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ABSTRACT This paper proposes an improved protein feature expression called segmented amino acid
composition in position-specific scoring matrix (PSSM-SAA) in the field of subcellular localization predic-
tion. Since there has been sufficient local information in the PSSM-SAA vector with high dimensionality,
four global algorithms of dimensional reduction are suggested, including linear discriminant analysis
(LDA), median LDA (MDA), generalized Fisher discriminant analysis (GDA), and median–mean line-based
discriminant analysis (MMLDA). PSSM-SAA is also compared with three important expressions: PSSM-S,
DipCPSSM, and PsePSSM. Numerical experiments involving the overall success rate (OSR) show that
PSSM-SAA is much better than PSSM-S and DipCPSSM and slightly better than or equal in performance
to PsePSSM regardless of which dimension reduction algorithm is used. LDA is finally recommended for
PSSM-SAA through comparison among four techniques of dimensional reduction. Other popular evaluation
indexes also confirm the effectiveness of PSSM-SAAwith LDA.Next, the suggestedmodel is comparedwith
the state-of-the-art predictors to further evaluate its validity. Finally, a new user-friendly local software for
implementing PSSM-SAA is provided, which can be found at https://www.github.com/caozicheng/PSSM
SAA-Builder.

INDEX TERMS Dimensional reduction, feature expression, linear discriminant analysis, protein subcellular
localization, segmented amino acid composition in PSSM.

I. INTRODUCTION
Subcellular localization refers to the specific location of
a protein or expression product of a functional gene in
the cell. For example, for two types of bacterial pro-
teins, Gram-positive and Gram-negative [1], possible loca-
tions could be the extracellular matrix, cytoplasm, cell
wall or cell membrane of Gram-positive proteins or perhaps
the periplasm, nucleoid, flagellum, fimbrium, extracellular
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matrix, cytoplasm, cell outer membrane or cell inner mem-
brane for Gram-negative proteins. Protein subcellular local-
ization is important to biological research because location
errors will greatly affect biological function, which plays a
key role in drug design and other applications.

Computational methods for predicting subcellular location
have become a hot topic in recent years. Many research
results suggest that feature expression methods are key tech-
niques for protein classification prediction [2]–[8]. All pos-
sible information that can be extracted by a classification
model is determined by a specific feature expression. Thus,
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it is reasonable to believe that a feature expression deter-
mines the latent upper limit of prediction accuracy, while
efficient classification models can only closely approach this
limit [9]–[12]. Based on this consideration, this paper focuses
on finding an efficient feature expression for protein subcel-
lular location.

Feature expression is the first step in subcellular localiza-
tion. In 1986, Nakashima et al. expressed protein sequence
information with a 20-dimensional amino acid composition
(AAC) frequency [2]. In 2000, Chou proposed the concept
of pseudo amino acid composition (PseAA) [3], which not
only contains amino acid sequence information but also infor-
mation pertaining to the physical and chemical characteris-
tics of amino acids. Based on the amino acid composition
method and the pseudo amino acid composition method,
some researchers have accepted the concept of combining
the two [4], [5]. In 1999, Jones first proposed a position-
specific scoring matrix (PSSM) for protein secondary struc-
ture prediction [6], which searched for homologous proteins
by PSI-BLAST and was introduced into protein subcellular
localization by Bhasin and Raghava in 2004 [7]. A PSSM is
a type of matrix whose number of columns is the length
of a protein sequence. Thus, proteins with different lengths
produce PSSMs of different sizes. Consequently, studies
have examined methods for constructing uniform PSSMs.
In 2007, Chou and Shen proposed a normalization processing
method for PSSMs and called it PsePSSM [8]. Wei et al.
proposed a model of physicochemical properties based on the
PSSM and the k-skip-n-gram [13]. To gain more information,
researchers have adopted fusion methods [9]–[12]. Wang and
Yang used PseAA-PSSM, which combines pseudo amino
acid composition and PSSM methods, in 2009 [9]. Wang
and Liu combined dipeptide composition and the PSSM to
form DipCPSSM in 2015 [10]. Recently, many PSSM-based
feature extraction methods have also been proposed and
applied to predict different protein attributes, such as subcel-
lular localization, protein-protein interaction, protein remote
homology prediction, and protein structure type. Specifically,
Juan et al. proposed a method called DP-PSSM to extract fea-
tures for subcellular localization in Gram-negative proteins
in 2009 [14]. In 2013, a new feature extraction method named
D-FPSSM was proposed for predicting protein-protein inter-
actions, which is based on PSSM evolutionary information,
in [15]. In 2014, Dehzangi et al. proposed a feature expres-
sionmethod that extracts discriminative evolutionary features
from PSSMs and named it PSSM-S [16]. In the same year,
Liu et al. proposed an optimal means to incorporate evolu-
tionary information into profiles, which was then applied to
protein remote homology prediction [17]. Some researchers
selected features by maximizing relevance and minimizing
redundancy [18], [19]. To predict the type of protein struc-
ture, the RPSSM feature expression method was proposed by
Ding et al. and Kurgan et al., which can effectively solve
problems of inaccuracy that arise in certain methods such
as SCPRED [20], [21]. In the aforementioned method, how-
ever, AAC, dipeptide composition, PSSM, and other feature

