.1,(z)} is the new testing data sets.

(5) The new training data sets {7k, (t)} are input to
SVM-based multi-classifier for constructing the diagnosis
model. Then new testing data sets {Qx ;,(¢/)} are used to test
the trained diagnosis model and the outputs are used to fulfill
the diagnosis of fault types and degrees.

Input multi-channel data

3
RCMMDE of all samples are computed to
form the initial 3-D feature data sets

Torque transducer
Dynamometer

FIGURE 3. The test stand of rolling bearing of CWRU.

TABLE 1. Label description of experimental data of rolling bearing.

l Class . No. of training  No, of testing
— - label State Fault size data data
N samples of each class are divided into
training and testing data sets ! BE1 0.1778mm 15 14
g g 2 BE2  0.5334mm 15 14
| 3 IR1 0.1778mm 15 14
+ 1 4 IR2 0.5334mm 15 14
— - 5 ORI 0.1778mm 15 14
Mj, training samples of (Ni - My) testing samples 6 OR2 0.5334mm 15 14
each class of each class 7 Norm 0 15 14
MCEFS is used to | select the d fault features 0a Norm
select the d features of testing data 0 WWWMWMM
-0.2
| | BEI
0.5
' 0 WWWW
.- ’ -0.5
Training and testing the SVM 0.5 BE2
based multi-classifier 0 W
0.5

Outputs are used for diagnose
fault locations and degrees

FIGURE 2. Flowchart of the proposed method.

Fig. 2 illustrates the flowchart of the proposed method.

CASE I:

The effectiveness of the proposed method is verified by
experiment data of rolling bearing of Case Western Reserve
University (CWRU) bearing data center [31]. The test rig
shown in Fig. 3 comprises a 2 hp motor, a torque trans-
ducer, a dynamometer and control electronics. The sampling
frequency is 12 kHz, motor speed is 1730 r/min and motor
load 3 hp. The fault diameters of ball element, inner and
outer races of rolling bearing with are 0.1778 mm (labeled as
BEI1, IR1 and OR1) and 0.5334mm (labeled as BE2, IR2 and
OR?2) where the outer race fault is located at 6 o’clock. Thus
6 classes vibration signals of rolling bearing with different
types and degrees were used as well as the normal bearing
(label as Norm). For each class, the synchronous vibration
signal of Fan and drive end are used as two-channel data
and there are 29 samples with 4096 sampling points are
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FIGURE 4. Waveform of different classes of rolling bearing of CWRU's
data; where red represents data of drive end and blue represents fan end.

used and totally 203 samples are under our consideration.
A detail description of label information of experimental data
is shown in Table 1. The waveform of vibration signal of
rolling bearing of each class are shown in Fig. 4.

The proposed fault diagnosis approach is examined by the
above experimental data of rolling bearing. RCMMDE:s in the
first 15 scales (i.e. Tmax = 15) of 203 samples of all classes
are computed and taken as initial fault features. The means
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FIGURE 5. The entropy results of rolling bearing data analyzed by using five methods. (a) RMMDE; (b) MMSE; (c) MMFE; (d) MDE and (e) MMDE.

and standard deviations of RCMMDE for each class are
demonstrated in Fig. 5(a). From Fig. 5(a), it can be seen
that the RCMMDE extracted from vibration signal of normal
bearing varies slowly and nearly stabilize at 5 with increase
of scale factor, while that of rolling bearing with local fault
generally decrease monotonically. Besides, the DisEn values
of vibration signal of normal bearing at most scales (larger
than 2) are larger than that of vibration signals of faulty
bearing and this can be explained that generally, the vibration
signal of healthy bearing is irregular and similar to 1/f
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noise. And the vibration signals will present obvious periodic
impulse components that modulates the natural frequency
ones, once local faults appear in the rolling bearing. Despite
this fact, it is noted that bearing vibrations with different faults
show periodic impulses at different frequencies. They will
have different DisEns at different scales and thus can be dis-
tinguished by RCMMDE. For comparison purpose, MMSE,
MMEFE and MMDE of the above multi-channel experiment
signals also are computed, as well as MDE of single-channel
signal from the Drive end and the corresponding results are
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given in Fig. 5(b-e). First, by observing the Fig. 5(b, c),
it can be found that compared with MMSE and MMFE of
normal and faulty rolling bearings, RCMMDE is more stable
and its error is much smaller than other methods. Second,
the MMSE curves of OR1 and OR2 are very similar at most
scales and it is difficult to differ from each other. The fault
characteristics curves extracted by MMSE and MMFE are
much closer and both differ greatly from RCMMDE. Though
different fault classes can be distinguished by MDE, it is
different to differ IR1 and IR2, OR1 and OR2. Also, it is
hard for MMDE to distinguish IR1 and BE1. By observing
the Fig. 5 (a, d), it can be seen that the separation degree of
MBDE curve is smaller than that of RCMMDE. By observing
Fig. 5(a, d, e), it can be seen that the trends of MDE, MMDE
and RCMMDE are nearly the same, however, MDE has larger
standard deviation than MMDE, when RCMMDE gets the
smallest one. This indicates that multichannel signal analysis
is more stable than traditional single-channel data analysis
one. Therefore, the above analysis indicates that RCMMDE
is superior to MMSE, MMDE and MDE in feature extraction
and show much stronger distinguish effect for different fault
classes and degrees.

