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ABSTRACT With the development of the room rental market, many room rental websites have been created,
e.g., SpareRoom and EasyRoommate. On these websites, people find not only rooms for rent but also suitable
roommates. Inspired by the rental mode in practice, a benchmark room allocation model was introduced
by Chan et al., in which 2n agents must be allocated to n rooms that have the same capacity and each
agent can be allocated to any room. However, in practice, rooms may differ in terms of capacity, e.g.,
college dorms or apartments may contain both two-bed rooms and four-bed rooms. Moreover, an agent
can only be allocated to a room of which the rent does not exceed the agent’s budget. In this scenario,
we must consider not only the agents’ preferences but also the capacity diversity of the rooms and the budget
constraints while allocating the rooms. Therefore, this paper investigates the room allocation problem with
capacity diversity and budget constraints. We mainly focus on finding an allocation that maximizes social
welfare. First, this paper demonstrates that finding an allocation that maximizes the social welfare is NP-hard
(i.e., non-deterministic polynomial-time hard), even if only one room’s capacity is larger than 1 and the other
rooms’ capacities are all 1. Second, this paper presents a (c∗ + 2)/2 + ε-factor approximation algorithm (with
ε > 0) for the case in which the capacity of each room does not exceed a constant c∗. Third, this paper
proposes a heuristic algorithm based on the local search for the general case in which the capacity of each
room is not bounded by a constant. The experimental results demonstrate that the proposed algorithm can
produce near-optimal solutions. Finally, this paper investigates how to find a roommate stable or room envy-
free allocation with a social welfare guarantee.

INDEX TERMS Room allocation, capacity diversity, budget constraints, algorithm design.

I. INTRODUCTION
Room allocation is a frequently encountered problem in
practice, e.g., allocating dorms among college students and
allocating rooms among tenants [1], [2]. It has attracted the
attention of economists and computer scientists for more than
sixty years. Gale and Shapley [3] introduced the stable room-
mate problem, where the objective is to find a stable matching
that partitions 2n agents into n pairs of roommates such that
no two agents who are not roommates both prefer each other
to their actual partners. They showed that an instance does not

The associate editor coordinating the review of this manuscript and
approving it for publication was Xudong Zhao.

always admit a stable matching. Irving [4] presented anO(n2)
algorithm that can determine whether an instance with strict
preferences admits a stable matching and find such a match-
ing if it exists. Since then, the stable roommate problem has
been studied extensively [5]–[10]. Moreover, various types of
solution notions have been proposed, for example, exchange
stability [11]–[13] and popular matching [14]. In the stable
roommate problem, only the preferences for the agents are
considered and each agent has only one roommate.

With the development of the room rental market, many
room rental websites have been created, e.g., Spareroom and
Easyroommate. People find not only rooms for rent but also
suitable roommates on these websites. Inspired by the rental
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mode in practice, Chan et al. [1] presented a room allocation
model, in which 2n agents must be allocated to n rooms
according to their preferences for both the rooms and the
other agents. They assumed that each room can contain two
agents and each agent can be allocated to any room. However,
in practice, roomsmay differ in terms of capacity, e.g., college
dorms or apartments may have both two-bed rooms and four-
bed rooms. Moreover, an agent can only be allocated to a
room of which the rent does not exceed the agent’s budget.
In the scenario, not only the agents’ preferences but also the
capacity diversity of the rooms and budget constraints must
be considered while allocating the rooms.

To solve this problem, this paper investigates the room
allocation problem with capacity diversity and budget con-
straints. We mainly focus on finding an allocation that max-
imizes the social welfare that is defined as the utility sum of
the agents, including the room owner (such as the university).
Typically, this objective is discussed in the resource allocation
literature [1], [2], [15]–[17]. This paper also investigates how
to find a roommate stable allocation with a social welfare
guarantee, in which no pair of agents who live in different
rooms can increase both their utilities by swapping while
ensuring that no agent’s utility decreases. Moreover, this
paper investigates the computational complexity of finding
a room envy-free allocation with a social welfare guarantee,
in which each pair of roommates would not like to switch
rooms with any other pair of roommates. The main results of
this paper are summarized as follows:

1. Firstly, this paper demonstrates that finding an alloca-
tion that maximizes the social welfare is NP-hard (i.e., non-
deterministic polynomial-time hard), even if only one room’s
capacity is larger than 1 and the other rooms’ capacities are
all 1.

2. Secondly, this paper presents a polynomial-time
(c∗ + 2)/2 + ε-factor approximation algorithm (with ε >0)
for the case in which the capacity of each room does not
exceed a constant c∗ >0. Because the capacity of a room
in a residential rental market is typically not larger than 4,
the proposed algorithm is usually a 3+ε-factor approximation
algorithm in real tenant allocation.

3. Thirdly, this paper demonstrates that there is no
polynomial-time c∗/2-factor approximation algorithm for the
social welfare maximization problem unless P=NP (i.e., each
non-deterministic polynomial-time complete problem can be
solved in polynomial time), where c∗ is the capacity upper-
bound of each room.

4. Fourthly, this paper proposes a heuristic algorithm based
on local search for the general case in which the capacity of
each room is not bounded by a constant. Experimental results
demonstrate that the proposed algorithm can produce near-
optimal solutions.

5. Fifthly, this paper demonstrates that if the capacity of
each room does not exceed a constant c∗ >0, we can find
a roommate stable allocation of which the social welfare is
at least 1/((c∗ + 2)/2 + ε) (ε >0) of the optimal value in
polynomial time.

FIGURE 1. The main results of this paper.

6. Lastly, this paper demonstrates that it is NP-hard to
determine whether an instance with specified room prices
admits a room envy-free allocation.

The remainder of this paper is organized as follows.
In Section II, we review the related work. In Section III,
we present the formal model of the room allocation problem.
In Section IV, we investigate how to find an allocation that
maximizes the social welfare. In Section V, we investigate
how to find the allocation that maximizes the social welfare
among all the allocations that have the maximum trade vol-
ume. The trade volume is defined as the sum of the agents’
payments. In Section VI, we investigate how to find a room-
mate stable or room envy-free allocation with a social wel-
fare guarantee. In Section VII, we present the experimental
results. In Section VIII, we present the conclusions of this
paper and discuss future work.

II. RELATED WORK
The stable roommate problem was introduced by Gale and
Shapley [3]. They showed that an instance does not always
admit a stable matching. Irving [4] proposed the first algo-
rithm that can determine whether an instance with strict pref-
erences admits a stable matching and find such a matching,
if it exists, inO(n2) time. Bartholdi, III, and Trick [18] showed
that the stable roommate problemwith narcissistic and single-
peaked preferences always admits a unique stable matching
if the preferences are strict and complete and provided an
O(n) time algorithm for finding this matching. Ronn [10]
showed that finding a stable matching is NP-hard if the
agent preferences contain ties. Feder et al. [6] proposed an
O(n3logn) parallel algorithm for the stable roommate prob-
lem with strict preferences. Irving and Manlove [8] presented
a line-time algorithm for finding a superstable matching
if one exists, given a stable roommate instance with ties.
Bredereck et al. [5] presented polynomial-time algorithms
for the stable roommate problem with complete narcissis-
tic, single-peaked and single-crossing preferences. Pȩski [9]
investigated the stable roommate problem with nontransfer-
able random utility and analyzed the distribution of types of
matched pairs in stable matchings. Pittel [19] investigated
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the stable roommate problem with unequal numbers of men
and women. Lam and Plaxton [20] studied the problem of
finding large weakly stable matchings when preference lists
are incomplete and contain onesided ties and presented a
1+ 1/e-factor approximation algorithm.
Moreover, various notions of stability have been proposed.

For example, Alcalde [11] proposed ‘‘coalition exchange
stability’’, in which there is no agent coalition that can
increase the utility of each agent in the coalition via partner
swapping. Cechlárová [12] defined a matching as exchange
stable if there is no pair of agents that can increase both
their utilities by swapping their partners. They showed that
determining whether an instance admits an exchange-stable
matching is NP-complete. Biró et al. [14] studied popular
matching for the roommate allocation problem and showed
that determining whether a popular matching exists in a
roommate allocation instance is NP-hard if ties are permitted
in the preferences. In the stable roommate problem, only the
preferences for the agents are considered and each agent has
only one roommate. However, in the problem of this paper,
we also consider the preferences for the rooms and each agent
may have multiple roommates.

Recently, Chan et al. [1] presented a room allocationmodel
in which 2n agents must be allocated to n rooms that have
the same capacity. They assumed that the valuation function
of each agent is nonnegative and proposed a constant-factor
approximation algorithm for the social welfare maximization
problem in an offline situation. They also studied stable room
allocation. Huzhang et al. [2] investigated the online situation
and assumed that all the agents arrive online in uniformly ran-
dom order. They presented an online algorithm with constant
competitive ratio with respect to the optimal social welfare.
In contrast, this paper investigates the more general offline
case in which the rooms have diverse capacities and each
agent has a limited budget.

