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ABSTRACT Passenger flow prediction is important for the operation of urban rail transit. The prediction of
abnormal passenger flow is difficult due to rare similar history data. A model based on the fusion of support
vector regression (SVR) and long short-term memory (LSTM) neural network is proposed. The inputs of the
model are the abnormal features, which consist of the recent real volume series and the predicted volume
series based on the periodic features. A two-stage training method is designed to train the LSTM model,
which can reflect the large fluctuations of abnormal flow more timely and approximately. A combination
method based on the real-time prediction errors is proposed, on which the outputs of SVR and LSTM
are combined into the final outputs of the prediction model. The results of the experiments show that the
SVR-LSTM model more accurately reflects the abnormal fluctuations of passenger flow, which performs
well and yields greater forecast accuracy than the individual models.

INDEX TERMS Short-term passenger flow prediction, urban rail transit, support vector regression (SVR),
long short-term memory (LSTM).

I. INTRODUCTION
Currently, urban rail transit systems play a key role in public
transportation for large cities because they are rapid, punctual
and green. Fluctuation of passenger flow has been a key factor
for operation processes such as timetable optimization [1],
train scheduling [2], train regulation and passenger flow con-
trol [3], [4]. Thus, obtaining the information about fluctuation
of passenger flow is necessary for the efficiency of operating
urban rail transit systems.

The fluctuation in passenger flow is periodic and random.
In this paper, a significant random fluctuation in volume
is called abnormal passenger flow. The abnormal passenger
flow may be inflow or outflow, occur in work day or holi-
day, during peak hours or flat peak hours, even at midnight.
In particular, an increasing abnormal passenger flow can
cause the assembling of passengers and affect the urban rail
transit system and the traffic connected to the subway sta-
tion, thereby affecting the efficiency and safety of travelers.
Accurate passenger flow prediction is helpful for timely and
scientific train scheduling and passenger organization. With
precise passenger flow prediction, a passenger information
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system can warn travelers about potential station and train
congestion. Therefore, short-term abnormal passenger flow
prediction is very important for operations in urban rail transit
systems.

With the application of automated fare collection (AFC)
systems, the records of passengers entering and exiting
urban rail transit systems are collected, which provide rich
data for passenger flow prediction. Based on the rich his-
tory data, some researchers have investigated short-term
passenger flow prediction for subway stations. Wei and
Chen [5] forecasted short-term metro passenger flow via
empirical mode decomposition and back propagation (BP)
neural networks. Yang and Hou [6], Zhou and Zhang [7], and
Sun et al. [8] predicted rail transit passenger flow using
wavelets and a least squares support vector machine
(LS-SVM). Sun et al. [9] predicted the passenger flow of
subway transfer stations based on a nonparametric regres-
sion model (k-Nearest Neighbors). Ding et al. [10] predicted
short-term subway ridership using gradient boosting decision
trees. Li et al. [11] forecasted short-term subway alighting
passenger flow under special event scenarios usingmultiscale
radial basis function networks. These studies contributed to
short-term passenger flow prediction. However, short-term
abnormal passenger flow prediction has received much less
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attention in the literatures. Among these researchers, only
Li et al. [11] focused on abnormal passenger flow prediction
and for passenger outflow merely.

For an urban rail transit system, abnormal passenger flow
rarely occurs on a similar scale and in the same location in
urban rail transit networks. More importantly, the develop-
ment of abnormal passenger flow is very uncertain, which
reduces the reference value of history data. Thus, short-term
abnormal passenger flow prediction is difficult for rare simi-
lar samples and uncertain development.

The newmethod for utilizing the history data and the utility
of real-time data should be strengthened to respond to the
occurrence and development of the abnormal passenger flow.
Therefore, the problem of estimating abnormal passenger
flow is investigated in this paper.

According to the related studies and our practical exper-
iments, the support vector regression (SVR) model is good
at passenger flow prediction for its advantage in nonlinear
regression based on similar history samples. Abnormal fea-
tures, which consist of the recent real volume series and the
predicted volume series based on periodic features, are used
as the inputs of SVR, so that SVR can reflect the frequent
fluctuations of passenger flow.

