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ABSTRACT The advent of depth sensors opens up new opportunities for human action recognition by
providing depth information. The main purpose of this paper is to present an effective method for human
action recognition from depth images. A multilevel frame select sampling (MFSS) method are proposed to
generate three levels of temporal samples from the input depth sequences first. Then, the proposed motion and
static mapping (MSM) method is used to obtain the representation of MFSS sequences. After that, this paper
exploits the block-based LBP feature extraction approach to extract features information from the MSM.
Finally, the fisher kernel representation is applied to aggregate the block features, which is then combined
with the kernel-based extreme learning machine classifier. The developed framework is evaluated on three
public datasets captured by depth cameras. The experimental results demonstrate the great performance

compared with the existing approaches.

INDEX TERMS Human action recognition, depth image, ELM classifier, fisher kernel.

I. INTRODUCTION

Human action recognition has become a new research hot
topic which integrates computer vision, machine learning
and pattern recognition, and has been widely used in vir-
tual reality, intelligent monitoring [1], motion analysis and
human-computer interaction [2]. Its main goal is to ana-
lyze human activities in video correctly by extracting human
motion features. Early research work on human action recog-
nition mainly focuses on RGB video sequences obtained from
ordinary cameras. However, human action recognition using
RGB images is often disturbed by various lighting conditions,
shadows and environmental changes.

Compared with RGB images, depth images are not dis-
turbed by illumination, chroma, shadows and other factors.
Even when the light is very dark, high resolution depth
images can still be obtained [3]. Fortunately, recent advances
in imaging devices, such as Microsoft Kinect, is able to get
the depth images and estimate 3D positions easily. Human
action recognition based on depth image has attracted wide
attention in the past few years [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jafar A. Alzubi.

Various detection and representation methods, e.g., bag
of 3D points [5], skeleton joints [6], depth motion
maps (DMMs) [7], have been explored to improve the
human action recognition performance using depth images.
Recently, Kamel et al. [8] propose an action-fusion method
for human action recognition from depth maps and posture
data using convolutional neural networks. Farooq et al. [9]
calculate the body part of the action (BPoA) by bounding
box with an optimal window size for each DMM to get
the action recognition. Cui et al. [10] propose a skeleton-
based end-to-end model that can simultaneously imple-
ment both person identification and action recognition and
strengthen the learning of hard samples. Ding et al. [11]
propose the Spatio-Temporal Feature Chain (STFC) to rec-
ognize human actions from sequences of 3D joint positions.
Rahmani and Bennamoun [12] propose a deep model which
efficiently models human-object interactions and intra-class
variations under viewpoint changes. Kerola ef al. [13] pro-
pose a framework which leverages a novel graph representa-
tion of an action as a temporal sequence of graphs. However,
most methods are based on the whole depth sequences, which
may lose the time and detail information of human action
recognition. In addition, actions performed with different
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speeds may result in descriptors differently. These challenges
lead to increase the intra-class variations, and reduce the
recognition accuracy.

In this paper, we focus on recognizing human actions using
depth images. In order to make the method robust to different
execution rates of each action, the MFSS-MSM method is
proposed. The entire input depth map sequences are sam-
pled by calculating key frames according to the proposed
MESS strategy. And then, multiple frame sequences of differ-
ent scales are generated. However, detailed temporal motion
may not be captured using the entire depth sequences, and
previous motion may be covered. To overcome the short-
coming, the depth sequences is divided into many sets of
depth segments with a fixed length of N. Then we use
the proposed MSM model to represent the motion and
static information in three-dimensional space. Different with
DMM model [7], the proposed MSM model can obtain
both motion information and static information in the depth
sequences. At last, the local binary pattern (LBP) [14] is
adopted to represent the human action, which is a effective
texture and powerful descriptor.

The key contributions of this work are as follows:

o The MFSS model based on frame selection strategy is
proposed, and generates multiple frame sequences of
different scales. To avoid covering motion information,
these frame sequences are divided into many sets of
frame segments.

« A novel MSM model is proposed by projecting the depth
images onto three planes, and generates the motion and
static information.

« By dividing all MSM into dense blocks, local rotation
invariant texture information in these blocks is charac-
terized by local binary pattern (LBP). Then the extracted
feature information is encoded by Fisher [15] and clas-
sified by extreme learning machine (ELM) [16].

o The proposed method in this paper has been evaluated on
three public datasets, and a comprehensive comparison
is provided with the state-of-the-art methods.