expressions are often separately used [22]–[25], or sometimes
two of them are conjugated together by simply stitching.
All these applications pertaining to PSSMs have shown that
the methods based on evolution information in PSSMs have
extracted strong features for classification prediction. There-
fore, determining how to use uniform PSSMs to form more
effective features remains an outstanding issue. In this paper,
we implement a different method for fusing PSSM and AAC
by means of segment distribution to form a new expression,
PSSA-SAA, which features uniform PSSMs and better fuses
feature expressions to some extent.

With increasing protein feature information, data dimen-
sions have become much higher than before, for example,
the feature expression PSSM-SAA proposed in this paper
contains 1600 features. Therefore, it is imperative to elim-
inate the data redundancy in these feature expressions to
form new favorable features [26], which are achieved by
mapping PSSM-SAA features onto low-dimensional spaces
in this paper. Regarding dimension reduction algorithms,
some recent studies have been dedicated to protein subcel-
lular localization to reduce the redundancy in data [9], [10],
[27]. In particular, Zou et al. proposed a hierarchical feature
reduction strategy in 2016 that could further improve the per-
formance of certain predictors of protein attributes [28], [29].
Shan et al. combined a feature method with a discriminant
analysis method for the prediction of the secondary struc-
ture of proteins [30]. However, compared with other pattern
recognition research, such as that pertaining to face recog-
nition, studies on protein data dimensionality reduction are
relatively scarce. For example, although linear discriminant
analysis (LDA), a classic dimension reduction algorithm,
has been applied in protein subcellular localization [27], its
derivative global algorithms, such as median linear discrim-
inant analysis (MDA) [31], generalized Fisher discriminant
analysis (GDA) [32] and median-mean line-based discrim-
inant analysis (MMLDA) [33], must be explored in terms
of their performance in protein research. These derivative
algorithms are effective supplements to LDA when data con-
tain certain outliers or their within-class covariance matrix is
singular. Since the data characteristics of proteins are often
unknown, we try to use these derivative algorithms to reduce
the dimensionality of our proposed expression PSSM-SAA
in this paper for protein subcellular localization.

II. MATERIALS AND METHODS
A. DATA SET
Among all types of proteins, bacterial proteins are essential
for basic research and drug design because they have the
ability to grow rapidly and have certain special character-
istics. We use two datasets in this paper, one pertaining to
Gram-positive protein sequences and another pertaining to
Gram-negative protein sequences, which can be obtained
from http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/.

The Gram-positive set [34]–[37] contains 519 different
bacterial proteins in four subcellular locations, among which
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4 proteins belong to two locations and 515 proteins belong to
one location. Therefore, there are actually 523 ‘‘locative pro-
teins’’. In [38], the concept of ‘‘locative proteins’’, together
with the difference and relationship between ‘‘protein’’
and ‘‘locative protein’’, was established. Among the
Gram-positive proteins, only 0.77% are located in two ormore
subcellular location. Compared with more than 15% of the
high-level human proteins, which are located in more than
one subcellular location [38], [39], proteins of low-level
bacteria often belong to one subcellular location, which is
a perfect example of how the life-sustaining mechanism of
low-level organisms is even simpler than that of high-level
organisms [39]. Therefore, for this low-level Gram-negative
bacterial organism, we mainly consider the single-label
method for subcellular localization. A protein with two labels
has been used as two single label samples. This research
route is consistent with many recent types of research of this
type, such as [16], [40], [41]. That is, in a classification task,
a multilabel protein is used as several single-label samples
according to the number of their labels in the benchmark.
We can guarantee the worst case for predicting the location
in this manner [16], [40], [41]. Based on this considera-
tion, for our focus on feature expression and dimension
reduction, we simplify this subcellular location problem as
a single-label classification problem instead of a multilabel
problem.

The Gram-negative set [39], [42], [43] contains 1456 loca-
tive proteins. Among them, there are 1392 different bacterial
proteins in eight subcellular locations, among which 64 pro-
teins belong to two locations and 1328 proteins belong to one
location.

TABLE 1. Detailed information regarding each location in the
Gram-positive and Gram-negative sets.

The details of the Gram-positive and the Gram-negative
datasets are provided in Table 1.

B. AN IMPROVED PROCESS FOR OBTAINING UNIFORM
PSSMS WITH SEGMENTED AMINO ACID COMPOSITION
IN PSSM (PSSM-SAA)
In this section, we further present an improved expression,
PSSM-SAA, to provide uniform PSSMs. Each PSSM con-
tains information about the evolution of proteins obtained
by the PSI-BLAST algorithm for each protein sequence. For
the search, the number of iterations and the E-value are set
to 3 and 0.001, respectively. Since the lengths of different
protein sequences are different, the final PSSM is distinct,
as expressed in Equation (1).