Popular matching in the house allocation problem was first
studied by Abraham et al. [21]. The objective is to find a
popular matching M that allocates agents to one-capacity
houses such that there is no matching M’ with the property
that the number of agents preferring M’ to M exceeds the
number of agents preferring M to M’. Abraham et al. [21]
proposed an O(

√
nm) algorithm for the problem, where n is

the total number of agents and houses, and m is the total
length of all the preference lists. Mahdian [22] studied the
existence of popular matchings in a random instance of the
house allocation problem. Mestre [23] studied a general case
in which agents have different priority weights, and the objec-
tive is to find a weighted popular matching. They presented
anO(m+n) algorithm for instances that have strict preference
lists.

Manlove and Sng [24] investigated the capacitated house
allocation problem, in which the houses have diverse capac-
ities. They presented an O((

√
C + n1)m) algorithm for the

capacitated house allocation problem, where C is the total
capacity of the houses and n1 is the number of agents.
Sng andManlove [25] studied the weighted capacitated house

allocation problem and proposed an O(
√
Cn1+m) algorithm

for instances that have strict preference lists. Paluch [26]
presented a faster (by a factor of O(

√
n)) algorithm for the

capacitated house allocation problem with ties. In the capac-
itated house allocation problem, only the preferences for the
houses are considered. However, in the problem of this paper,
we consider the preferences for both the rooms and agents.

Hedonic games are also closely related to the problem
of this paper, in which n agents must be partitioned into
disjoint coalitions according to their preferences for coali-
tions [27]–[31]. Various stability concepts, e.g., the core
stability, Nash stability, individual stability and contractual
individual stability (see e.g., [29]), have been proposed for
analyzing these games. Variants of hedonic games have also
been studied, e.g., additively separable hedonic games [32],
fractional hedonic games [33]–[35], roommate games [36]
and the group activity selection problem [37], [38]. In the
games, the preference of an agent for a coalition is determined
by the identities of the agent members of the coalition. In the
group activity selection problem, the preference of an agent
for an activity coalition depends on the number of agent
members in the activity coalition. However, in the problem
of this paper, the preference of an agent for a room allocation
is determined by the preferences for both the roommates and
the room, rather than only for the roommates or the number
of roommates.

III. PRELIMINARIES
Let A={1, 2, . . . , n} be the agent set and< ={r1, r2, . . . , rm}
be the room set. Each agent i has a budget bi and a valuation
function vi: <∪A→ R. For a room r∈ <, vi(r) represents the
happiness of agent i when living in it and for an agent j∈A,
vi(j) represents the happiness of agent i when agents i and j
are allocated to the same room. If vi(r) (or vi(j)) is smaller
than 0, it means that agent i hates living in room r (or with
agent j). Without loss of generality, we assume vi(∅) = 0.
We use pi (0≤ pi ≤ bi) to represent the payment of agent i
and use pr (pr ≥0) to represent the price (total rent) of room r.
The payment pi of agent i must not exceed its budget bi. Let
cr (cr ≥1) be the capacity of room r∈ <, namely, room r has
cr beds. We assume that the capacity sum of the rooms is n.
Each agent can be allocated to at most one bed in the rooms
and each bed can be allocated to at most one agent. Moreover,
we assume that each bed in the same room has the same
price [1] and that each agent only pays for the bed to which
it is allocated. This scenario is very common in practice, e.g.,
dorm allocation at a university.

A feasible allocation π can be denoted as a vector
π = (π1, π2, . . . , πn), where πi is the room to which agent i
is allocated and two constraints are satisfied: i) for each agent
i, the bed rent of πi does not exceed bi (i.e., pπi /cπi ≤ bi) and
ii) for any room r, at most cr agents are allocated to it. The
utility of agent i in the allocation π is defined as

ui(π ) = vi(πi)+
∑

j∈A\{i}∧πj 6=∅∧πi=πj

vi(j)− pi
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Due to the budget constraints, an agent kmay not be allocated
to any room, namely, πk = ∅ with pk = 0. Inspired by [1],
the social welfare of the allocation π is defined as

SW(π ) =
∑
i∈A

ui(π )+
∑
i∈A

pi

=

∑
i∈A

(vi(πi)+
∑

j∈A\{i}∧πj 6=∅∧πi=πj

vi(j))

In the definition, we consider both the utilities of the tenant
agents and the utility of the room owner (such as the uni-
versity). In this paper, we initially focus on how to find an
allocation that maximizes the social welfare.

When there are insufficiently many low-cost rooms,
we cannot always ensure that every agent is allocated to a
room. In this situation, the room owner or the rental interme-
diary typically hopes to maximize the trade volume, which
equals the sum of the agents’ payments. This is because
the profit of the room owner or the rental intermediary is
positively related to the trade volume. Therefore, this paper
further investigates the social welfare maximization problem
with the maximum trade volume constraint, namely, finding
the allocation that maximizes the social welfare among the
allocations that have the maximum trade volume.

This paper also investigates how to find a roommate sta-
ble or room envy-free allocation with a social welfare guar-
antee. Inspired by the ‘‘exchange stability’’ in the traditional
stable roommate problem [11]–[13], Chan et al. [1] defined
an allocation as 2-person stable if no pair of agents (i, j)
who live in different rooms can increase both their utilities
by swapping. In this work, they showed that determining
whether a room allocation instance admits a 2-person stable
allocation is NP-hard. However, in practice, a swap is typi-
cally infeasible if someone else opposes, e.g., the roommates
of agent i or j. Then, inspired by [39], we propose the follow-
ing notion of stability:
Definition 1: An allocation is 2-person weakly stable if no

pair of agents (i, j) who live in different rooms can increase
both their utilities by swapping while ensuring that no agent’s
utility decreases.

We refer to two agents who violate the person stability
condition as ‘‘2-person weakly stable blocking pair’’. In this
paper, we investigate how to find a 2-person weakly stable
allocation with a social welfare guarantee.

Envy-freeness is a stronger solution concept than stability.
A person envy-free allocation in which each agent would not
like to switch rooms with any other agent must be a 2-person
stable allocation. Finding a person envy-free allocation [1] is
NP-hard. Then, Chan et al. [1] proposed a weaker concept
– room envy-freeness. An allocation is room envy-free if no
pair of roommates (i, j) envies any other pair of roommates
(k, l). In this paper, we extend the definition of room envy-
freeness to consider budget constraints:
Definition 2: An allocation is room envy-free if no pair of

roommates (i, j) envies any other pair of roommates (k, l)
under the specified budget constraints. That is, if (i, j) are
allocated to room r, we cannot increase the utility sum of

TABLE 1. Definitions of notations.

agents i and j by allocating them to another room s with
bi ≥ ps/cs and bj ≥ ps/cs.
Room envy-freeness implies that each pair of roommates

would not like to switch rooms with any other pair of room-
mates. Chan et al. [1] showed that if each room can contain
at most two agents and the room prices are adjustable, a room
envy-free allocation can be found in polynomial time. How-
ever, this paper demonstrates that determining whether an
instance with specified room prices admits a room envy-free
allocation is NP-hard (see Section VI). In Table I, we present
a summary of notations used in the paper.

IV. SOCIAL WELFARE MAXIMIZATION
In this section, first, we investigate the computational com-
plexity of finding an allocation that maximizes the social
welfare. Second, we propose a mixed-integer linear pro-
gramming formulation for computing the optimal allocation.
Third, we investigate the approximation algorithms for the
problem. Finally, we investigate the dual problem of social
welfare maximization.

A. COMPLEXITY ANALYSIS
Theorem 1: Finding an allocation that maximizes the social
welfare is NP-hard, even if only one room’s capacity is larger
than 1 and the other rooms’ capacities are all 1.

Proof: We prove the NP-hardness by a reduction from
the clique problem. Given an undirected graph G=(V, E) and
a positive integer k>1, the clique problem is to determine
whetherG has a set of kmutually adjacent vertices. The clique
problem is NP-complete [40]. Given an instance <G, k> of
the clique problem, we construct the corresponding instance
of the room allocation problem as follows:

Let n be the number of vertices in graphG. First, we create
n-k+1 rooms, where the capacity of room r1 is k and the
capacity of any other room is 1. We use < to represent the
room set. Second, we create an agent i for each vertex ui ∈V.
If (ui, uj)∈E, we set vi(j) = vj(i) = 1/2; otherwise, we set
vi(j) = vj(i) = 0. For each agent i and each room r∈ <,
we set vi(r) = 1/2. Moreover, we set bi = 1 for each agent
i and set pr = 0 for each room r. According to the settings,
each agent can be allocated to any room and the utility of an
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agent who is allocated to a room r∈ <\{r1} is 1/2. Because
at most k agents can be allocated to room r1, the maximum
utility that an agent can obtain is (k-1)/2+1/2. As a result,
the maximum social welfare of the constructed instance of
the room allocation problem does not exceed k(k-1)/2+n/2.
Let π∗ be the optimal allocation that maximizes the social
welfare.