7 COTEERIEED.
o Expected outputs of classifier
6 * Predicted outputs of classifier CEREREED
5 OIS
©
©
=
- 4 D
2
)
@)
3 R
2 rEED

0 10 20 30 40 50 60 70 80 90 100

Test sample number

FIGURE 6. Outputs of the proposed method.

Next, RCMMDE:s of seven classes of rolling bearing are
divided into training samples and test samples. in each class,
15 samples are randomly selected as training samples and the
remaining 14 are seen as testing ones. Then MCEFS is used
to select the fault features by using training data. Namely,
RCMMDE:s of 105 training samples with 15 scales are input
the MCFS for feature selection. The first 4 elements of train-
ing fault features are used to instruct the new fault features of
the 98 testing samples i.e. the selected scales (scale at 6, 8, 7
and 11) of testing samples’ features are same as that of train-
ing samples. The training labels were created, i.e. BE1, BE2,
IR1, IR2, OR1, OR2 and Norm are labeled as 1, 2, 3, 4, 5,
5, 6 and 7 respectively. Finally, the training data and training
labels are used to train the SVM based multi-classifier, which
we use is Lin’s LIBSVM tool and the kernel function is radial
basis function (RBF) [29]. After that, all 98 new fault features
of testing data are input to the trained classifier for testing and
the predictive results are shown in Fig. 6. From Fig. 6 it can
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FIGURE 7. Outputs of MMSE, MMFE, MDE, and MMDE based fault
diagnosis methods. (a) MMSE; (b) MMFE; (c) MDE and (d) MMDE.

be found that all testing samples are identified correctly and
the recognition rate of fault locations and degrees is 100 %,
which verified the effectiveness of the proposed method.
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TABLE 2. Comparison of identifying rate of the proposed method with
existing ones.

Method Sif;;‘i?;ii%ir Identifying rate
MMSE-MCFS-SVM 10 89.80%
MMFE-MCFS-SVM 0 100%

MDE-MCFS-SVM 7 92.86%
MMDE-MCFS-SVM 5 94.90%
RCMMDE-MCFS-SVM 0 100%

TABLE 3. Selected features with different number of RCMMDE.

No. of feature Selected feature scale

2 15,11

3 7,8,15

4 6,8,7,11

5 6,2,7,11,15

6 6,11,2,15,7, 14

7 6,2,11,7,15, 14, 4

8 11,2,14,7,15,6,8, 13

9 11,14,2,7,6,8, 15,12, 4

10 11,14,2,7,6,8, 15,12, 4, 13

1 11,14,7,8,2,15,6,12,4, 1, 13

12 11,14,8,2,7,15,4,12,6,1,5, 13
13 11,8,14,2,7,15,4,6,1,5,13,12,9
14 11,8,14,2,7,4,1,15,6,5,13,12,3,9
15 11,8,14,2,7,4, 15,1,6,5, 13,3,12,9, 10

For comparison purpose, in the proposed fault diagnosis
method, RCMMDE is replaced by MMSE, MMFEE, MMDE
and MDE then combing MCFE and SVM. The MMSE,
MMEFEE, MMDE and MDE of same training and testing sam-
ples are computed. Similar to the above training and testing
process, MCFS is used to sort the order of fault features
and the first four ones are selected as new fault features
for training and testing. The outputs of testing samples are
shown in Fig. 7(a-d) and corresponding recognition rate are
shown in Table 2. From Table 2 and Fig. 7, it can be found
that there are 10 testing samples are misclassified, i.e. one
sample of BEI1 class is misclassified to IR1 and 9 sample
of OR2 is misclassified to OR1 and the fault recognition
rate is 89.80%. The fault recognition rate of MMFE based
fault diagnosis method is 100%. For the MDE based fault
diagnosis method there are 7 samples are misclassified while
for MMDE based method 5 samples are misclassified and the
identifying rates of MDE and MMDE based fault diagnosis
methods are 92.86% and 94.90%. The above analysis indi-
cates that the superiority and effectiveness of RCMMDE to
MDE, MMDE and MMSE. Also the advantages of multi-
channel analysis to traditional single-channel analysis was
verified in rolling bearing fault diagnosis by this case.