However, the SVR models can not reflect the abnor-
mal flow for rare similar samples. Therefore, a two-stage
training method is designed to train the long short-term
memory (LSTM) neural networks to reflect the rarely large
random fluctuations. The inputs of the LSTM model are also
the abnormal features. The training at the first stage uses
history data and the training at the second stage uses the
recent samples which contain the real-time dada. The LSTM
training method can utilize the real-time data sufficiently and
reflect the abnormal fluctuation timely.

To take advantages of SVR and LSTM, the fusion model
of SVR and LSTM are proposed in this paper. The outputs
of SVR and LSTM are combined based on the real-time
prediction errors as the outputs of the SVR-LSTM model.
The SVR-LSTM model utilizes both the history data and the
real-time data and predicts the short-term abnormal passenger
flow more accurately than the individual models.

The remainder of this paper is structured as follows.
The following section reviews the related literature. Then,
the SVR-LSTMmodel is constructed, and experiments based
on real data are conducted. Finally, conclusions are drawn in
the last section.

II. RELATED LITERATURE REVIEW
A. METHOD OF PASSENGER FLOW PREDICTION
A wide range of statistical and machine learning prediction
models have been applied to predict passenger flow. More-
over, studies on traffic flow prediction are helpful for studying
passenger flow prediction. Therefore, we review both passen-
ger flow and traffic flow prediction in this section.

Statistical methods have long been used to predict traffic
flow. The typical statistical methods include the autoregres-
sive integrated moving average (ARIMA) method [12], [13]

and the B-spline method [14]. Machine learning methods
have more recently been widely used to predict passenger
flow and traffic variables. These methods include deep learn-
ing based on feed-forward neural networks for short-term
traffic flow prediction [15], multiscale radial basis function
networks for short-term subway passenger flow [11], deep
belief networks for traffic matrix prediction [16], LSTM
neural networks for traffic speed prediction [17], SVR for
travel-time prediction [18], [19], LS-SVM for passenger
flow prediction of transit rail stations [6]–[8], [20], adaptive
multi-kernel SVM for short-term traffic flow prediction [21],
nonparametric regression models for passenger flow predic-
tion [9], [22], gradient boosting decision trees for ridership
prediction [10], and hierarchical temporal memory (HTM)
and LSTM for short-term arterial traffic flow prediction [23].

Researchers have recently begun to investigate strategies to
combine predictors for passenger flow and traffic forecasting
to increase accuracy. The use of a Kalman filter neural net-
work was recommended to forecast short-term traffic flow
for a medium-sized network [24]. Two novel neural net-
work structures were proposed and integrated for short-term
railway passenger demand forecasting [25]. An aggregation
approach based on the moving average, exponential smooth-
ing, ARIMA, and neural network models was proposed for
traffic flow prediction [26]. Regression analysis, neural net-
works, and ARIMAmodels were used to predict transit rider-
ship [27]. A hybrid short-term demand forecasting approach
was developed by combining the ensemble empirical mode
decomposition and gray SVM models [28]. Kalman filters
were utilized to implement a stochastic seasonal ARIMA
plus generalized autoregressive conditional heteroscedastic-
ity structure for stochastic short-term traffic flow rate pre-
diction [29]. A stacked auto-encoder model was employed
to learn generic traffic flow features, and a logistic regression
layer was applied for prediction [30]. Three single predictors,
namely, ARIMA, Kalman filter and back propagation neural
network, were designed and incorporated linearly to forecast
short-term traffic flow [31]. A hybrid modeling approach
that combines artificial neural networks and a simple statis-
tical approach was used to forecast urban traffic flow [32].
A hybrid model of stacked auto-encoders and deep neural
networks was applied and evaluated in a case study of pas-
senger flow prediction for four bus rapid transit stations [33].
A fusion convolutional long short-term memory (LSTM)
network was applied to the short-term forecasting of taxi
passenger demand [34]. A combination of a convolutional
neural network and recurrent neural network was used to
mine spatial and temporal features [35]. Neural networks,
SVR and random forests were selected as individual predic-
tors, and a k-nearest neighbors fusion-basedmethod was used
for short-term traffic forecasting [36].