PPSSM =


M1→1 M1→2 . . . M1→20
M2→1 M2→2 . . . M2→20
. . . . . . . . . . . .

Mi→1 Mi→2 . . . Mi→20
. . . . . . . . . . . .

ML→1 ML→2 . . . ML→20

 (1)

where L is the number of amino acids in the protein sequence
and Mi→j is the score describing how the ith amino acid
evolves into a j type of amino acid. Thus, we can normalize

Mi→j with Pij =
Mi→j− min

1≤i≤L,1≤j≤20
(Mi→j)

max
1≤i≤L,1≤j≤20

(Mi→j)− min
1≤i≤L,1≤j≤20

(Mi→j)
, where

Pijε[0, 1] is the probability that the ith amino acid is substi-
tuted by a j type of amino acid via evolution.
Dehzangi et al. [16] proposed a segmented distribution in

PSSM (PSSM-SD) approach, but they did not consider the
local frequency information of each of the 20 types of amino
acids in each segment. This paper proposes an improved fea-
ture expression method, PSSM-SAA (segmented amino acid
composition in PSSM), which adds more amino acid compo-
sition distribution information [4] to the feature expression
vector as a necessary local information supplement. Thus,
the new method is an innovative approach based on the
methods reported in [4] and [16], whose details are as follows.

Similarly to the segmentationmethod in [16], we divide the
protein sequence into several unequal length subsegments.
Each subsegment represents a distribution feature. The seg-
mentation process is as follows.

1) Calculate the sum of rows for the jth column of the
PSSM and denote it as Tj=̂

∑ L
i=1 Pij , (j = 1, . . . , 20).

2) For the jth column of the PSSM, start from the first row
to calculate the row label I1j and the number of amino acids in
the first segment. Establish a percentage Fp and n in advance
satisfying 0 < Fp < 0.5 and n × Fp = 0.5. According to(∑I1j

i=1 Pij

)/
Tj ≤ Fp and

(∑I1j +1
i=1 Pij

)/
Tj > Fp, we can

obtain the value of I1j .
3) Repeat step 2) to obtain I2j I

3
j , . . . , I

n
j . That is,(∑I2j

i=1 Pij

)/
Tj ≤ 2× Fp and

(∑I2j +1
i=1 Pij

)/
Tj >

2× Fp, . . . ,
(∑Inj

i=1 Pij

)/
Tj ≤ n× Fp and

(∑Inj +1
i=1 Pij

)/
Tj > n× Fp. Thus, we obtain an n-dimensional vector
(I1j , I

2
j , . . . , I

n
j ).
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4) For the jth column of the PSSM, start from
the last row, and repeat steps 2) and 3) to calculate

(In+1j , In+2j , . . . , I2nj ), which satisfies
(∑I2nj

i=1 Pij

)/
Tj ≤

n× Fp and
(∑I2nj +1

i=1 Pij

)/
Tj > n× Fp. Thus, there are

2n segments in the jth column of the PSSM, which are
segmented at the I1j th, · · · , I

n
j th, I

n+1
j th, . . . , I2nj th row

labels. In total, there are 2n×20 segments in the PSSM since
there are 20 columns in the PSSM.

Based on the abovementioned segmentation results,
the core process of our new proposed PSSM-SAA method,
which is also the main difference from that reported in [16],
is as follows. For each of the 2n× 20 segments in the PSSM,
each of the 20 types of amino acids is first counted and
then divided by the length of the protein sequenceL. That is,
we obtain the frequency of each of the 20 types of amino acids
in each segment with the formula f (j,g)i = A

(j,g)
i

/
L, where

A
(j,g)
i (i = 1, 2, . . . , 20) is the number of the ith amino acid

in the gth segment of the jth column (j = 1, 2, . . . , 20; g =
1, 2, . . . , 2n). Therefore, the feature expression vector of
PSSM-SAA is expressed as indicated in Equation (2).

PSSM−SAA = [PSSM−SAA(1,1), · · · ,PSSM−SAA(j,g),

· · · ,PSSM−SAA(20,2n×20)] (2)

where PSSM − SAA(j,g) = [f (j,g)1 , f (j,g)2 , . . . , f (j,g)20 ]
T
, (j =

1, 2, . . . , 20; g = 1, 2, . . . , 2n).
The PSSM demonstrates the evolution of the information

associated with a protein sequence. PSSM-SAA can extract
some information reflecting the distribution of local amino
acid composition depending on the knowledge of the PSSM.
That is, PSSM-SAA combines both the evolution information
and the amino acid composition information of proteins and
consequently contains more detailed information. Thus, the
performance of PSSM-SAA in protein subcellular localiza-
tion is examined, as detailed in section 5.