The remainder of this paper is organized as follows.
In Section II, related works are reviewed briefly. Section III
presents the details of our proposed MFSS-MSM method.
Experimental results on three datasets are given in Section I'V.
Finally, Section V concludes the paper.

Il. RELATED WORK
With the popularization of low-cost depth cameras, such as
Microsoft Kinect, more and more research on motion recog-
nition based on depth maps and skeleton joints has been
carried out. According to the features extracted for action
recognition, these methods based on depth information can
be roughly categorized into three categories: skeleton-based,
depth image-based and fusion of different features-based.
This section first reviews these three methods briefly, and
then explains the motivation of this paper.

For feature extraction based on skeleton features, the
existing skeleton-based methods can be roughly divided into

41812

joint-based and body-based methods. In [6], Smedt et al
present 3D Hand gestures as a set of trajectories of relevant
joints of hand-parts in the Euclidean space. In the work
of [17], Liu et al. present an enhanced skeleton visualiza-
tion method for view invariant human action recognition.
Du et al. [18] propose an end-to-end hierarchical RNN for
skeleton based action recognition. Zhu et al. [19] propose an
end-to-end fully connected deep LSTM network for skeleton
based action recognition. Chao et al. [20] propose a novel
convolutional neural networks (CNN) based framework for
both action classification and detection. However, there are
some shortcomings limit the usage of skeleton features for
action recognition, and joint estimates are unreliable and even
fails in the case of self-occlusion.

For depth image-based methods, Chen et al. [7] utilize
DMM and collaborative representation classifier to achieve
real-time action recognition. In [21], Chen et al. employ the
depth motion maps (DMMs) from three projection views
(front, side and top) to capture motion cues, and use the
local binary patterns (LBPs) to gain a compact feature rep-
resentation. In [22], 3DMTM-PHPG model is proposed to
represent the actions of depth maps. The spatio-temporal
cuboid pyramid (STCP) [23] is proposed to subdivide the
DMS volumes into a set of spatial cuboids on scaled temporal
levels. Recently, a multilevel temporal sampling (MTS) [24]
method is proposed, which is based on the motion energy of
key-frames of depth sequences, and the histogram of gradient
(HOG) and local binary pattern (LBP) are employed to extract
features. In [25], a convolutional neural network method is
developed for action recognition.

For the direction of depth and skeleton information fusion
methods, Wang et al. [26] propose a model to associate
local occupancy pattern features from depth images with
skeleton joints. In [27], Liu et al. extract the dense action
trajectories to encode the motion information, and pass them
through a deep network to get the viewpoint invariant fea-
tures. Aiming at the poor recognition performance caused
by insufficient two-dimensional information, a human action
recognition method by fusing multiple depth information is
proposed in [28]. Since different types of features could share
some similar hidden structures, and different actions may be
well characterized by properties common to all features and
those specific to a feature, Meng et al. [29] propose a joint
group sparse regression-based learning method to model each
action. Tang et al. [30] combine these two features to bet-
ter represent actions, i.e. depth map-based features (hon4d)
and skeleton-based features (Fourier time pyramid). In [31],
motion history image (MHI), depth motion maps (DMM) and
skeleton image are obtained from RGB-D sensor firstly, and
then these images are then separately trained on ConvNets
and respective softmax scores are fused at the decision level.

The method proposed in this paper fall into the depth
image based category. Due to the new motion may cover
the old motion history, the DMM based on the whole depth
sequences may not capture the detailed temporal motion in
the depth images. To this end, Chen et al. [32] propose a
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FIGURE 1. General overview of proposed method.

multi-temporal DMMs, which divides the depth sequences
into overlapping segments and generate multiple sets of
DMMs. Azad et al. [24] propose the multilevel temporal
sampling method to solve the same problem. On the other
hand, DMM can only extract motion information from depth
sequences, while ignoring static information. Static informa-
tion may also be very important for action recognition. In this
paper, a more efficient multilevel temporal sampling method
MESS is proposed, and then, the MSM model which can
capture both motion information and static information in the
depth sequences is also proposed.