The ⇐ direction: If SW(π∗)=k(k-1)/2+n/2, the utility of
any agent i who is allocated to room r1 must be (k-1)/2+1/2.
We use A1 to represent the agents who are allocated to
room r1. According to the preference setting mode, the cor-
responding vertices of the agents in A1 are mutually adjacent.
Then, the graph G has a clique of size k.
The ⇒ direction: If G has a set of k mutually adja-

cent vertices, we can find an allocation that has a social
welfare of k(k-1)/2+n/2 for the constructed instance of the
room allocation problem. The strategy is to allocate the
agents who correspond to the k mutually adjacent vertices
to room r1 and randomly allocate the remaining agents to
the other rooms. Based on the preference setting mode,
the utility of any agent who has been allocated to room r1 is
(k-1)/2+1/2 and the social welfare of the allocation is
k(k-1)/2+n/2. Because the maximum social welfare of the
constructed instance of the room allocation problem does
not exceed k(k-1)/2+n/2, the proposed allocation has the
maximum social welfare, i.e., SW(π∗)=k(k-1)/2+n/2.
Based on the above analyses, SW(π∗)=k(k-1)/2+n/2 if

and only if G has a set of k mutually adjacent vertices.
Then, we can determine whether G has a set of k mutually
adjacent vertices by finding the optimal allocation π∗ for the
constructed instance and comparing its social welfare with
k(k-1)/2+n/2.

In this paper, the � is used to indicate that the proof ends.

B. EXACT SOLUTION
Although the room allocation problem is NP-hard, it is feasi-
ble to compute the optimal allocation if the problem scale is
small. In this subsection, a mixed-integer linear programming
formulation is proposed for computing the optimal allocation,
where xir = 1 represents that agent i is allocated to room r;
otherwise xir = 0. The formulation is expressed as follows:

max
∑
i∈A

yi

s.t.
∑
r∈<

(xir · vi(r)+
∑
j∈A\{i}

zrij · vi(j))− yi ≥ 0 ∀i ∈ A (a)

∑
r∈<

xir ≤ 1 ∀i ∈ A (b)

xir · pr/cr ≤ bi ∀i ∈ A,∀r ∈ < (c)∑
i∈A

xir ≤ cr ∀r ∈ < (d)

zrij ≤ xir ∀i, j ∈ A, ∀r ∈ < (e)

zrij ≤ xjr ∀i, j ∈ A, ∀r ∈ < (f)

xir + xjr − zrij ≤ 1 ∀i, j ∈ A,∀r ∈ < (g)

yi ≥ 0 ∀i ∈ A (h)

xir , zrij ∈ {0, 1} ∀i, j ∈ A,∀r ∈ < (i)

In the formulation, yi is the lower bound of ui + pi for any
agent i∈A. Constraint (b) ensures that each agent is allocated
to at most one room. Constraint (c) ensures that the budget
constraints are satisfied. Constraint (d) ensures that the capac-
ity constraints of the rooms are satisfied. Constraints (e)–(g)
ensure that zrij = 1 if and only if xir = 1 and xjr = 1. These
constraints can be viewed as the linearization of zrij = xir · xjr
based on the McCormick inequalities [41].

Based on the mixed-integer linear programming formula-
tion, we can compute the optimal allocation using a standard
solver (e.g., Cplex) for mixed-integer linear programming.
However, because the problem is NP-hard, exponential time
is required for computing the optimal allocation in the worst
case unless P=NP. Thus, the mixed-integer linear program-
ming formulation is not applicable to large-scale instances.
Therefore, we consider designing approximation algorithms
for the social welfare maximization problem.

C. APPROXIMATION ALGORITHM
1) RESTRICTED CASE
The capacity of a room in a residential rental market typi-
cally does not exceed 4. Thus, we design an approximation
algorithm for the restricted case in which the capacity of each
room does not exceed a constant c∗ >0.
Theorem 2: If the capacity of each room does not exceed

a constant c∗ >0, there is a polynomial-time (c∗ + 2)/2 +
ε-factor approximation algorithm (with ε >0) for the social
welfare maximization problem.

Proof: The algorithm is presented as Algorithm 1. In the
algorithm, for each room r ∈ <, we enumerate all the feasible
allocation states. For each feasible allocation state, we create
a set that includes the related agents and room, and use the
social welfare of the allocation state (i.e., the utility sum of
the agents, including the room owner) as the set weight (Algo-
rithm 1, lines 1–8). Because the capacity of each room does
not exceed c∗, this process requires O(c∗mnc

∗

) time. Because
each room only has one allocation state and each agent is
allocated to one room or is not allocated in a feasible alloca-
tion, every feasible allocation corresponds to a collection of
disjoint sets. Then, the social welfare maximization problem
is equivalent to finding a collection of disjoint sets that has
the maximum weight sum among the candidate sets, which is
an instance of the weighted (c∗+1)-set packing problem [43].
For the set packing instance, the optimal solution can be
represented as a collection of disjoint sets that have positive
weights. Then, we remove all the sets that have nonpositive
weights from the candidate sets and obtain a new set packing
instance (Algorithm 1, line 9). The maximum weight sum of
disjoint sets of the new instance is the same as that of the
previous instance.

We use weighted nodes to represent the weighted sets in
the new instance and use edges to represent nonempty set
intersections. The weight of each node equals the weight

42972 VOLUME 7, 2019



Y. Li et al.: Room Allocation With Capacity Diversity and Budget Constraints

Algorithm 1 Set-Packing Based Algorithm (SPBA))
Require: A, <
Ensure: the allocation π
1: S← ∅
2: for each room r∈ < do
3: for each feasible allocation state AS of room r do
4: Create a set s that includes the agents and room

in AS
5: Set the weight of s as the social welfare of AS
6: S←S∪{s}
7: end for
8: end for
9: Remove all the sets with nonpositive weights from S
10: V← ∅
11: E← ∅
12: for each s∈S do
13: Create a node ns for s
14: Set the weight of ns as the weight of s
15: for each ns̄ ∈V do
16: if s∩s̄ 6= ∅ then // s̄ corresponds to ns̄
17: E←E∪{(ns, ns̄)} // Add edge (ns, ns̄) to E
18: end if
19: end for
20: V←V∪{ns}
21: end for
22: Adopt the Berman’s algorithm [42] to find an indepen-

dent set IS in the graph G=(V, E)
23: for each ns ∈IS do // s corresponds to ns
24: Allocate each agent i∈s to the room r∈s in π
25: end for
26: for each unallocated agent i do
27: πi← ∅

28: end for
29: return π

of the corresponding set (Algorithm 1, lines 10–21). Then,
we obtain an instance of the maximum-weight independent
set problem [42]. In the problem, the objective is to find an
independent set in which no two nodes are adjacent and the
node weight sum is maximal. Because the element number of
each set is less than c∗ + 2, the obtained graph is (c∗ + 2)-
claw free [42]. Berman [42] proposed an algorithm that can
find an independent set of which the node weight sum is at
least 1/((c∗ + 2)/2 + ε) of the optimal value in polynomial
time. Then, based on the algorithm of Berman [42] and the
corresponding relations between the nodes and sets, we can
find a collection of disjoint sets of which the set weight sum
is at least 1/((c∗ + 2)/2+ ε) of the optimal value for the new
set packing instance in time that is polynomial in c∗mnc

∗

.
If an agent belongs to one selected set, we allocate it to the
room that belongs to the same set (Algorithm 1, lines 22–25).
Because the weight of each set equals the utility sum of the
agents who are related to the set, the utility sum of the agents
who belong to the selected sets and the room owner is at

least 1/((c∗+2)/2+ε) of themaximum social welfare. Finally,
if an agent i is not included in any selected set, we set πi = ∅
(Algorithm 1, lines 26–28). Then, the utility of each agent
who is not included in any selected set is 0. Because the
number of selected sets is at most m, the allocation process
in the last phase requires O(mn) time. Based on the above
analyses, the proposed algorithmwill terminate in time that is
polynomial in c∗mnc

∗

. Because c∗ is a constant, the proposed
algorithm is a polynomial-time algorithm for the restricted
case. Moreover, the proposed algorithm can be regarded as
a constant-factor approximation algorithm for the restricted
case.
The capacity of a room in a residential rental market

typically does not exceed 4. Thus, Algorithm 1 is usually a
3+ε-factor approximation algorithm in real tenant allocation.
Theorem 3: There is no polynomial-time c∗/2-factor

approximation algorithm for the social welfare maximization
problem unless P=NP, where c∗ is the capacity upper-bound
of each room.

Proof: Inspired by [1], we prove the hardness of approx-
imation by a reduction from the tripartite triangle partition-
ing problem. Let G=(X∪Y∪Z, E) be a tripartite graph with
|X| = |Y| = |Z| =n, where X, Y and Z are mutually
disjoint. The tripartite triangle partitioning problem is to
determine whether the graph can be partitioned into n vertex-
disjoint triangles. The problem has been demonstrated to
be NP-complete [44]. Given an instance G=(X∪Y∪Z, E) of
the tripartite triangle partitioning problem, we construct the
corresponding instance of the room allocation problem as
follows:

We create an agent i for each vertex ui ∈X∪Y, and create
a room rz for each vertex uz ∈Z. We set the capacity of
each room to 2 (i.e., c∗ = 2). For two vertices ui ∈X∪Y
and uz ∈Z, if (ui, uz)∈E, set vi(rz) = 1; otherwise, set
vi(rz) = 1/2. For two vertices ui, uj ∈X∪Y, if (ui, uj)∈E,
set vi(j) = vj(i) = 1/2; otherwise, set vi(j) = vj(i) = 1/4.
We set bi = 1/2 for each agent i and set pr = 1 for
each room r. According to the settings, each agent can be
allocated to any room. Because the valuation function of
each agent is positive, the optimal allocation must allocate
each agent to one room and can be represented as n disjoint
triples. Each triple (i, j, r) denotes that agents i and j are
allocated to room r. For a triple (i, j, r), the social welfare
is ui + uj + pr = vi(r) + vi(j) + vj(i) + vj(r) ≤ 3,
where the equality holds if and only if the corresponding
vertices of i, j and r can form a triangle in the graph G.
We use OPT to represent the optimal allocation of the room
allocation instance. Then, SW(OPT) is 3n if and only if the
graph G can be partitioned into n vertex-disjoint triangles.
In the room allocation instance, the capacity of each room is 2
(i.e., c∗ = 2). Thus, if we have a polynomial-time c∗/2-factor
approximation algorithm for the social welfare maximization
problem, the algorithm can find the allocation that maximizes
the social welfare in polynomial time for the constructed
instance of room allocation. Then, we can determine whether
the graph G can be partitioned into n vertex-disjoint triangles
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in polynomial time by comparing the social welfare of the
solution that is output by the approximation algorithm for the
constructed instance with 3n.