B. FEATURES CONSIDERED IN PREDICTION MODELS
Feature selection is important for ensuring accurate predic-
tion. The various features used in passenger flow prediction
models are reviewed in Table 1.
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TABLE 1. Features Used for Passenger Flow Prediction.

According to Table 1, the features of passenger flow pre-
diction focus on periodic features (such as weekly, daily and
hourly), time-series features, some statistical features (such
as the previous average and the summed normalized absolute
frequencies), and some features from real-time data (such as
real-time observation, recent alighting passengers and recent
boarding passengers).

III. MODELING
A. STRUCTURE OF THE SVR-LSTM MODEL
SVR is developed according to the basic SVM. The basic
idea of SVM is to map the training data from the input space
into a higher dimensional feature space via function and then
construct a separating hyperplane with a maximum margin
in the feature space. The idea of the regression problem is to
determine a function that can accurately approximate future
values. SVM and SVR have been extensively employed in
prediction models [6]–[8], [18], [20], [21].

LSTM is an important type of recurrent neural network
model, which was proposed by Hochreiter and Schmidhu-
ber [39] and improved by Ger and Schmidhuber [40]. LSTM
and its simple form (gated recurrent unit) have recently been
applied in prediction models [17], [23], [34], [35].

The structure of the SVR-LSTM model proposed in this
paper is shown in Figure 1. The periodic features are input
into SVR (named SVR1) to compute a steady passenger
flow volume series, which is referred to as the steady series.
The recently observed real volume is used as the temporal
series. The steady series and temporal series constitute the
abnormal features that are input into SVR (named SVR2)

FIGURE 1. Framework of the SVR-LSTM model.

and LSTM. The outputs of SVR2 and LSTM are ŷ1 and ŷ2,
respectively. The combination of ŷ1 and ŷ2 is the final result
of the SVR-LSTM model.

The training and prediction flow chart of the SVR-LSTM
model is shown in Figure 2. Si(i ∈ {1, 2})is a sample set
which contains the abnormal features. S1 is used to train
SVR2 and LSTM. S2 is used to train LSTM and predict

FIGURE 2. Training and prediction flow chart of the SVR-LSTM model.
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based on SVR2 and LSTM. Ti is the sample set used to train
SVR1 and Pi is the sample set used to predict and obtain the
steady series for abnormal features in sample set Si. S(Ti),
S(Pi)and S(Si) are start times of Ti,Piand Si respectively.
T (Pi) and T (Ti)are time spans of Ti and Pirespectively. E(Si)
is the end time of Si. According to Figure 2, SVR1 is trained
based on Ti, generates the steady series based on Pi. Then
the abnormal features containing the steady series and the
temporal series are added to Si. These operations are repeated
until the samples for Si are enough.

B. OBTAINING ABNORMAL FEATURES
The abnormal features are obtained by SVR1, as shown
in Figure 1. Denote t as an element in the time series. y(t)
is the passenger flow volume at time t . The periodic features
that are input into SVR1 are given by equation 1, where h(t)
indicates whether t is a holiday, w(t) represents the day of the
week, and d(t)represents the time of day.

[h(t),w(t), d(t)] (1)

The output of SVR1 is given by equation 2, which is com-
puted by the SVR model [18].

ŷ0(t) = f (h(t),w(t), d(t)) (2)

The abnormal feature at time t can be expressed by
equation 3.

x(t) = [ŷ0(t − L), ...,

ŷ0(t − offset), ŷ0(t), y(t − L), ...y(t − offset)] (3)

In equation 3, ŷ0 is the output of SVR1, y is the observed real
passenger flow volume, and offset is a coefficient greater than
or equal to 1 that is set according to the prediction needs. L
is a coefficient greater than the offset, which can be adjusted
according to the experimental results.