Ill. PROPOSED METHOD

A. GENERAL FRAMEWORK

The purpose of this paper is to design a robust human action
representation method, and the proposed framework is illus-
trated in Figure 1.

B. MULTILEVEL FRAME SELECT SAMPLING (MFSS)

As mentioned earlier, motion maps based on the entire depth
sequences may not capture detailed motion clues. There-
fore, in order to overcome the shortcoming and obtain more
motion information, the MFSS method is proposed. Dif-
ferent with the multilevel temporal sampling (MTS) [24]
method which is based on the motion energy of key frames,
MFSS method is a simple joint motion detection and frame
selection operation [33].

Let I as the depth image sequences.

I =, L, 1, ...,1IT) (D

where T is the total number of frames.
Let D, be the difference image sequence which is calcu-

lated by:
I if t=1
Dl =

2
v (= I,_1)2 otherwise

where t is the temporal index. The calculation of (/; — I,_l)2
is element-wise square, and D, € R™*" denotes the matrix of
L, norm difference at the pixel level from frame t-1 to frame t.
m and n denote the frame resolution (rows and columns).
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Fort=1, ..., T, the sum of all elements of D; is stored in
the vector d € R”, whose t-th element is given by:

dy =7 Dii.)) 3)

i=1 j=1

where D;(i,j) is the matrix element.
The vector D; is normalized between 0 and 1 by:
dt - dmin
dpy=—""———+ @)
" dmax - dmin
where d,, and d,,;, denote the maximum value and the
minimum value of the vector d.
We can get the derivative of d,, by :
d
d/ = —d 5
2%m ©)

The index of relevant frames is given by:

. !
_ 1 if|d 'u|>r ©)
0 otherwise
where u denotes the mean value of the d’. t is the threshold
operator.

In this way, redundant frames in depth sequences can be
eliminated by setting different thresholds . In order to sam-
ple different levels of depth sequences, It is essential to select
frames with relevant motion information by setting different
thresholds. Particularly, frames with higher rate of change are
selected. Here, we extract three frame sequence samples of
level 0, level 1 and level 2 from the original depth sequences,
which can be determined by setting different thresholds.
To keep the depth sequences completely, all the frames in the
sequence are select in the level 0. Then, we can get a new
sequence by integrating the three sequences level 0, level 1
and level 2. In order to capture more motion information and
avoid previous motion being covered, the depth sequences
are divided into many sets of depth segments with a fixed
length of N. Next, the MSM are computed for each clip.
The proposed Multilevel Frame Select Sampling framework
is shown in Figure 2.
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FIGURE 2. Multilevel frame select sampling Framework.

C. MOTION AND STATIC MAPS (MSM)

As human motion is carried out in three-dimensional space,
for a depth action sequences, it contains three-dimensional
depth information. Firstly, we project the three-dimensional
depth frame onto three orthogonal Cartesian planes. Each
plane is a view, denoted by MSMyv, where v € front, side,
top.

DMM [7] can fully capture the shape information and
three-dimensional local motion information represented by
depth images in the depth sequences. Because of the simplic-
ity of calculation and good performance, many researchers
extract DMM from depth images for the action recognition.
However, DMM only obtains the motion information from
the depth clips. In this subsection, a novel model (MSM) is
proposed, which uses motion history image (MHI) and static
history image (SHI) to represent motion posture and static
posture in the depth sequences respectively.

In order to obtain the information of motion and static state,
we define the motion binary function M(x,y,t) and the static
binary function S(x,y,t).

M(x,y. 1) = {1 Y Di>Su )

0 otherwise

S<x,y,t)={1 T oh— D= Ss ®)
0 otherwise

where Sy and Sg are the thresholds for motion and static
information between consecutive frames respectively. When
Su is set as 50 and Sg is set as 10, better performance could
be obtained. I; is the depth image sequences, and D; is the
difference between two consecutive image sequences.
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Motion History Image (MHI) is proposed by Bobick [34],
which can describe the position of motion. It could encode the
motion information of all the frames in one depth clips into a
single static image [35]. The MHI is expressed as follows:

MHI(x,y,t)
o if Mx,y,1)=1
max(0, MHI (x,y,t — 1) — 1) otherwise
)]

where MHI(x,y,t) is the motion history image, x and y rep-
resent pixel position and t is the temporal index, M(X,y,t) is
the binary difference image, o is a threshold for extracting
moving patterns in depth sequences.