According to Theorem 3, the approximation ratio of the
best approximation algorithm is larger than c∗/2. Thus,
the approximation ratio of the algorithm in Theorem 2
(Algorithm 1) is very close to that of the best approximation
algorithm.

2) GENERAL CASE
In practice, the proposed room allocation model also applies
to distributed application scenarios, e.g., file replica place-
ments [45] in a geo-distributed system. In the scenario of
file replica placements, we use rooms to represent the files
and agents to represent the computers. Moreover, we use
agent valuations to model the distances that satisfy the tri-
angle inequality among the computers. Each file (room) has
c replicas (capacity). Each computer (agent) manages one
replica. We search for a placement such that the distance
(agent valuation) sum among the computers that manage
the replicas of the same file is maximum. The placement
enables the access cost of each file to be moderate for each
computer and makes the file system reliable under network
attacks.

Algorithm 2 Local-Search Based Algorithm (LSBA)
Require: A, <
Ensure: the allocation π
1: for each room r∈ < do
2: Randomly allocate cr unallocated agents to r in π
3: end for
4: while there are two agents i and j that can increase SW(π )

by swapping their room allocations do
5: Swap the room allocations between agents i and j
6: end while
7: for each agent i∈A do
8: if bi < pπi /cπi or SW(π ) is larger when πi=∅ then
9: πi← ∅

10: end if
11: end for
12: return π

Although the approximation ratio of the algorithm that
is described in the proof of Theorem 2 is (c∗ + 2)/2 + ε,
the enumeration process is costly and not applicable to the file
replica placements [45] in a geo-distributed system, where
the number of deployed replicas of each file is relatively
large and the distances among the computers satisfy the
triangle inequality. Motivated by the application scenario of
file replica placements, we propose a faster approximation
algorithm for the general case in which the capacity of each
room is not bounded by a constant. The algorithm is presented
as Algorithm 2. In the algorithm, first, we randomly allocate
each agent to a room and obtain an allocation π (Algorithm 2,
lines 1–3). Then, we adopt local search to improve the
allocation until we cannot increase SW(π ) by swapping the

room allocations of two agents (Algorithm 2, lines 4–6).
Third, if an agent i does not satisfy the budget con-
straint or SW(π ) is larger when πi = ∅, we set πi to ∅ (Algo-
rithm 2, lines 7–11). The output allocationπ of Algorithm 2 is
a feasible allocation. In the algorithm, allocating agent i to
a room r with bi < pr/cr is considered equivalent to not
allocating agent i. Therefore, the operations in lines 7–11
of Algorithm 2 do not decrease the social welfare. For the
analysis, we define the roommate valuation w(i, j) between
two agents i and j as follows:

w(i, j) = vi(j)+ vj(i)

Theorem 4: If the valuation function of each agent is non-
negative and the agent valuations satisfy the triangle inequal-
ity that for any three agents i, j and k, w(i, k)≤w(i, j)+w(j, k),
Algorithm 2 is a 2C-factor approximation algorithm for the
social welfare maximization problem in which each agent has
sufficient budget and C is the capacity upper-bound of each
room.

Proof: According to the definition, the social welfare
of an allocation only depends on agent valuations for the
allocated rooms and roommates. Because each agent has suf-
ficient budget and the valuation function of each agent is non-
negative, the optimal allocation should allocate each agent to
a room. We use OPT to represent the optimal allocation in
which each agent is allocated to a room and use Vr (OPT ) (or
Vr (π )) to represent the subset of the agents that are allocated
to room r in OPT (or π ). Let V1 = Vr (OPT ) ∩ Vr (π ) ={i1,
. . . , il} (0≤l≤ cr ). Without loss of generality, we assume
that Vr (OPT ) = V1∪{il+1, il+2, . . . , ik , . . . , ih} (1≤h=
cr ≤C) and Vr (π ) = V1∪{jl+1, jl+2, . . . , jh}. Moreover,
we assume that ik ∈ Vr (OPT )-V1 is allocated to room rkj ,
i.e., ik ∈ V k

j (π ) ={ik , i
′

2, . . . , i
′
L} in π . We use Wr (V’) to

represent the social welfare of the allocation state in which
the agents that belong to V’ are allocated to room r, namely,
Wr (V’)=

∑
i∈V ’(vi(r)+

∑
j∈V ’\{i} vi(j)).

Based on the design of Algorithm 2, when the algorithm
terminates, we conclude that no two agents i and j can
increase SW(π ) by swapping their room allocations. Then,
we have

Wr (Vr (π )− {jl+1} ∪ {ik})+Wrkj
(V k

j (π )− {ik} ∪ {jl+1})

≤ Wr (Vr (π ))+Wrkj
(V k

j (π ))

Because the agent valuations are nonnegative, we have

vik (r)+
l∑

k ′=1

w(ik , ik ′ )+
h∑

k ′=l+2

w(ik , jk ′ )

+

h−1∑
k ′=l+2

h∑
u=k ′+1

w(jk ′ , ju)

≤ Wr (Vr (π )− {jl+1} ∪ {ik})

≤ Wr (Vr (π ))+Wrkj
(V k

j (π ))
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Because ik can be any agent in Vr (OPT )-V1, we have the
following inequalities:

vil+1 (r)+
l∑

k ′=1

w(il+1, ik ′ )+
h∑

k ′=l+2

w(il+1, jk ′ )

+

h−1∑
k ′=l+2

h∑
u=k ′+1

w(jk ′ , ju)

≤Wr (Vr (π ))+Wr l+1j
(V l+1

j (π ))

.

.

vih (r)+
l∑

k ′=1

w(ih, ik ′ )+
h∑

k ′=l+2

w(ih, jk ′ )

+

h−1∑
k ′=l+2

h∑
u=k ′+1

w(jk ′ , ju)≤Wr (Vr (π ))+Wrhj
(V h

j (π ))

For each agent i∈ V1, we have

vi(r)+
l−1∑
k ′=1

l∑
u=k ′+1

w(ik ′ , iu) ≤ Wr (Vr (π ))

Based on the above inequalities, we have

h∑
k ′=1

vik′ (r)+
l∑

k ′=1

h∑
u=k ′+1

w(ik ′ , iu)+
h∑

k ′=l+1

h∑
u=l+2

w(ik ′ , ju)

+(h− l)
h−1∑

k ′=l+2

h∑
u=k ′+1

w(jk ′ , ju)

≤ hWr (Vr (π ))+
h∑

k ′=l+1

Wrk
′

j
(V k ′

j (π )) (1)

Next, we obtain the following inequality via mathematical
induction.
h−1∑

k ′=l+1

h∑
u=k ′+1

w(ik ′ , iu)

≤

h∑
k ′=l+1

h∑
u=l+2

w(ik ′ , ju)+(h− l)
h−1∑

k ′=l+2

h∑
u=k ′+1

w(jk ′ , ju) (2)

(i) l≤h≤l+1: Both sides of the inequality are equal to 0.
Thus, the inequality is valid.
(ii) h=l+2: The inequality is w(il+1, il+2) ≤ w(il+1, jl+2)
+w(jl+2, il+2). Because the agent valuations satisfy the tri-
angle inequality, we conclude that Inequality (2) is valid for
h=l+2.
(iii) We assume that Inequality (2) is valid for h=k≥l+2,

namely, we have

k−1∑
k ′=l+1

k∑
u=k ′+1

w(ik ′ , iu)

≤

k∑
k ′=l+1

k∑
u=l+2

w(ik ′ , ju)+(k − l)
k−1∑

k ′=l+2

k∑
u=k ′+1

w(jk ′ , ju) (3)

Based on the triangle inequality relationships, we have

w(il+1, ik+1) ≤ w(il+1, jk+1)+ w(ik+1, jk+1),

and for ∀u∈[l+2, k],

w(iu, ik+1) ≤ w(iu, jk+1)+ w(jk+1, ju)+ w(ju, ik+1)

Based on the above inequalities, we have

k∑
u=l+1

w(ik+1, iu)

≤

k+1∑
u=l+1

w(iu, jk+1)+
k∑

u=l+2

w(ik+1, ju)+
k∑

u=l+2

w(jk+1, ju) (4)