In this paper, we specifically let Fp = 25 and n = 2.
Then, each column is divided into 4 segments. For the total
of 20 columns in a PSSM, we can obtain 80 segments cor-
responding to (I1j , I

2
j , I

3
j , I

4
j ), j = 1, 2, · · · , 20. According

to our proposed PSSM-SAA method, a 1600-dimensional
vector, where 1600 = 20 × 20 × 4, can be extracted from
a protein sequence.

C. FOUR DIMENSION REDUCTION ALGORITHMS
With sufficient local information extracted, PSSM-SAA
greatly increases the number of feature dimensions. There-
fore, we recommend that PSSM-SAA be used in conjunction
with a dimension reduction algorithm to improve the clas-
sification efficiency. Since PSSM-SAA extracts and empha-
sizes local protein information, this paper uses the global
statistical dimension reduction algorithm to achieve an infor-
mation balancing effect. In this paper, four different types
of global dimensionality reduction algorithms—linear dis-
criminant analysis (LDA) [27], median linear discriminant

analysis (MDA) [31], generalized Fisher discriminant anal-
ysis (GDA) [32], and median mean line-based discriminant
analysis (MMLDA) [33]—are combined with PSSM-SAA to
comprehensively explore the properties of PSSM-SAA from
different perspectives. Few studies have employed pattern
recognition to compare these linear dimensional reduction
algorithms at the same time; thus, we first provide this com-
parison in the field of protein subcellular localization.

1. Linear discriminant analysis (LDA) [27] is used to find
a set of optimal discriminant vectors such that the projection
of the samples from the same class on these vectors is con-
centrated and samples from different classes are separated far
from each other. The definitions of the between-class scatter
matrix and within-class scatter matrix are as follows:

SB =
∑c

i=1
Ni(µi−µ) (µi−µ)T (3)

SW =
∑c

i=1

∑Ni

j=1
(xij−µi) (xij−µi)T (4)

where c is the number of sample categories, Ni is the number
of samples of the category i, xij is the jth sample of the
category i, µi = (1

/
Ni)

∑Ni
j=1 xij is the mean of samples of

the category i, µ = (1
/
N )
∑c

i=1
∑Ni

j=1 xij is the mean of all
samples, and N is the total number of samples. The objective
function of LDA is defined as follows:

J (W ) =

∣∣W T SBW
∣∣∣∣W T SW W
∣∣ (5)

To satisfy the maximum ratio of the between-class scatter
matrix and the within-class scatter matrix, W is required to
maximize J (W ). This expression can be converted to solve
for the generalized eigenvalues in Equation (6) (see [44]).

SBW = λ SW W (6)

In Equation (6),W = [w1,w2, . . . ,wd ] represents the feature
vectors corresponding to the d largest nonzero eigenvalues
and the optimal solution for Equation (5), d < c.
2. LDA is not sufficient to provide an accurate center for

classification when some classes are far away from other
classes. Therefore, Yang et al. proposed a method involv-
ing class median instead of class mean [45]. In this paper,
an improved median linear analysis method (MDA) [31] is
used for subcellular localization. The steps of MDA are as
follows:

1) Calculate the median of the category i. Let X i =
[x1, x2, . . . , xNi ]

T be the samples of the category i, which

can be expressed as a matrix X i =

 x1,1 . . . x1,m
...

. . .
...

xNi,1 · · · xNi,m

.
Each row represents a sample containing m elements. All
elements of the first column are arranged in ascending order.
The median bi,1is then determined. If m is even, bi,1 is the
average of the two middle values.

2) According to step 1), determine the median bi,2 of the
second column until the median (bi = [bi,1, bi,2, . . . , bi,m]T )
of the category i is obtained after m times.
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3) Similarly to the method of calculating bi, we can obtain
the median of the total samples, B = [B1,B2, . . . ,Bm]T .
In the MDA method, bi is used to replace µi in Equation (3).
4)B is used to replace µ in Equation (4). The classification

rule is the same as that in LDA, which can lead to a robust
class center in theory.

3. A method based on generalized discriminant analysis
(GDA) was proposed by Liu et al. [32], which is executed
as a small sample size problem. In addition, the formula is as
follows: Jt (W ) = W T SBW

W T St W
, where St = SW + SB.

4. To overcome the negative effect of outliers on the cen-
ter of the class, Chou and Shen [34] proposed an adaptive
class model, median-mean line-based discriminant analysis
(MMLDA), whose steps are as follows:

1) For each sample xij, calculate the Euclidean distances
d(xij, xsl) from xij to the samples of the category s. Sort these
Ns values of d(xij, xsl), (i = 1, 2, . . . , c; s = 1, 2, . . . , c; l =
1, 2, . . . ,Ns) in ascending order and determine the median.
If Ns is odd, the sample corresponding to the median distance
is called the median sample of xij for categorys and denoted
by M s

ij. If Ns is even, M s
ij is the average of the two samples

corresponding to the two middle distances.
2) Calculate the mean ms of the category s. ms and M s

ij

can be connected by a straight line, denoted as M s
ij m

s. The
projection of xij on M s

ij m
s, which is denoted as x̂sij, can be

calculated by the following formula:

x̂sij = (1− α)M s
ij+αm

s , α ∈ [0, 1] (7)

Through some algebra, it is easy to obtain α =

(xij−M s
ij) · (m

s
−M s

ij)
/
(ms−M s

ij) · (m
s
−M s

ij).