Furthermore, we utilize the static binary function
SHI(x,y,t) to get the static history image (SHI), which is
expressed as follows:

SHI(x,y,t)
o if Skx,y,t)=1
max(0, SHI(x,y,t — 1) — 1) otherwise
(10)

The information from front plane is dominant for the action.
However, the side plane and top plane may be very coarse,
so only MHI templates are generated from the front plane and
top plane respectively. Therefore, one depth image sequences
can be modeled as four templates (Faspr, Fsur, Spar, Tsur)
using the proposed MSM. The MSM of one depth sequence
is demonstrated in Figure 3.
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FIGURE 3. MSM generation for one depth sequence.

D. BLOCK-BASED LBP FEATURES

The local binary patterns (LBP) [14] is a simple and effective
gray and rotation invariant texture operator, which describes
the local texture pattern of an image by labeling the image
pixels with binary code.

As histogram of gradient (HOG) [36] is a gradient-based
feature extraction method, it considers the change rate of
adjacent pixel values in different directions. Nevertheless,
LBP features are based on simultaneous comparisons with
all adjacent pixels in all directions. Therefore, LBP is more
powerful than HOG.

For each pixel g, in an depth image, a set of m neighbors
contains these pixels that are equally spaced on a circle of
radius . As in [32], the LBP for q can be expressed in decimal
form as follows:

m—1
LBP,(q) = Y _ U(gi — q)2' (1)
i=0
L if qi=q

Ulgi—q) = (12)

0 otherwise
where the q; is the iy, neighbor around pixel q with a circle
of radios r centered at q. In this work, r = 1 and m = 4 are
used.
Therefore, MHI mapping and SHI mapping are first gen-
erated for the depth sequence, and then LBP operators are
applied to the mappings.

E. ENCODING AND CLASSIFICATION

Fisher Vector outperforms other compared encoding meth-
ods showing that the encoding of second order information
indeed benefits classification performance [37]. Therefore,
the Fisher kernel is employed to encode the block-based LBP
features.

For each projection view, Gaussian mixture
model (GMM) parameters are estimated by expectation-
maximization (EM) algorithm using the corresponding
feature matrices of the training data. Then, the four
Fisher Vector are simply concatenated as the final feature
representation.
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Extreme learning machine (ELM) [38] is a neural network
with only one hidden layer and one linear output layer, and
the computing cost is much lower than other methods based
on neural network. The weights between the input layer and
the hidden layer are randomly assigned, and then the weights
of the output layer are calculated by the least square method.

Compared with ELM, kernel-based ELM (KELM) [16]
has been proposed by extending explicit activation functions
in ELM, which provides a better generalization performance
and is more stable.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the recognition performance of the
algorithm, we have carried out the following experiments and
analysis on three public datasets. Notice that although these
datasets contains both the color and depth frames, only depth
frames are used in the experiments.

Due to the background of the depth sequences would intro-
duce noise to the recognition, we employ the method of image
smoothing to preprocess the depth sequences, and remove the
salt and pepper noise in the depth sequences.

A. EVALUATION CRITERION
In order to evaluate our proposed method, precision, recall
and accuracy are used.

Precision is ration between true positive and sum of posi-
tive data. This can be interpreted as what portion of predicted
targeted class is relevant, i.e. are from this class. The formula
for precision is

. true positive
precision = — — (13)
true positive + false positive

Recall is ration between true positive and sum of data from
target class. The formula for recall is

true positive
recall = — P - (14)
true positive + false negative

Accuracy is the ratio of the number of samples correctly
classified to the total number of samples. The formula is
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as follows:

true positive + true negative

accuracy = (15)

the total number of samples

B. MSRACTION3D DATASET

MSRACction3D dataset [5] is a public depth datasets for
human action recognition, which consists of 20 actions. Each
action is performed 2 or 3 times by 10 subjects facing the
depth camera. 20 kinds of actions include “‘high arm wave”,
“horizontal arm wave”, “hammer”, “hand catch”, ‘for-
ward punch”, “high throw”, “draw x”, “draw tick™, “draw
circle”, “hand clap”, “two hand wave”, “side boxing”,
“bend”, “forward kick™, “side kick™, “jogging”, “tennis
swing”, “tennis serve”, “golf swing”, “pick up & throw”
It has a total of 556 depth sequences, and the size of each
frame is 240x320. This dataset is quite challenging due to
the high similarity between many actions.