Combining Inequality (3) and Inequality (4) yields

k∑
k ′=l+1

k+1∑
u=k ′+1

w(ik ′ , iu)≤
k+1∑

k ′=l+1

k+1∑
u=l+2

w(ik ′ , ju)+
k∑

u=l+2

w(jk+1, ju)

+(k − l)
k−1∑

k ′=l+2

k∑
u=k ′+1

w(jk ′ , ju)

Thus, we conclude that

k∑
k ′=l+1

k+1∑
u=k ′+1

w(ik ′ , iu)

≤

k+1∑
k ′=l+1

k+1∑
u=l+2

w(ik ′ , ju)+(k+1−l)
k∑

k ′=l+2

k+1∑
u=k ′+1

w(jk ′ , ju)

Namely, Inequality (2) is valid for h=k+1. Based on the
above analyses, we conclude that Inequality (2) is valid for
any h≥l. Then, combining Inequality (1) and Inequality (2),
we have that for ∀l∈[0, h],

Wr (Vr (OPT )) =
h∑

k ′=1

vik′ (r)+
h−1∑
k ′=1

h∑
u=k ′+1

w(ik ′ , iu)

≤ hWr (Vr (π ))+
h∑

k ′=l+1

Wrk
′

j
(V k ′

j (π ))

Thus, we conclude that

SW (OPT ) =
m∑
r=1

Wr (Vr (OPT ))

≤

m∑
r=1

(hrWr (Vr (π ))+
hr∑

k ′=lr+1

Wrk
′

j
(V k ′

j (π )))

For an agent i ∈ Vr (OPT ), we refer to r as its target room.
For an agent ik ∈ Vr (OPT )-V1, we refer to rkj as its stay room.
In the above inequality, a room can be the target room of at
most C agents and the stay room of at most C agents. Thus,

SW (OPT ) ≤ 2C
m∑
r=1

Wr (Vr (π )) = 2CSW (π )
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Then, we conclude that Algorithm 2 is a 2C-factor approxi-
mation algorithm for the restricted case.
Algorithm 2 is not guaranteed to terminate in polynomial

time. Thus, we discuss how to design a polynomial-time
approximation algorithm according to Algorithm 2. Inspired
by [43], we consider only executing the swaps that can
increase SW(π ) by at least W’/K (K= αCm and α >1).
The value of W’ is computed based on Algorithm 3 and the
running time is O(n3).

Algorithm 3 Compute the Value of W’
Require: A, <
Ensure: W’
1: W’←-1
2: for each i∈ A do
3: V’=< jρ , ρ ≥1>←sort j∈ A\{i} by decreasing vi(j)
4: for each r∈ < do //Compute the maximum ui+pi
5: if bi ≥ pr /cr then
6: Wi← vi(r)
7: n1←1
8: for ρ=1 to n-1 do
9: if n1 ≥ cr then
10: break
11: end if
12: if bjρ ≥ pr /cr and vi(jρ) >0 then
13: Wi←Wi+vi(jρ)
14: n1← n1+1
15: end if
16: end for
17: if Wi >W’ then W’←Wi
18: end if
19: end for
20: end for
21: return W’

We use i∗ to represent the agent that has the maximum
ui+pi inOPT. Then, we have ui∗ (OPT )+pi∗ ≥SW(OPT )/n.
In Algorithm 3, we let W’ be the maximum ui+pi that
an agent i can obtain in a feasible allocation. As a result,
W’≥ ui∗ (OPT ) + pi∗ ≥SW(OPT )/n. Because the agent
valuations are nonnegative, we have SW(π ) ≥0 and W’≤
SW (OPT ) after running the loop of lines 1-3 in Algorithm 2.
Now, we reset the loop condition of line 4 in Algorithm 2 to
‘‘there are two agents i and j that can increase SW(π ) by
at least W’/K via swapping their room allocations’’. Then,
each iteration increases SW(π ) by at least W’/K. Because
W’≥SW(OPT )/n and 0≤SW(π ) ≤SW(OPT ), the modified
algorithm executes at most Kn iterations. Because each iter-
ation requires O(n3) time, the running time of the modified
algorithm is O(Kn4).
Based on the new loop condition, when the modified

algorithm terminates, we conclude that no two agents i and
j can increase SW(π ) by at least W’/K via swapping their
room allocations. Then, for an agent ik that is allocated to

room r in OPT but is allocated to room rkj in π , we have

Wr (Vr (π )−{jl+1} ∪ {ik})+Wrkj
(V k

j (π )−{ik} ∪ {jl+1})

< Wr (Vr (π ))+Wrkj
(V k

j (π ))+
W ’
K

Then, based on the analyses that are similar to the proof of
Theorem 4 and K= αCm (α >1), we conclude that

SW (OPT ) =
m∑
r=1

Wr (Vr (OPT )

<

m∑
r=1

(hrWr (Vr (π ))+
hr∑

k ′=lr+1

Wrk
′

j
(V k ′

j (π ))

+
hrW ’
K

)

≤ 2C
m∑
r=1

Wr (Vr (π ))+
CmW ’
K

= 2CSW (π )+
W ’
α

Because W’≤SW(OPT ), we have SW(OPT ) ≤ 2C(1+1/
(α-1))SW(π ). Let α = 2C/ε+1. Then, we have the following
conclusion:
Corollary 1: The modified algorithm is a 2C+ε-factor

approximation algorithm (with ε >0) for the restricted case
of the social welfare maximization problem in Theorem 4 and
the time complexity is O(mn6/ε).

Based on the proof of Theorem 3, we know that there
is no polynomial-time C/2-factor approximation algorithm
for the social welfare maximization problem, even if the
valuation function of each agent is nonnegative and the agent
valuations satisfy the triangle inequality, unless P=NP. Then,
the approximation ratio of the modified algorithm does not
exceed 4+ε (ε > 0) times the best approximation ratio.
Because the application scenario of file replica placements
in geo-distributed systems satisfies the constraint conditions
in Theorem 4, the approximation result of the modified
algorithm applies to the application scenario of file replica
placements in geo-distributed systems.

D. DUAL PROBLEM OF SOCIAL WELFARE MAXIMIZATION
If we use vertices to represent the agents and rooms and
use weighted edges to represent the valuation relationships
among the agents and rooms, we obtain an undirected graph
with real-number edge weights. Then, finding the allocation
that maximizes the social welfare can be regarded as finding
the minimum multiway cut under the capacity constraints
of the room vertices. Thus, when each agent has sufficient
budget and is required to be allocated to one room, finding
the allocation that maximizes the social welfare can also be
modeled as the following problem, which is the dual problem
of social welfare maximization:
Definition 3 (Multiway Cut With Size Constraints): Given

an undirected graph G=(V, E) (|V| =n) with real-number
edge weights, and a set T = {t1, t2, . . . , tm} ⊆ V of m capac-
itated terminals, the objective is to find a minimum weight
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edge subset whose removal can partition V into m disjoint
subsets V1, V2, . . . , Vm (i.e., ∪1≤i≤mVi =V) with ti ∈Vi and
|Vi| = ci (ci ≥1). The weight of an edge subset is equal to
the weight sum of the edges that belong to the subset. The
capacity of terminal ti is ci-1.
We refer to an edge subset whose removal can partition

V into feasible disjoint vertex subsets as a feasible multi-
way cut. The application scenarios of the proposed problem
include assigning tasks to multiple capacitated computing
terminals [46] while minimizing the communication cost.

The proposed problem is closely related to the classical
multiway cut problem [47]–[54], where the objective is to
find a minimum-weight edge subset whose removal can dis-
connect the k terminals of an undirected graph from each
other. Themain difference between the proposed problem and
the multiway cut problem is that the proposed problem has
definite constraints on the cardinality of each disjoint subset,
whereas the multiway cut problem does not. It is well-known
that the multiway cut problem has a 2–2/k-factor approxima-
tion algorithm [51]. However, we show that the multiway cut
problem with size constraints is hard to approximate.
Theorem 5: For any constant ρ >0, there is no polynomial-

time ρ-factor approximation algorithm for the multiway cut
problem with size constraints, even if the edge weights are
nonnegative, unless P=NP.
Proof: Inspired by [55], we demonstrate the hardness of

approximation by a reduction from the 3-partition problem.
In the 3-partition problem, a multiset S={I1, I2, . . . , I3k}
of 3k positive integers is specified, each of which is strictly
betweenB/4 andB/2, namely, for any Ij ∈S,B/4< Ij <B/2 and
the sum of the integers in S is kB.We are required to determine
whether S can be partitioned into k triples S1, S2, . . . , Sk
such that the sum of the integers in each triple is equal to B.
The problem is strongly NP-complete [56]. This means that
the problem remains NP-complete when all of its numerical
parameters, including the integers in S, the k and B, are
bounded by a polynomial in the length of the input.