3) The goal of MMLDA is to find a projection axis ϕ by
maximizing the following criterion function:

JMML(ϕ) =
ϕT VB ϕ
ϕT VW ϕ

(8)

where VB is the between-class median–mean linear scatter
matrix and VW is the within-class median–mean linear scatter
matrix. The terms can be expressed as follows:

VB =
1
N

∑
ij
s 6= i

(xij− x̂
s
ij) (xij− x̂

s
ij)
T (9)

VW =
1
N

∑
ij
s = i

(xij− x̂
s
ij) /(xij− x̂

s
ij)
T (10)

The optimal solution ϕ = [ϕ1, ϕ2, . . . , ϕd ] of Equation (8) is
the feature vector corresponding to the top d eigenvalues of
VB ϕ = λVW ϕ.

D. CUTTING-EDGE FEATURE EXPRESSIONS USED FOR
COMPARISON WITH PSSM-SAA
In experimental practice, three currently popular expressions,
PSSM-S, DipCPSSM, and PsePSSM, are used to compare
and compete with our proposed method PSSM-SAA.

PSSM-S [16] involves the methods of consensus sequence-
based occurrence (AAO), semi occurrence (PSSM-AAO),
segmented auto covariance (PSSM-SAC) and segmented dis-
tribution (PSSM-SD), and contains global evolution infor-
mation and local discriminative evolutionary information.
AAO, PSSM-AAO, PSSM-SAC, and PSSM-SD are extracted
from a PSSM. Therefore, PSSM-S is a 220-dimensional fea-
ture vector composed of AAO (20 dimensions), PSSM-AAO
(20 dimensions), PSSM-SD (80 dimensions) and PSSM-SAC
(100 dimensions).

DipCPSSM refers to the fusion of dipeptide composition
and PSSM methods [10]. The 400 dipeptide residue pairs
from 20 amino acids are counted in the protein sequence [46],
together with the 20-dimensional amino acid composition
vector, to form a 420-dimensional feature vector [10]. At the
same time, a form of normalization processing is performed
for the PSSM. That is, the transposed matrix of the PSSM is
multiplied by the PSSM to obtain a 20×20 asymmetricmatrix
(see [47], [48]), which has 210 effective elements located
in the lower (or upper) triangular block. Finally, a protein
sequence is represented as a 630-dimensional vector with this
fusion method DipCPSSM.

PsePSSM [3] is also a type of normalization process-
ing method for PSSMs that is represented as P

ξ
PsePSSM =

[M1,M2, . . . ,M20,G
ξ
1,G

ξ
2, . . . ,G

ξ
20]

T
(ξ < L), where

M j = (1
/
L)
∑L

i=1Mi→j (j = 1, 2, . . . , 20) and G
ξ
j =

(1
/
(L − ξ ))

∑L−ξ
i=1 [Mi→j−M(i+ξ )→j]2, (j = 1, 2, . . . , 20;

ξ < L). Since the shortest length of the protein sequences
in the protein database is 50, the value of ξ is less
than 50. Therefore, a protein sequence can be expressed
as a 20-dimensional vector (ξ = 0) and forty-nine
40-dimensional vectors (ξ = 1, 2, . . . , 49). By remov-
ing duplicate elements, PPsePSSM is a 1000-dimensional
(20+ 20× 49) feature vector.

E. CLASSIFIER, MODEL VALIDATION, AND EVALUATION
INDEX
Classifiers have a great influence on the prediction of sub-
cellular location; common classifiers include the k-nearest
neighbor algorithm (KNN) [49]–[52] and support vector
machine (SVM) [53]–[56]. According to studies investigating
similar classification problems in protein subcellular local-
ization, such as [27], the accuracy rate for the Gram-negative
dataset with the KNN classifier can reach as high as 93.57%.
Another study [57] performed to predict subcellular location
with the distance weighted KNN also demonstrated the great
advantage of using an improved KNN classifier compared to
traditional SVM. In addition, the data treated by the dimen-
sionality reduction algorithm of LDA have the characteristics
ofmaximizing the between-class distance andminimizing the
within-classes distance, which is consistent with the theory
of KNN, to predict the category according to the type of the
nearest samples. Therefore, KNN is chosen instead of SVM
in this paper. In the feature space, if most of the K nearest
neighbors of a sample belong to a certain category, the sample
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also belongs to this category. Euclidean distance is used in
this paper.