C. LSTM
Referencing Ger and Schmidhuber [40], the structure of
LSTM can be described as shown in Figure 3.

FIGURE 3. Structure of LSTM.

The LSTM prediction output can be computed by
equations 4 to 11, where W and b are coefficients.

i(t) = σ (Wihh(t − 1)+Wixx(t)+Wixc(t − 1)+ bi) (4)

f (t) = σ (Wfhh(t − 1)+Wfxx(t)+Wfxc(t − 1)+ bf ) (5)

c(t)= f (t)�c(t−1)+i(t)�tanh(Wchh(t−1)+Wcxx(t)+bc)

(6)

o(t) = σ (Wohh(t − 1)+Woxx(t)+Wocc(t)+ bo) (7)

h(t) = o(t)� tanh(c(t)) (8)

ŷ2(t) = Wyhh(t)+ by (9)

where x(t) is the input of the model at time t; W are the
weight matrices; b are the bias vectors; i(t), f (t), o(t) are the
activation functions of the input gate, forget gate and output
gate at time t; c(t) is the state of the memory cell at time t, h(t)
is the output of the memory block at time t; � represents the
scalar product of two vectors; σ (x) is the standard logistics
sigmoid expressed in equation 10; and tanh is the function
expressed in equation 11.

σ (x) =
1

1+ e−x
(10)

tanh (x) =
ex − e−x

ex + e−x
(11)

The common objective function is to minimize the sum
of square errors. The advantages of LSTM is that it uses
gated neurons to capture both the short-term memories and
the long-term memories and to avoid the gradient vanish-
ing/exploding problem [35].

D. TWO-STAGE TRAINING METHOD FOR LSTM
According to the periodical fluctuation feature of passen-
ger flow in transit networks, the samples are divided into
sequences for different days. Denote the set of history sam-
ples that contain some sequences as S in equation 12, where n
represents the number of days in S. As shown in equation 13,
for sequence sj,m samples exist, and sjk contains x(t) and y(t).

S = [s1, ..., sj, ..., sn]T (12)

sj = [sj1, ..., sjk , ..., sim] (13)

We divide all training samples into two types: off-line sam-
ples (S1 in Figure 2) and on-line-samples (S2 in Figure 2). The
off-line samples do not contain samples from the current day,
whereas the on-line samples include the most recent samples.

Based on the definition of sequence, off-line samples and
on-line samples, the flow of the training LSTM is designed
as shown in Figure 4.

The basic training flow is shown in Figure 4-a, and the
two-stage training is shown in Figure 4-b. c and iter are the
coefficients that control the iterations, and the definitions ofm
and n are same to those in equations 12 and 13. The real-time
data are inserted into on-line samples when they are collected.
The on-line samples will be inserted into off-line samples
when the operation of a station stops and the station has been
closed at midnight. Commonly, n in the second stage equals
a small number, such as 1. After the training in the second
stage, LSTM can be used to predict the short-term passenger
flows.
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FIGURE 4. Training Flow of LSTM. (a) Basic training. (b) Two-stage training.

E. COMBINATION OF SVR AND LSTM
As shown in Figure 1, the final result of SVR-LSTM is the
combination of the outputs of SVR2 and LSTM. The combi-
nation method is designed based on the real-time prediction
errors.

The combination is computed by equation 14, where a is a
coefficient (0 ≤ a ≤ 1), and f (ŷ1(t)) is used to compute the
degree of abnormal volume, where f (ŷ1(t)) greater than zero
indicates significant abnormal flow.