Given an instance <S, k, B> (k>1) of the 3-partition
problem with polynomially bounded parameters, we create
a circle that contains Ij nonterminal vertices for each integer
Ij ∈S and set the weight of each edge in the circle as ρ.
We refer to such circles as integer circles. After that, for each
pair of non-terminal vertices that do not connect with each
other, we add an edge between them and set the edge weight
as 0. We refer to the edges that connect two nonterminal
vertices as nonterminal edges. Finally, we create k terminal
vertices and for each terminal vertex ti, we set the correspond-
ing ci as B+1. We add an edge between each pair of terminal
vertices and set the edge weight as 0. We refer to the edges
that connect two terminal vertices as terminal edges. For each
terminal vertex and each nonterminal vertex, we add an edge
between them and set the edgeweight as 1/(k(k-1)B).We refer
to the edges of this type as mixed edges. Then, we obtain
an undirected graph G. Because all the numerical parameters
of the instance are polynomially bounded, the construction
process of the graph G requires only polynomial time.

Suppose that we have a ρ-factor approximation algorithm
for the multiway cut problem with size constraints. If the
instance <S, k, B> has a feasible partitioning S1, S2, . . . , Sk ,
we allocate the circle vertices that correspond to the integers
in Si and terminal vertex ti to the same subset for each triple
Si (1≤i≤k). Then, we obtain a feasible cut that does not
include any nonterminal edge with positive weight. Because
each nonterminal vertex has k mixed edges and is allocated
to a vertex subset that has only one terminal vertex, it has
k-1mixed edges in a feasible cut. Because there are kB nonter-
minal vertices, a feasible cut has exactly k(k-1)Bmixed edges.
Since theweights of terminal edges andmixed edges are 0 and
1/(k(k-1)B) respectively, the weight of the minimum-weight
feasible multiway cut is 1. Then, the ρ-factor approximation
algorithm will yield a feasible multiway cut with a weight of
at most ρ.

Because B/4< Ij <B/2 for any Ij ∈S, an integer subset
has exactly three integers if the integer sum of the subset
is B. If the instance <S, k, B> does not have a feasible
partitioning, at least one integer circle is partitioned into
multiple parts while dividing the vertex set. Then, any feasible
multiway cut on the graphG includes at least one nonterminal
edge with weight ρ and exactly k(k-1)B mixed edges. Thus,
the weight of the minimum-weight feasible multiway cut is
at least 1+ ρ. Namely, the ρ-factor approximation algorithm
will yield a feasible multiway cut with a weight of at least
1 + ρ in this case. Then, we can determine whether a spec-
ified instance of the 3-partition problem with polynomially
bounded parameters has a feasible partitioning in polynomial
time by comparing the weight of the solution that is output
by the approximation algorithm for the constructed graph
with ρ.

V. SOCIAL WELFARE MAXIMIZATION WITH THE
MAXIMUM TRADE VOLUME CONSTRAINT
When there are insufficiently many low-cost rooms, we can-
not always ensure that every agent is allocated to a room.
In this scenario, the room owner or the rental intermediary
typically hopes to maximize the trade volume, which equals
the sum of the agents’ payments. This is because the profit of
the room owner or the rental intermediary is positively related
to the trade volume. Although the trade volume is included
in the calculation of social welfare, the allocation that max-
imizes the social welfare does not ensure the maximization
of the trade volume (see Example 1). It is also desired to
find an allocation with larger social welfare for the room
owner or the rental intermediary. This is because an allocation
with larger social welfare typically has a higher level of tenant
satisfaction and contributes to the establishment of long-term
leasehold relationships between the room owner and tenants.
Therefore, we investigate how to find the allocation that
maximizes the social welfare among the allocations that have
the maximum trade volume. In this section, first, we discuss
how to find an allocation that maximize the trade volume.
Second, we design a heuristic algorithm for the social welfare
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FIGURE 2. An example of room allocation.

maximization problem with the maximum trade volume con-
straint.
Example 1: Let A= {a1, a2, a3, a4} and < ={r1, r2} with

ba1 = ba2 = 2, ba3 = ba4 = 1, pr1 = 4 and pr2 = 2. The
capacity of each room is 2. The valuation relationships are
described by the weighted edges of the graph in Fig. 2. If there
is no edge between two vertices, the valuations between
them are 0. The weight of edge (a2, a3) denotes va2 (a3)+
va3 (a2)=2. The allocation that corresponds to the maximum
trade volume is (r1, r1, r2, r2), which allocates a1, a2 to r1 and
a3, a4 to r2. The social welfare and trade volume are both 6.
However, the allocation that maximizes the social welfare is
(r1, r2, r2, ∅), which allocates a1 to r1, a2, a3 to r2 and does
not allocate a4. The social welfare is 7, but the trade volume
is 4<6.
Theorem 6: The allocation that maximizes the trade vol-

ume can be found in O(n3) time.
Proof: Given an instance <A, < > of the room alloca-

tion problem, we create one agent vertex ui for each agent i∈A
and create cr room vertices ur1 , ur2 , . . . , urcr for each room
r∈<. After that, we add an edge between each agent vertex
and room vertex. If bi ≥ pr /cr , we set the weight of each
edge between agent vertex ui and each room vertex of room
r to pr /cr ; otherwise, we set the weight to 0. Then, we obtain
a bipartite graph G=(VA ∪ V<, E) with |VA| = |V<| =n,
where VA is the set of agent vertices and V< is the set of room
vertices.

For any feasible allocation π =(π1, π2, . . . , πn) with max-
imum trade volume T, we can construct a perfect matching
whose weight sum is T as follows: (i) for each agent i with
πi 6= ∅, match agent vertex ui with one nonmatched room
vertex of room πi and (ii) for each agent j with πj = ∅,
match agent vertex uj with one nonmatched room vertex.
According to the weight setting strategy, the weight sum
of the matching edges in step (i) is equal to T. Because
π is a feasible allocation that maximizes the trade volume,
the budget of any agent j with πj = ∅ must be smaller than
the bed rent of any room that has remaining space in step
(ii); otherwise, we can find a feasible allocation with a trade
volume that exceeds T. Then, the weight sum of the matching
edges in step (ii) is equal to 0. Therefore, the weight sum of
the constructed matching is T. Based on the above analyses,

we conclude that the weight sum of the maximum-weight
perfect matching of the graph G is not smaller than T.

For any perfect matchingM of the graph G that has weight
sum T’, we can construct a feasible allocation that has trade
volume T’ as follows: for each edge (ui, urk )∈M, if the weight
is equal to pr /cr , allocate agent i to room r; otherwise, do not
allocate agent i to any room. According to the weight setting
strategy, we conclude that the trade volume of the constructed
allocation is T’. Based on this property, we conclude that the
weight sum of the maximum-weight perfect matching of the
graph G is not larger than T. Combining the previous analy-
ses, we conclude that the weight sum of the maximum-weight
perfect matching of the graph G equals T. Then, we find the
maximum-weight prefect matching of the graphG. After that,
via the aforementioned construction method, we can find a
feasible allocation that has trade volume T.

The constructed process of the graph G requires O(n2)
time. The maximum weight perfect matching can be found
via the Hungarian method [57] in O(n3) time. Based on
the maximum-weight perfect matching, we can construct a
feasible allocation that has trade volume T in O(n) time.
Therefore, we conclude that the allocation that maximizes the
trade volume can be found in O(n3) time.
Theorem 7: It is NP-hard to find the allocation that maxi-

mizes the social welfare among the allocations that have the
maximum trade volume.
The proof is similar to that of Theorem 1. Next, we investigate
the inapproximability of the problem.
Theorem 8: For any constant ρ >0, there is no polynomial-

time ρ-factor approximation algorithm for the social welfare
maximization problem with the maximum trade volume con-
straint unless P=NP.
Proof: Let <G=(V, E), k> (k>1) be an instance of the

clique problem, where the graph G has n vertices. First,
we create n-k+1 rooms, where the capacity of room r1 is k
and the capacity of any other room is 1. Let< denote the room
set. Second, we create an agent i for each vertex ui ∈V. We set
vi(j) = vj(i) = 1/2 if (ui, uj)∈E; otherwise, we set vi(j) =
vj(i) = −k2-n/2. For each agent i and each room r∈ <, we set
vi(r) = 1/2. Moreover, we set bi = 1 for each agent i and set
pr = 1/2 for each room r. Then, an allocation that maximizes
the trade volume must allocate each agent to one room. If the
graph G has a set of k mutually adjacent vertices, the max-
imum social welfare of an allocation that has the maximum
trade volume is k(k-1)/2+n/2>0. Conversely, if the graph G
does not have a set of kmutually adjacent vertices, at least two
agents i and j with vi(j) = vj(i) = −k2-n/2 are allocated to
room r1. Thus, the maximum social welfare of an allocation
that has the maximum trade volume must be smaller than 0.
Then, if we have a polynomial-time ρ-factor approximation
algorithm (with ρ>0) for the social welfare maximization
problem with the maximum trade volume constraint, we can
determine whetherG has a set of kmutually adjacent vertices
in polynomial time by comparing the social welfare of the
solution that is output by the approximation algorithm for the
constructed instance with 0.
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Corollary 2: If each agent has sufficient budget and is
required to be allocated to one room, there is no polynomial-
time ρ-factor approximation algorithm (with ρ >0) for the
social welfare maximization problem unless P=NP.
According to Theorem 8, it is impossible to design a

polynomial-time approximation algorithm that has a positive
approximation ratio for the general case of the social welfare
maximization problem with the maximum trade volume con-
straint unless P=NP. Therefore, we study the approximation
algorithm for a restricted case that is often encountered in real
applications.