Regarding model validation, in this paper, we use the
Jackknife cross-validation method [58], [59], which is con-
sidered to be most reasonable. For a given dataset with
N individuals, the basic objective of the Jackknife test is
to systematically leave out each individual as the target set
and the other N − 1 individuals as the training set. For the
523 locative proteins addressed in this paper, each protein is
taken as the test sequence, and the remaining 522 sequences
are used as a training set circularly. A result is obtained after
523 cycles.

The evaluation indexes used in this paper include the over-
all success rate (OSR)accuracy rate (ACC)Matthews correla-
tion coefficient (MCC)sensitivity (Sen) and specificity (Spe),
which are listed as follows (11)–(15), as shown at the bottom
of the next page, where TP(i) is the number of samples cor-
rectly classified into category i; FN (i) is the number of sam-
ples incorrectly classified into category non-i, where non-i
indicates all the categories but category i; TN (i) is the number
of samples correctly classified into category non-i; and FP(i)
is the number of samples incorrectly classified into category i.
Sen(i) is the proportion of the samples correctly classified into
category i. Spe(i) is the proportion of the samples correctly
classified into category non-i. MCC ranges from -1 to 1; the
closer the value is to 1, the better the performance of the
classifier becomes.

F. EXPERIMENTAL STEPS
The experimental steps are as follows, which are also shown
in Figure 1.

FIGURE 1. Experimental flow chart.

Step 1: Use expression methods PSSM-S, DipCPSSM,
PsePSSM, and PSSM-SAA to extract features of the Gram-
positive dataset and Gram-negative dataset.

Step 2: Reduce the feature redundancy by using four
types of dimension reduction algorithms: LDA, MDA, GDA,
and MMLDA.

Step 3: Employ KNN to classify the test samples.

III. RESULTS AND DISCUSSION
A. EXPERIMENTAL COMPARISON
First, we compare PSSM-SAA and three feature expressions
with dimension reduction. In this paper, the predicted results
are affected by two parameters: the dimension of reduction
(d) and the number of nearest neighbors (k). Table 2 lists two
OSRs for the Gram-negative set under 16 cases combining
four feature expressions and four dimension reduction algo-
rithms. These two types of OSRs include the highest OSR
(H-OSR) among different combinations of k and d (indicated
in red) and the regular OSR (R-OSR) with certain fixed k and
d(k = 1 and d = 7 here). The contents of Table 3 are similar
to those in Table 2 except that the dataset is the Gram-positive
set and the R-OSR features the parameters k = 1 and d = 3.

Table 2 shows that, overall, PSSM-SAA with dimension
reduction performs excellently and reaches OSRs higher
than 91% for the Gram-negative dataset. In contrast, the
R-OSRs are lower than 90% for PsePSSM and lower
than 80% for DipCPSSM and PSSM-S. For an appropri-
ate parameter combination of k and d , PSSM-SAA with
dimension reduction can reach H-OSRs higher than 95%,
outperforming the other three feature expressions regardless
of which dimensionality reduction algorithm is implemented.

Table 3 suggests that PSSM-SAA and PsePSSM yield sim-
ilar results for the Gram-positive dataset based on the fact that
their R-OSRs are both greater than 98% and their H-OSRs
are greater than 99%. In Table 3, the experimental results
of both PSSM-SAA and PsePSSM appear stable, while the
OSRs of DipCPSSM and PSSM-S vary widely from approx-
imately 50% to 90%. PSSM-SAA and PsePSSM show stable
OSRs across the different dimension reduction algorithms
used. However, for DipCPSSM and PSSM-S, the results
for LDA and GDA are much better than those for MDA
and MMDA. The results for LDA and GDA agree overall,
indicating a small possibility of a singularity of the within-
class covariance.

TABLE 2. The OSRs of the Gram-negative set with different feature
expressions and dimension reduction algorithms.

Overall, as indicated in Tables 2∼3, PSSM-SAA gives
the largest H-OSR compared to PSSM-S, DipCPSSM and
PsePSSM. The maximum increase in H-OSR with LDA
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TABLE 3. The OSRs of the Gram-positive set with different feature
expressions and dimension reduction algorithms.

is 12.09% for the Gram-negative set, and 8.42% for the Gram-
positive. The results of MDA, GDA and MMLDA showed no
increase compared to those of LDA. The reason may be that
these protein data do not have the small sample size problem
and do not contain obvious outliers; thus, there is no need to
use the median instead of the mean.