ŷ(t) =

{
ŷ1(t), f (ŷ1(t)) < 0
(1− a)ŷ1(t)+ aŷ2(t), f (ŷ1(t)) ≥ 0

(14)

f (ŷ1(t)) can be computed by equation 15, where e(ŷ1(t))
represents the degree of absolute error of SVR2, g(ŷ1(t))
represents the degree of relative error of SVR2, and π (ŷ1(t))
represents the trend of recent error of SVR2. ε,δand η are
coefficients.

f (y1(t))=min(e(ŷ1(t))−ε, g(ŷ1(t))−δ, π(ŷ1(t))−η) (15)

e(ŷ1(t)), g(ŷ1(t)) and π (ŷ1(t))are computed by
equations 16 to 18.

e(y1(t)) =
L∑

i=offset

|y1(t − i)−
_y1(t − i)| (16)

g(y1(t)) =
L∑

i=offset

|y1(t − i)−
_y1(t − i)|

y1(t − i)
(17)

π (y1(t)) =
L∏

i=offset

(y1(t − i)−
_y1(t − i)) (18)

a in equation 14 can be computed by equation 19.

a =
g(ŷ1)∣∣g(ŷ1)∣∣+ ∣∣g(ŷ2)∣∣ (19)

IV. EXPERIMENTS
A. DATA DESCRIPTION
Real data from Yangji station in Guangzhou, China are used
to assess the performance of the model in this paper. Yangji
station is a transfer station where lines 1 and 5 cross. Here,
Yangji1 and Yangji5 are used to represent the stations on
lines 1 and 5, respectively. The data cover the inflow and out-
flow of passengers in 2017, which are counted by the records
of the AFC system. The time step used for experiments
is 15 minutes. There are about 73 samples for inflow and
outflow respectively during an operation day (5:45-24:00) in
a station.

The three cases shown in Table 2 are considered. The
fluctuations of passenger flow including the three cases are
shown in Figure 5, where the red lines are abnormal passenger
flows.

The test samples of SVR2 and LSTM are the samples in
these three cases. The details of training samples of SVR2 and
LSTM are shown in Table 3. T (Pi) and T (Ti) in Figure 2 (the
time spans of training set and prediction set of SVR1) are
10 days and 1 day respectively.

B. EXPERIMENTAL METRICS
The Mean Absolute Percentage Error (MAPE), the Root
Mean Square Error (RMSE) and the Mean Absolute Error
(MAE), are employed as the experimental metrics. They are
defined as equations 20 to 22.

MAPE =
1
n

n∑
i=1

∣∣∣yi − _yi
∣∣∣

yi
× 100% (20)

RMSE =

√√√√√ n∑
i=1

∣∣∣yi − _yi
∣∣∣2

n
(21)

MAE =
1
n

n∑
i=1

∣∣∣yi − _yi
∣∣∣ (22)

The predictors are better when the values of the metrics are
smaller. The MAPE is the most important metrics in our
paper, which is supported by the equation 17. When there
are inconsistent for the metrics, the predictor with the smaller
MAPE is the better one. For example, if predictor A has
smaller MAPE and bigger RMSE than predictor B, predictor
A will be more optimal than predictor B.

C. PARAMETER CONFIGURATION
The parameters setting of the model in this paper are shown
in Table 4.
L in abnormal feature, gamma and c in SVR and iter

in LSTM are set based on the samples during January and
February. ε in combination is set according to the value
span of samples andδ in combination is set according to the
prediction accuracy of SVR2 in normal conditions.Moreover,
m and n in LSTM are set respectively according to the number
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TABLE 2. Details of the Three Cases.

FIGURE 5. Fluctuations of passenger flow including the three cases.

TABLE 3. Details of the Training Samples for Three Cases.

of days in sample sets and the number of samples in a day,
which are different for three cases based on Table 3.

D. RESULTS
To validate the result of the model proposed in this paper,
the experiments based on the typical statistic method of
ARIMA was carried. Moreover, a model referencing [36]
was realized and experimented, which fused the predictors

of BP, SVR and RF based on KNN method (Fusion-KNN)
and was good at short-term traffic prediction under abnormal
conditions.

The results of SVR1, SVR2, LSTM, SVR-LSTM, ARIMA
and Fusion-KNN are compared as shown in Table 5. One-
step-ahead represents predicting the volume in the next
15 minutes (offset=1). Two-step-ahead represents predicting
the volume during the next 15 to 30 minutes (offset=2).
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TABLE 4. The Parameters Setting.

The results show that the SVR-LSTMmodel proposed in this
paper performs best in different cases.