We follow the same experimental settings in [39]
(subjects 1, 3, 5, 7, 9 for training and the rest for testing).
The sizes of MSM of front, side and top are normalized to
be 102 x 54, 102 x 75 and 75 x 54 respectively. The frame
selection parameter 7 is chosen experimentally for each level:
7 = 0.04 for level 1, T = 0.09 for level 2, and all the frames
in the sequence is selected in the level 0. The input frame is
divided into many blocks for LBP, and the blocks are selected
with 50% of overlap. The length of LBP feature vector is 59.
The radial basis function (RBF) kernel is employed in KELM.

Figure 4 shows the accuracy on the validation set when
selecting different PCA components. For the range of 90 to
190, the accuracy is almost the same. By increasing this
number from 200 to 270, the accuracy of the method grows.
After 270, the accuracy does not change. It can be seen that
270 is the best value for the MSRAction3D datasets.

The confusion matrix of our method for MSRAction3D
dataset is shown in Figure 5. Figure 6 shows two other eval-
uation indicators: precision and recall. The incorrect recog-
nitions mainly appear on some partly similar actions, e.g.,
highThrow, drawX and drawTick. But for these three actions,
92%, 81%, 94% are achieved by the proposed method.
Using only the single LBP feature, the cross test accuracies
are 98.2%.
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TABLE 1. Performance comparison on MSRAction3D.

Method Year Accuracy
Bag of 3D Points [5] 2010 74.7%
Random Occupancy Pattern [40] 2012 86.2%
DMM-HOG [41] 2012 88.7%
Actionlet Ensemble [26] 2014 88.2%
DMM-LBP-DF [21] 2015 93.9%
Extended SNV [39] 2017 93.4%
Multi-Temporal DMMS [32] 2017 94.5%
Deep Convolutional Neural Networks [8] | 2018 94.5%
Multilevel Temporal Sampling [24] 2018 95.2%
Proposed MFSS-MSM 2019 98.2%

Table 1 shows the results compared with other methods
under the same test conditions, and our proposed method
achieves the best result.
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TABLE 2. Performance comparison on MSRGesture3D.
Method Year Accuracy
Random Occupancy Pattern [40] 2012 88.5%
DMM-HOG [41] 2012 89.2%
HON4D [43] 2013 92.5%
DMM-LBP-DF [21] 2015 94.6%
Extended SNV [39] 2017 94.7%
3DHoTs [44] 2017 94.7%
Multi-Temporal DMMS [32] 2017 98.2%
Multilevel Temporal Sampling [24] 2018 98.1%
Multilevel Temporal Sampling + CNN [24] | 2018 97.2%
Proposed MFSS-MSM 2019 98.3%

C. MSRGESTURE3D DATASET

MSRGesture3D dataset [42] is a dynamic hand gesture
dataset of depth sequences captured by a depth camera.
This dataset contains 12 gestures defined by American
sign language, which is considered to be more challeng-
ing than MSRAction3D due to more self-occlusion issues.
The 12 standard gesture include ‘‘bathroom™, “‘blue”, “fin-
ish”, “green”, “hungry”, “milk”, “past”, “pig”, “store”,
“where”, “j7, and “z”. Each gesture is performed 2 or
3 times by each one of the 10 subjects. The sizes of
MSM of front, side and top are normalized to be 118x 133,
118%29 and 29 x 133 respectively. For this dataset, the leave-
one-subject-out evaluation scheme is performed [32]. Other
parameter settings are the same as MSRAction3D dataset.

Figure 4 shows the accuracy on the validation set when
selecting different PCA components. By increasing this num-
ber from 50 to 100, the accuracy of the method grows. For
the range of 100 to 280, the accuracy is almost the same.
It can be seen that 100 is the best value for the MSRGesture3D
dataset.

The confusion matrix of our method for MSRGesture3D
dataset is shown in Figure 7. Figure 8 shows two other eval-
uation indicators: precision and recall. The incorrect recog-
nitions mainly appear on some partly similar actions, e.g.,
where, hungry and green. For these three actions, 93% are
achieved by the proposed method. The cross test accuracies
are 98.3%. Table 2 shows the results compared with other
methods.
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FIGURE 8. Precision and recall on MSRGesture3D. The number in red
indicates the overall accuracy.