This paper also investigates the results concerning how
the OSR varies with the k value for the four feature expres-
sions for the two datasets, as described in the APPENDIX.
To summarize, PSSM-SAA performs better than the other
three feature expressions. To briefly describe the advantage
of PSSM-SAA, Fig. 2 provides the average OSR (abbreviated
as A-OSR) across 420 combinations of k and d for the
Gram-negative set (k:1-60, d1-7) in subgraph (a) and the
A-OSR across 90 combinations for the Gram-positive set
(k:1-30, d1-3) in subgraph (b). In Figure 2, the comparison
between the four feature expressions and four dimension
reduction algorithms suggests that PSSM-SAA is an effec-
tive expression method and LDA is a suitable complemen-
tary dimensional reduction algorithm. The combination of
PSSM-SAA and the dimension reduction algorithm can
significantly improve the overall success rate (OSR), and
different dimension reduction algorithms have little influ-
ence on this result. Although in some cases PSSM-SAA
shows performance equal to or slightly lower than that of

PsePSSM, most of the time the former exceeds the latter.
Table 2 and Figure 2 (a) illustrate how PSSM-SAA outper-
forms the other three methods for the Gram-negative set.
Table 3 and Figure 2 (b) suggest that PSSM-SAA shows the
same or slightly better performance than PsePSSM for the
Gram-positive set.

FIGURE 2. The A-OSRs of different feature expressions and dimension
reduction algorithms.

Based on the abovementioned numerical results, we aim to
gain insight into the four feature expressions with other popu-
lar indexes besides the OSR. Since the differences among the
dimension reduction algorithms are not obvious, for simplic-
ity and versatility, we only use LDA as the dimensional reduc-
tion method for its efficiency in the following experiment to
compare with other indexes, which are shown in Table 4 and
Table 5. As shown in Table 4 and Table 5, the four indexes
of ACC, Sen, Spe, and MCC are used to further evaluate the
performance of the feature expressions for the Gram-negative
and Gram-positive datasets, respectively, and the number of
dimensions is uniformly reduced to 7 (Table 4) or 3 (Table 5)
by LDA. In Table 4, the dash means that the value is not in
the range [−1, 1]. It can be observed that the MCC values
of both PsePSSM and PSSM-SAA for the location of the
fimbrium both reach up to 1. The situations in which the
Sen value is equal to 0 or the MCC value is not in the range
[−1, 1] are due to the fact that the sample size associated
with the location of the flagellum and nucleoid is smaller
than the sample sizes associated with the other six locations.
Table 5 shows that many values are the same, which may be
caused by the fewer locations in the Gram-positive set. The
results of PSSM-SAA, whose multiple values are the same as
those of PsePSSM, are still significantly higher than those of

OSR =

∑c
i=1 TP(i)∑c

i=1 [TP(i)+ FN (i)]
(11)

ACC(i) =
TP(i)+ TN (i)

TP(i)+ TN (i)+ FP(i)+ FN (i)
(12)

MCC(i) =
TP(i)× TN (i)− FP(i)× FN (i)

√
[TP(i)+ FN (i)][TP(i)+ FP(i)][TN (i)+ FP(i)][TN (i)+ FN (i)]

(13)

Sen(i) =
TP(i)

TP(i)+ FN (i)
(14)

Spe(i) =
TN (i)

TN (i)+ FP(i)
(15)
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PSSM-S and DipCPSSM. In Tables 4∼5, the values of
PSSM-SAA that are less than those of the other feature
expressions (here, only PsePSSM) are marked in red, which
represent only a small minority overall, suggesting the supe-
riority of PSSM-SAA.

TABLE 4. The ACC, Sen, Spe, and MCC values of four feature expressions
with LDA for the Gram-negative set.

Next, we further compare our final model (PSSM-SAA
with LDA) with some state-of-the-art predictors.
Saini et al. [60] discussed subcellular localization for the
same Gram-positive and Gram-negative datasets using a lin-
ear interpolation smoothing model. Wang and Yang [27] also

TABLE 5. The ACC, Sen, Spe and MCC values of four feature expressions
with LDA for the Gram-positive set.

TABLE 6. A comparison of the results obtained by the proposed method
with recently published results obtained by the jackknife test.

predicted the subcellular location of Gram-negative bacteria
by the LDA method with a sequence encoding scheme by
fusing PSSM and PseAA. In [27], the KNN classifier was
employed to identify subcellular location based on reduced
low-dimensional feature vectors. Our H-OSR results are
compared with the success rates reported in [27], [60] by the
Jackknife test in Table 6, which suggests that the results of
this paper are better than those in [27], [60].

B. SOFTWARE AND USER GUIDE
The PSSM-SAA method proposed in this paper shows good
performance according to the abovementioned experimental
results. To verify the effectiveness of PSSM-SAA for read-
ers and users and thus use it for prospective protein fea-
ture extraction, the software localization service is provided
here to implement PSSM-SAA expression, which is called
PSSM-SAA Builder. PSSM-SAA Builder provides users
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with usage documents, two data sets as sample examples and
the source code, whose homepage is shown in Figure 3.

FIGURE 3. A screenshot of software homepage showing PSSM-SAA
Builder.

The following steps can help readers understand and use
PSSM-SAA Builder.