The one-step-ahead prediction results of SVR1, SVR2,
LSTM, SVR-LSTM, ARIMA and Fusion-KNN are com-
pared with the real volume in Figure 6 to Figure 8.

FIGURE 6. One-step-ahead prediction results of passenger flow in case 1.

According to Figures 6 to 8, the trend in SVR1 is the
smoothest. SVR2 reflects more abnormal fluctuations than
SVR1, whereas SVR2 does not respond to large random fluc-
tuations, possibly because no similar fluctuation is present in
the historic data sampleo0s.

LSTM reflect the abnormal fluctuations more timely and
approximately than SVR. However, two defects of LSTM
are significant: LSTM always excessively responds to slight
fluctuations, and the error is large while the abnormality
is disappearing. SVR-LSTM combines the advantages of
SVR2 and LSTM and can reflect random fluctuations more
accurately.

In addition, ARIMA can’t reflect the abnormal fluctua-
tion and has poorer performance on holiday. The model of
Fusion-KNN can reflect the significant fluctuations, but is not
better than LSTM in abnormal conditions in the three cases.

Furthermore, the absolute residuals of the SVR-LSTM
model and real volume are shown in Figure 9 to Figure 11,
where Absolute Residual1 indicates the absolute residuals of
the one-step-ahead predictions andAbsolute Residual2 repre-
sents the absolute residuals of the two-step-ahead predictions.

FIGURE 7. One-step-ahead prediction results of passenger flow in case 2.

FIGURE 8. One-step-ahead prediction results of passenger flow in case 3.

FIGURE 9. Absolute residuals in case 1.

According to Figure 9 to Figure 11, most of the absolute
residuals are small in all three cases, and no significant fluc-
tuation trend is observed for the absolute residuals.

E. DISCUSSION
According to the experiments, the SVR-LSTM model can
capture the abnormal flow more timely and approximately.
The SVR-LSTM model is more advantageous in abnormal
passenger flow prediction than other algorithms compared.
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TABLE 5. Comparison of Various Predictors.

FIGURE 10. Absolute residuals in case 2.

FIGURE 11. Absolute residuals in case 3.

However, it is should be noted that the abnormal features
and combination conditions in SVR-LSTMmodel depend on
the timely supply of real time data. The large transmission
delay of real time data, such as more than 15 minutes, will
not support the application of the model.

In addition, the prediction accuracy of SVR-LSTM at two-
step-ahead is worse than that at one-step-ahead. It means the
prediction accuracy of SVR-LSTM will decrease with the
increase of value of offset. If the prediction time is more
than half of an hour, the SVR-LSTM model proposed in
this paper will be not applicable and the more information
about normal condition should be obtained for prediction.

Moreover, the traditional model, such as SVR, ARIMA and
LSTM, may be better at prediction after half of an hour under
normal condition than the SVR-LSTM model.

Furthermore, when the SVR-LSTM model are applied,
the method of combination can be changed to adapt to dif-
ferent importance of metrics, and more optimal method of
parameter configuration can be used to improve the predic-
tion accuracy.

V. CONCLUSION
A model combining SVR and LSTM is proposed in this
paper to predict abnormal passenger flow of stations in urban
rail transit networks. The steady series are computed by
SVR1, and the steady series and temporal series are input into
SVR2 and LSTM as abnormal features. A two-stage training
method is designed to train the LSTM model, which utilizes
both the real-time samples and the history samples to reflect
the large fluctuations of abnormal flow more timely and
approximately. The combination of the outputs of SVR2 and
LSTM is the final result of the model, which considers the
real-time prediction errors. Real data from Yangji station in
Guangzhou, China are used to assess the performance of
the model. The experimental cases include work days and
holidays; inflow and outflow; and passenger flow increases
during peak hours, flat peak hours and midnight. The results
show that the model proposed in this paper can accurately
predict abnormal passenger flow based on the combina-
tion of SVR and LSTM, whose inputs are the abnormal
features.

Additional factors, such as significant events, temporary
organization measures, and the status of traffic connected
to the urban rail transit station, will be considered in future
studies.
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