D. UTD-MHAD DATASET

The UTD-MHAD dataset [45] was collected using a
Microsoft Kinect sensor and a wearable inertial sensor in
an indoor environment. The dataset contains 27 actions per-
formed by 8 subjects (4 females and 4 males). Each subject
repeated each action 4 times. After removing three corrupted
sequences, the dataset includes 861 data sequences. The
27 actions are as follows: ‘“‘right arm swipe to the left”,
“right arm swipe to the right™, “right hand wave”’, ““two hand
front clap”, “right arm throw”, ““cross arms in the chest”,
“basketball shoot”, “right hand draw X, “right hand draw
circle”, “right hand draw circle, ““draw triangle”, ““bowl-
ing”, “front boxing”, “baseball swing from right”, “tennis
right hand forehand swing”, “arm curl”, “tennis serve”,
“two hand push”, “right hand knock on door”, “‘right hand
catch an object”, “right handpick up and throw”, “jogging

LR T3 LR T3

in place”, “walking in place™, “sit to stand’’, “‘stand to sit”,
“forward lunge”, ““squat”.

We follow the same experimental settings in [45]. The data
from the subject numbers 1, 3, 5, 7 are used for training,
and the data for the subject numbers 2, 4, 6, 8 are used
for testing. In our experiments, the sizes of MSM of front,
side and top are normalized to be 150x75, 150x100 and
100x75 respectively. Other parameter settings are the same
as MSRAction3D dataset.

Figure 4 shows the accuracy on the validation set when
selecting different PCA components. By increasing this num-
ber from 50 to 250, the accuracy of the method grows.
After 270, the accuracy drops slightly. It can be seen that
260 is the best value for the UTD-MHAD dataset.

The confusion matrix of our method for UTD-MHAD
dataset is shown in Figure 9. Figure 10 shows two other
evaluation indicators: precision and recall. The cross test
accuracies are 88.7%. Table 3 shows the results com-
pared with other methods that also use only depth images.
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FIGURE 9. Confusion matrix on UTD-MHAD.
TABLE 3. Performance comparison on UTD-MHAD.
Method Year Accuracy
DMM-HOG [41] 2012 81.5%
Multi-Temporal DMMS [32] 2017 82.0%
3DHoT-MBC [44] 2017 84.4%
Two-stream Entirety Net [46] 2018 85.4%
Multilevel Temporal Sampling [24] 2018 81.1%
Proposed MFSS-MSM 2019 88.7 %

The results clearly demonstrate the superior performance of
our method.

E. PARAMETER ANALYSIS

Some key parameters used in this paper are analyzed in this
section. We use the MSRAction3D dataset as the benchmark,
and other datasets could also get similar results.

1) PARAMETER t ANALYSIS
As the value of parameter t increases, fewer image frames
is selected. Therefore, the value of parameter r would affect
the recognition results. In order to make the experiment more
comparable, we use the method of fixing one parameter and
changing another parameter.

As shown in Figure 11(a), we fix the parameter 7 of level 2
as 0.09, and check the recognition accuracy by changing the
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parameters T of level 1. When the parameter 7 of level 1
is 0.04, we can get the highest accuracy.

On the other hand, as shown in Figure 11(b), we fix the
parameter t of level 1 as 0.04, and check the recognition
accuracy by changing the parameter 7 of level 2. With the
increase of parameter T of level 2, more frames will be
deleted. After 0.16, the accuracy decreases slightly, and then
remains unchanged. When the parameter 7 of level 2 is 0.09,
we can get the highest accuracy.

Therefore, while the frame selection parameter 7 of level 1
is 0.04 and that of level 2 is 0.09, we can get the best accuracy.

2) MSM THRESHOLD ANALYSIS

Sy and Sg are the thresholds for motion and static informa-
tion between consecutive frames respectively. Experiments
show that better performance can be obtained when Sy is set
as 50 and Sg is set as 10. With the increase of Sy, fewer pixels
will be judged as motion information. As shown in Figure 12,
our experimental method is similar to parameter 7’s.