In practice, each room for rent has a use value and can
satisfy the residential demand of a tenant agent. Therefore,
we assume that for each agent i and each room r, vi(r) >0
(termed as hypothesis H1). In an area of a city, the bed rent
of a room is typically positively related to the comfortable
and convenient levels of the room. Based on this observation,
we assume that for each agent i, vi(r) ≥ vi(r̄) if pr/cr >
pr̄/cr̄ (termed as hypothesisH2). In addition, we assume that
the mutual valuations among the agents are nonnegative [1],
[2] and the capacity of each room does not exceed a constant
c∗ >0 (termed as hypothesis H3). Aiming at this restricted
case, we propose a 2c∗(1+1/β)-factor approximation algo-
rithm that is presented as Algorithm 4, where β is the largest
positive number that can ensure vi(r) ≥ βc∗vi(j) for any agent
i, j∈A and any room r ∈ <. According to the proof of Theo-
rem 3, the restricted case of the social welfare maximization
problem with the maximum trade volume constraint is still
NP-hard.

Algorithm 4 Local-Search Based Algorithm for Social
Welfare Maximization Problem With the Maximum Trade
Volume Constraint (LSBAMC)
Require: A, <
Ensure: the allocation π
1: Find an allocation π that maximizes the trade volume

using the algorithm in the proof of Theorem 6
2: for each agent i∈A do
3: if πi=∅ then
4: Allocate it to one room with residual space
5: end if
6: end for
7: while there is an allocation swap (i, j) in π that can

increase SW(π ) without decreasing the trade volume do
8: Swap the room allocations between agents i and j
9: end while
10: for each agent i∈A do
11: if bi < pπi /cπi then
12: πi← ∅

13: end if
14: end for
15: return π

In a real rental market, the tenancy periods of tenant agents
are typically indeterminate and diverse, leading to dynamic
roommate relationships. By contrast, the room leasehold

relationship is relatively stable for a tenant agent and a tenant
agent can determine the tenancy period. Therefore, a ten-
ant agent typically assigns higher valuations for rooms with
respect to other tenant agents. Since the capacity of a room
in a residential rental market is typically small, β is usually a
relatively large positive number.
Theorem 9: Algorithm 4 is a 2c∗(1+1/β)-factor approxi-

mation algorithm for the restricted case of the social welfare
maximization problem with the maximum trade volume con-
straint in which hypotheses H1, H2 and H3 are satisfied.

Proof: In Algorithm 4, first, we find an allocation π
that maximizes the trade volume using the algorithm in the
proof of Theorem 6 (Algorithm 4, line 1). Second, if an agent
i has not been allocated to a room, we randomly allocate
it to a room with residual space (Algorithm 4, lines 2–6).
Third, we adopt local search to improve the allocation until
we cannot increase SW(π ) by swapping the room allocations
of two agents while ensuring the trade volume does not
decrease (Algorithm 4, lines 7-9). Finally, if an agent i does
not satisfy the budget constraint, we set πi to ∅ (Algorithm 4,
lines 10-14). The final allocation π of Algorithm 4 has the
maximum trade volume. In the algorithm, allocating agent
i to a room r with bi < pr/cr is considered equivalent to
not allocating agent i. Then, the operations in lines 2-6 and
lines 10-14 of Algorithm 4 do not change the social welfare
and the trade volume. Moreover, any feasible allocation that
maximizes the trade volume can be represented as m dis-
joint sets, which include all the agents and rooms. Each set
(i, i2, . . . , icr , r) denotes that agents i, i2, . . . , icr are allocated
to room r.

Let OPT be the m disjoint sets that correspond to the
optimal allocation and π ′ be the m disjoint sets that corre-
spond to allocation π . Without loss of generality, we assume
that agents i, i2, . . . , icr are allocated to room r in OPT.
In π ′, agents i, j2, . . . , jcr̄ are allocated to room r̄ and agents
i′, i′2, . . . , i

′
cr are allocated to room r. We use i−r̄ to represent

the set of agents that are allocated to room r̄ and do not
include agent i in π ′. If bi < pr̄/cr̄ , the social welfare
SW(i, i−r̄ , r̄) of set (i, i−r̄ , r̄) is equal to that of (∅, i−r̄ , r̄),
i.e., ui + pi = 0. According to the previous assumption,
SW(i, i−r̄ , r̄) ≥0 for any set (i, i−r̄ , r̄) and SW(π ) ≥0 at any
time.We assume that agent i′ has themaximumbudget among
the agents in room r. If bi < pr/cr , we have ui + pi = 0
in OPT, which does not exceed SW(i, i−r̄ , r̄). If bi ≥ pr/cr ,
we have ui + pi >0 in OPT. If agent i is allocated to r in π ′

(i.e., r̄ =r) and bi ≥ pr/cr , vi(r) ≤SW(i, i−r̄ , r̄)) because
the valuation function of each agent is nonnegative. Next,
we mainly analyze the scenario in which bi ≥ pr/cr and
r̄ 6=r.
Case 1: bi′ < pr̄/cr̄ and bi′ ≥ pr/cr : If bi <

pr̄/cr̄ , swapping the room allocations between agent i and
i′ does not decrease the trade volume. However, Algo-
rithm 4 does not swap the room allocations between agents i
and i′ prior to its termination. We conclude that SW(i, i′−r , r)
+SW(i′, i−r̄ , r̄) ≤SW(i′, i′−r , r) +SW(i, i−r̄ , r̄). Because the
valuation function of each agent is nonnegative, we have
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vi(r) ≤SW (i, i′−r , r) ≤SW(i′, i′−r , r)+SW(i, i−r̄ , r̄). If bi ≥
pr̄/cr̄ , then bi ≥ pr̄/cr̄ > bi′ ≥ pr/cr . Because the
room valuation of each agent i is positively related to the
bed rent of a room and the valuation function of each agent
is nonnegative, we have vi(r) ≤ vi(r̄) ≤SW(i′, i′−r , r)+
SW(i, i−r̄ , r̄).
Case 2: bi′ < pr̄/cr̄ and bi′ < pr/cr : We must have

bi ≥ pr̄/cr̄ and pr̄/cr̄ ≥ pr/cr . This is because if bi <
pr̄/cr̄ or pr̄/cr̄ < pr/cr , we can increase the trade volume by
swapping the room allocations between agents i and i′, which
is in contradiction with that allocation π has the maximum
trade volume. Because the room valuation of each agent
i is positively related to the bed rent of a room and the
valuation function of each agent is nonnegative, we have
vi(r) ≤ vi(r̄) ≤SW(i′, i′−r , r)+SW(i, i−r̄ , r̄) if pr̄/cr̄ > pr/cr .
If pr̄/cr̄ = pr/cr , swapping the room allocations between
agent i and i′ does not decrease the trade volume. Because
Algorithm 4 does not swap the room allocations between
agents i and i′ prior to its termination and the valuation
function of each agent is nonnegative, we conclude that
vi(r) ≤SW(i, i′−r , r) ≤SW(i′, i′−r , r)+SW(i, i−r̄ , r̄).
Case 3: bi′ ≥ pr̄/cr̄ : We must have bi ≥ pr̄/cr̄ and bi′ ≥

pr/cr . This is because if bi < pr̄/cr̄ or bi′ < pr/cr , we can
increase the trade volume by swapping the room allocations
between agents i and i′, which is in contradiction with that
allocation π has the maximum trade volume. Then, swapping
the room allocations between agent i and i′ does not decrease
the trade volume. Because Algorithm 4 does not swap the
room allocations between agents i and i′ prior to its termina-
tion and the valuation function of each agent is nonnegative,
we conclude that vi(r) ≤SW(i, i′−r , r) ≤SW(i′, i′−r , r)+SW(i,
i−r̄ , r̄).
InOPT, if bi ≥ pr/cr , we have ui+pi ≤ vi(r)+

∑cr
k=2 vi(ik )

≤(1+cr/βc∗)·vi(r) ≤(1+cr/βc∗)·(SW(i′, i′−r , r)+SW(i, i−r̄ ,
r̄)). If bi < pr/cr , we have ui+ pi = 0 ≤(1+cr/βc∗)·(SW(i′,
i′−r , r)+SW(i, i−r̄ , r̄)). Because the capacity of each room
does not exceed c∗, we have

SW (OPT ) =
∑
i∈A

(ui + pi)

≤ (1+ 1/β)
∑
i∈A

(SW (i′, i′−r , r)+ SW (i, i−r̄ , r̄))

We refer to room r as agent i’s target room and room r̄ as
agent i’s stay room. In the inequality relationships, a room
will be the target room of at most c∗ agents and the stay room
of at most c∗ agents. Then, we have

SW (OPT ) ≤ (1+ 1/β)
∑
i∈A

(SW (i′, i′−r , r)+ SW (i, i−r̄ , r̄))

≤ 2c∗(1+ 1/β)
∑
r∈<

SW (i′, i′−r , r)

= 2c∗(1+ 1/β)SW (π )

Therefore, we conclude that Algorithm 4 is a
2c∗(1+1/β)-factor approximation algorithm for the restricted
case of the social welfare maximization problem with the
maximum trade volume constraint.