Step 1: Go to the website https://www.github.com/
caozicheng/PSSM_SAA-Builder to find and download the
software installation package, sample sets, source code, and
user document.

Step 2: Follow the instructions to complete the installation
and enter the software homepage as shown in Figure 3, which
provides readers with relevant experimental theories and the
standard dataset used in this experiment.

Step 3: Click ‘‘Get a list of files’’ to select a PSSMfile, then
click ‘‘Select the output folder’’ to customize the file path
of PSSM-SAA.

Step 4: Click ‘‘Run’’. The PSSM of each protein sequence
can generate a 1600-dimensional vector jumping automati-
cally to the relevant path of the generated feature file.

IV. CONCLUSIONS
To summarize, compared to PSSM-S, DipCPSSM and
PsePSSM, the proposed PSSM-SAA contains more detailed
information as it can extract the distribution information
of each amino acid in each segment. This novel approach
for extracting local amino acid composition information,
depending on the global evolutionary information in a PSSM,
is likely the reason for the good performance of
PSSM-SAA in protein subcellular localization. Further-
more, besides LDA, other three global dimension reduction
algorithms including MDA, GDA and MMLDA are firstly
applied for subcellular localization, to provide a contrast
with LDA. Totally, with four feature expressions based on
four dimension reduction algorithms, the experimental results
for the Gram-negative and Gram-positive datasets show that
PSSM-SAA with LDA is a promising method in protein
classification prediction.

Note that MDA, GDA and MMLDA may be used to
treat other specific protein data according to the research

FIGURE 4. The variation of OSR versus k value for LDA and
Gram-negative.

FIGURE 5. The variation of OSR versus k value for LDA with d = 3 and
Gram-positive.

needs, which is why we discuss them in this subcellular
location. In addition, due to the linearity of PSSM-SAA, four
dimension reduction methods considered in this paper are
also linear. Generally, there are many nonlinear dimensional
reduction algorithms, such as kernel-based methods (kernel
LDA, kernel PCA, combinational kernel methods) [61]–[65]
and other popular technologies used in bioinformat-
ics [66]–[68], that can be used to study other nonlinear
feature expressions if necessary, to form new and interesting
directions of research.

APPENDIX
FIGURES PERTAINING TO OSR VARY WITH k AND d
In this section, we describe the results indicating how
OSR varies with k for the four feature expression methods
and two datasets, as shown in Figures 4 ∼ 11. Through
many numerical experiments, we observe that for the Gram-
negative dataset, the H-OSRs of the four feature expressions
are mainly distributed in dimensions 4, 5, 6 and 7 for both
LDA and GDA and dimensions 5 and 7 for both MDA
and MMLDA. For the Gram-negative dataset, the H-OSRs
of the four feature expressions are mainly distributed in
dimension 3 with LDA, dimensions 2 and 3 with MDA,
dimensions 2 and 3 with GDA, and dimensions 2 and 3 with
MMLDA. Therefore, we set the fixed dimensions referring to
this dimensional distribution to further observe the variation
of the OSR.

Specifically, Figure 4 presents the OSRs of the four fea-
ture expression methods for the Gram-negative dataset with
LDA when the numbers of dimensions are 4, 5, 6 and 7.
Figure 5 shows the OSRs of the four feature expressions of

42392 VOLUME 7, 2019



S. Wang et al.: Improved Process for Generating Uniform PSSMs and Its Application

FIGURE 6. The variation of OSR versus k value for MDA and
Gram-negative.

FIGURE 7. The variation of OSR versus k value for MDA and
Gram-positive.

FIGURE 8. The variation of OSR versus k value for GDA and
Gram-negative.

FIGURE 9. The variation of OSR versus k value for GDA and Gram-positive.

the Gram-positive dataset with LDA when the number of
dimensions is 3. Figure 6 demonstrates the OSRs of the four
feature expressions of the Gram-negative dataset with MDA
when the numbers of dimensions are 5 and 7. Figure 7 gives
the OSRs of the four feature expressions of the Gram-
positive dataset with MDA when the numbers of dimensions
are 2 and 3. The results shown in Figures 6∼ 7 are similar to
those in Figures 4 ∼ 5, except for the case in which GDA is

FIGURE 10. The variation of OSR versus k value for MMLDA and
Gram-negative.

FIGURE 11. The variation of OSR versus k value for MMLDA and
Gram-positive.

used, as well as those in Figures 8 ∼ 9, which correspond to
the use of the MMLDA dimensional reduction algorithm.

For different combinations of d and k , we can draw the
similar conclusion that the prediction results of PSSM-SAA
are the same or even better than those of the classic PsePSSM
with changes in k and d . Although some of the results by
PsePSSM are better than those obtained by PSSM-SAA,
the largest OSR is obtained using PSSM-SAA. Both
PSSM-SAA and PsePSSM perform much better than
PSSM-S and DipCPSSM do with changes in k and d .
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