3) MULTILEVEL TEMPORAL SAMPLING ANALYSIS

We also test the algorithm on the MSRAction3D dataset by
using different temporal levels. As shown in table 4, the
accuracy of using all three temporal levels is the best.
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FIGURE 10. Precision and recall on UTD-MHAD. The number in red indicates the overall accuracy.
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FIGURE 11. The parameter t analysis on MSRAction3D.

TABLE 4. Recognition accuracy of our method with different temporal
levels on the MSRAction3D dataset.

Temporal levels Accuracy
1 level(level 0) 94.5%
2 levels(levels 0,1) 95.7%
3 levels(levels 0,1,2) 98.2%

4) COMBINING DIFFERENT FEATURES ANALYSIS

In addition, table 5 shows the accuracy of different combi-
nations of HOG and LBP descriptors. It can be seen that the
combination of HOG and LBP features is a little better than
using LBP alone. In order to reduce the computational cost,
only LBP features is used in this paper.

VOLUME 7, 2019

(b)

1 T T T T T T T T

|—EI— The parameters 1 of level 1 is 0.04

Accuracy
f=]
w
[s3]
T
|

0.93 T

0.92 L L L L L
002 004 006 008 01 012 014 016 018 02

The parameters 1 of level 2

TABLE 5. Comparison of different combinations of descriptors on the
MSRAction3D dataset.

Descriptors Accuracy
HOG 95.2%
LBP 98.2%
HOG + LBP 98.3%

F. COMPUTATION TIME ANALYSIS

It is worth mentioning that our algorithm is implemented
in MATLAB and executed on CPU platform with an
Intel(R)Core(TM) i5-5200U CPU @2.20GHz and 8GB
of RAM.
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FIGURE 12. The MSM threshold analysis on MSRAction3D.

FIGURE 13. Illustration of MFSS operation.

TABLE 6. Average run-time on MSRAction3D.

Step Run Time(%) | Time/sequence(sec)
MEFESS 5.99 0.536568
MSM 70.2 6.283341
LBP 17.96 1.607247
Fisher Vector 5.15 0.461127
ELM 0.66 0.058696

For MFSS operation, three levels representation is used in
our method. All the frames in the sequence is selected in the
level 0, and the thresholds of level 1 and level 2 is selected
to be 0.04 and 0.09 respectively. Figure 13 illustrates the
MEFSS operation on the MSR Action3D dataset, which include
556 depth sequences. About 75.74% of frames are selected in
level 1 and 44.35% in level 2.

Table 6 shows the percentage of time spent on each step of
the proposed method. Computing MSM takes the most part
of time with 70.2%.

V. CONCLUSION

In this paper, based on only the depth images, we proposed a
new effective framework for human action recognition. The
motivation of this paper comes from two problems in the
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process of action recognition. Firstly, the new motion may
cover the old motion history, while the DMM based on the
whole depth sequence may not capture the detailed temporal
motion in the depth image. Secondly, DMM can only extract
motion information from depth sequence, but ignore static
information, which is also very important for motion recogni-
tion. Using multilevel frame select sampling (MFSS) model,
we successfully capture three levels of temporal samples from
the input depth images firstly. Then, we project each depth
image onto three orthogonal Cartesian planes, and then using
motion and static maps (MSM) method to get the motion
history image and static history image to represent motion
posture and static posture respectively. After that, the block-
based LBP feature extraction approach is employed to extract
texture information. In order to aggregate the block features,
the fisher kernel representation is applied. At the end, kernel-
based extreme learning machine (KELM) is used as the clas-
sifier. In addition, the key parameters used in the framework
are analyzed. The best parameter T and MSM thresholds
are analysised in detail. It is proved that the three temporal
level can achieve better recognition accuracy compared with
other temporal levels. Using LBP features alone can achieve
good performance at lower computational cost. Finally, The
calculation time of the framework is calculated and analyzed
in detail.

The proposed method is extensively evaluated on three
public datasets. The experimental results demonstrate that
the proposed framework has shown many competitive and
attractive characteristics for depth based action recognition.
Due to neural networks shows better experimental results
than classical feature extraction methods, which can do both
feature extraction and classification. As our future work,
we plan to apply Convolutional Neural Network for com-
plex recognition system, and larger RGB-D action recogni-
tion dataset such as NTU dataset [47] will be considered to
analyze.
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