In order to investigate the influence of feature number on
identifying accuracy, the number of features d ranging from
2 to 15 are selected by using MCFS from initial features.
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FIGURE 9. The rolling bearing test rig of AHUT.
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FIGURE 10. The waveforms of experiment data; where red is radial and
blue is axial signals.

Correspondingly, the selected different numbers of RCMMDE
features are shown in Table 3. The fault recognition rates of
RCMMDE, as well as MDE, MMFE, MMSE and MMDE
based fault diagnosis method with different number of fea-
tures, are given in Fig. 8. From Fig. 8 it can be found that
RCMMDE and MCEFS based fault diagnosis method has
higher fault identifying rate than other methods when the
number of features are smaller than 8. In fact, for RCMMDE
method, when the number of feature is larger than 4, the fault
recognition rate will reach 100%, while the other meth-
ods may need more features. Therefore, the above analysis
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indicates the effectiveness of RCMMDE and SVM based
fault diagnosis method for rolling bearing.

CASE 2:

In this part, the experimental data of Anhui University of
Technology (AHUT) was used to test and verify the effec-
tiveness of proposed fault diagnosis method. The test bearing
is 1210 self-aligning ball bearing, and the local faults were
seeded by metal electro-engraving machine. In the test, the
outer race of rolling bearing is fixed and the inner race rotates
with the shaft with a speed of 1, 800 r/min and load 100 N.
The experiment data are collected from normal bearing (label
as Norm) and the faulty rolling bearings where the local
faults located at ball element, inner race and outer race (label

VOLUME 7, 2019

BE, IR and OR). The vibration signals of bearing at axial
and radial channels are synchronously collected by sensors
with sampling frequency 5120 Hz and sampling time 120 s.
The test rig of AHUT is shown in Fig. 9. The waveforms
of vibration signal of rolling bearing in two channels (with
4096 sampling points) are shown in Fig. 10.

For the experiment data of rolling bearing, four classes,
i.e. Norm, BE, IR and OR have 29 samples with length 4096
and thus 116 samples are obtained. Then MMSE, MMFE,
MMDE and RCMMDE of all 116 samples were calculated
with scale factor 15, as well as MDE of vibration signal at
axial. The mean and standard deviations of the extracted fea-
tures of rolling bearing are shown in Fig. 11, from which it can
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be seen that multivariate fault extraction methods have much
stronger separation capability than the single scale MDE
based fault diagnosis one. For each class, 15 training samples
are randomly selected and the remaining 14 are seen as the
testing ones. Then MCEFS is used to select d (d ranging 2
from 15) values from initial fault features of training samples
to construct new fault training feature sets. Also the selected
orders of training samples are used to select testing samples
and form fault testing feature sets. Then the new fault training
feature sets are used to train the SVM based multi-classifier
and the identifying rates for different numbers of features are
given in Fig. 12. For comparison purpose, the fault recogni-
tion rate of the MMSE, MMFE, MDE, MMDE based fault
diagnosis methods with the different number of d (d ranging
2 from 15) are also shown in Fig. 12. It can be seen from
Fig. 12 that the identifying rates of all fault diagnosis methods
are 100 % when the number of fault feature larger than 3. The
results show that the rolling bearing fault diagnosis method
proposed in this paper can diagnose the fault locations and
degrees of rolling bearings effectively.

V. CONCLUSIONS

In this paper, refined composite multivariate multiscale dis-
persion entropy (RCMMDE) is proposed as a new nonlinear
dynamic method for measuring correlation and complexity of
multi-channel data. The proposed RCMMDE method is com-
pared with MMSE, MMFE, MMDE and MDE through ana-
lyzing multichannel synthetic signals. The results show that
the proposed RCMMDE has advantages in feature extraction
stability and accuracy. The new fault diagnosis method for
rolling bearing was proposed based on RCMMDE for feature
extraction, MCFS for feature selection and SVM for mode
classification. Also the proposed method is compared with
the single channel MDE and multi-channel MMSE, MMFE
and MMDE methods through analyzing rolling bearing
experimental data analysis of CWRU and AHUT. The anal-
ysis result shows that the proposed fault diagnosis method
for rolling bearing has higher fault recognition rate than the
existing fault diagnosis methods.
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