Algorithm 4 is not guaranteed to terminate in polyno-
mial time. Thus, we discuss how to obtain a polynomial-
time approximation algorithm based onAlgorithm 4. Inspired
by [43], we discretize the social welfare values of the feasible
allocations. First, for each possible set (i, i−r , r), we deter-
mine whether it can be included in a disjoint-set collection
that is equivalent to a feasible allocation with maximum
trade volume T. The method is invoking the algorithm that is
described in the proof of Theorem 6 to compute themaximum
trade volume T’ for the instance < A \ {i, i−r }, < \ {r} >
and determining whether the trade volume of set (i, i−r , r) is
equal to T-T’. If the trade volume of set (i, i−r , r) is equal
to T-T’, we refer to it as a ‘‘qualified set’’. Let (i∗, i∗

−r∗ , r
∗)

be the set that has the maximum social welfare among all
the qualified sets. Because the trade volume of OPT is T,
any set in OPT is a qualified set. Let (i′, i′

−r̄ , r̄) be the
set that has the maximum social welfare among the sets
in OPT. Then, SW(i∗, i∗

−r∗ , r
∗)≥SW(i′, i′

−r̄ , r̄)≥SW(OPT)/m.
Because the valuation function of each agent is nonnegative,
SW(OPT)≥SW(i∗, i∗

−r∗ , r
∗). According to Theorem 6, the set

(i∗, i∗
−r∗ , r

∗) can be found in O(mnc
∗
+3) time.

After that, we truncate the social welfare of any feasi-
ble allocation to an integer multiple of SW(i∗, i∗

−r∗ , r
∗)/L

(L=2K(1+1/β)·n and K>1). Let ISW(π )= bL·SW(π )/SW(i∗,
i∗
−r∗ , r

∗)c be the modified social welfare of allocation π .
We replace the SW(π ) in Algorithm 4 with ISW(π ). Then,
each iteration increases ISW(π ) by at least 1. Because
SW(i∗, i∗

−r∗ , r∗)≥SW(OPT)/m and 0≤SW(π )≤SW(OPT),
the modified algorithm will execute at most Lm iterations.
Because each iteration requiresO(n2) time, the running of the
while loop in the modified algorithm requires O(Lmn2) time.
Thus, running the modified algorithm requires O(Lmnc

∗
+3)

time. Because c∗ is a constant, the modified algorithm is a
polynomial-time algorithm.

If the modified algorithm does not execute a swap (i, i′)
that does not decrease the trade volume prior to its ter-
mination, we have that vi(r) ≤SW(i, i′−r , r)+SW(i′, i−r̄ ,
r̄)<SW(i′, i′−r , r)+SW(i, i−r̄ , r̄)+SW(i∗, i∗

−r∗ , r
∗)/L. Based

on the analyses that are similar to the proof of Theorem 9,
we have SW(OPT)≤2c∗(1+1/β)SW(π )+2(1+1/β)·n·SW(i∗,
i∗
−r∗ , r

∗)/L. Because L=2K(1+1/β)·n (K>1) and SW(i∗, i∗
−r∗ ,

r∗)≤SW(OPT), we have SW(OPT)≤2c∗(1+1/β)(1+1/(K-
1))SW(π ). Let K=2c∗(1+1/β)/ε + 1 (0< ε <1). Then,
we have the following conclusion:
Corollary 3: The modified algorithm is a polynomial-

time 2c∗(1+1/β)+ε-factor approximation algorithm for the
restricted case.

When the capacity of each room does not exceed 2 (i.e.,
c∗ =2) and the agents prefer rooms, i.e., for any agent i, j∈A
and any room r ∈ <, vi(r) ≥ vi(j) with β = 1/2, the modified
algorithm is a 12+ε-factor approximation algorithm for the
restricted case.

VI. ROOMMATE STABILITY AND ROOM ENVY-FREENESS
In this section, we investigate how to find a 2-person
weakly stable or room envy-free allocation with a social
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welfare guarantee. The proposed notion of stability is a vari-
ant of ‘‘exchange stability’’ in the traditional stable room-
mate problem [11], [12], in which a matching is exchange
stable if no pair of agents who live in different rooms desire
to switch their rooms. Based on the ‘‘exchange stability’’,
Chan et al. [1] defined an allocation as 2-person stable if
no pair of agents (i, j) who live in different rooms can
increase both their utilities via swapping. They showed that
determining whether a specified room allocation instance
admits a 2-person stable allocation is NP-hard. They also
proposed 4-person stability: an allocation is 4-person stable
if no pair of agents (i, j) who live in different rooms can
increase the utilities of all 4 agents in the two rooms via swap-
ping. They assumed that the capacity of each room is two.
Comparing with 4-person stability, the proposed 2-person
weak stability is stronger. Namely, a 2-person weakly stable
allocation must be a 4-person stable allocation, but a 4-person
stable allocation is typically not a 2-person weakly stable
allocation.

Inspired by [1], we propose a room allocation algorithm
that is presented as Algorithm 5. In the algorithm, first,
we use Algorithm 1 to find an allocation (Algorithm 5, line
1). Second, if there is a 2-person weakly stable blocking pair
(i, j) in the current allocation, we swap the room allocations
between agents i and j. The check and adjustment are repeated
until there is not a 2-person weakly stable blocking pair in the
allocation (Algorithm 5, lines 2–4). Finally, if an agent i does
not satisfy the budget constraint, we set πi to ∅ (Algorithm 5,
lines 5–9).

Algorithm 5 Compute the Roommate Stable Allocation
Require: A, <
Ensure: the roommate stable allocation π ’
1: Find an allocation π ’ based on Algorithm 1
2: while there is a 2-person weakly stable blocking pair (i, j)

in current allocation π ’ do
3: Swap the room allocations between agents i and j
4: end while
5: for each agent i∈A do
6: if bi < pπi /cπi then
7: πi← ∅

8: end if
9: end for
10: return π ’

Theorem 10: If the capacity of each room does not
exceed a constant c∗ >0, Algorithm 5 can find a 2-person
weakly stable allocation with a social welfare that is at
least 1/((c∗+2)/2 + ε) of the optimal value in polynomial
time.
Proof: According to Theorem 2, allocation π ’ has a social

welfare that is at least 1/((c∗ + 2)/2 + ε) of the optimal
value after running line 1 of Algorithm 5. According to the
definition of a 2-personweakly stable blocking pair, the social
welfare does not decrease in the allocation adjustment pro-
cess. Therefore, the social welfare of the final allocation

of Algorithm 5 is at least 1/((c∗ + 2)/2 + ε) of the opti-
mal value. In the algorithm, allocating agent i to a room r
with bi < pr/cr is considered equivalent to not allocating
agent i. Thus, the operations in lines 5-9 of Algorithm 5
do not decrease the social welfare. Because the capacity
of each room does not exceed c∗, each agent has at most
c∗(m+1)·max1≤cr≤c∗

( n−1
cr−1

)
< c∗(m+1)nc

∗
−1 possible allo-

cation states. When we swap the room allocations of a 2-
person weakly stable blocking pair (i, j), the utilities of
agents i and j increase and the other agents’ utilities do not
decrease. Therefore, the utility of each agent i ∈A increases
at most c∗(m+1)nc

∗
−1 times. Moreover, the allocation adjust-

ment process requires at most c∗(m+1)nc
∗

iterations. Because
each iteration requires O(n2) time, the allocation adjustment
process requires O(c∗(m+1)nc

∗
+2) time. Since the running

of Algorithm 1 requires time that is polynomial in c∗mnc
∗

,
we conclude that Algorithm 5 will terminate in time that is
polynomial in c∗mnc

∗

. Because c∗ is a constant, the proposed
algorithm is a polynomial-time algorithm for the restricted
case. Moreover, the proposed algorithm can be regarded as
having a constant approximation ratio with respect to the
maximum social welfare for the restricted case.
Theorem 11: If the capacity of each room does not exceed

a constant c∗ >0, we can find a 2-person weakly stable
allocation that has the maximum trade volume in polynomial
time.
Proof: The proposed algorithm is similar to Algorithm 5,

except that we initially find an allocation that maximizes the
trade volume via the algorithm in the proof of Theorem 6
in O(n3) time. According to the definition of a 2-person
weakly stable blocking pair, swapping the room allocations
between the blocking pair agents does not decrease the utility
of any agent, including the room owner. Thus, swapping
the room allocations between the blocking pair agents does
not decrease the trade volume. Based on the analyses in
the proof of Theorem 10, the algorithm will terminate in
O(c∗(m+1)nc

∗
+2) time. Thus, the algorithm will output a

2-person weakly stable allocation that maximizes the trade
volume in O(c∗(m+1)nc

∗
+2) time. Because c∗ is a constant,

the proposed algorithm is a polynomial-time algorithm for the
restricted case.

Envy-freeness is a stronger solution concept than stability.
A person envy-free allocation in which each agent would not
like to switch rooms with any other agent must be a 2-person
stable allocation. Finding a person envy-free allocation [1]
is NP-hard. Chan et al. [1] introduced a weaker concept
– room envy-freeness. They showed that if each room can
contain at most two agents and the room prices are adjustable,
a room envy-free allocation can be found in polynomial time.
However, in real rental market, the room prices are typically
determined by the room owner in advance, according to the
current market situation. In other words, we typically need to
face the room allocation scenario in which the room prices are
specified in advance. Therefore, we investigate the computa-
tional complexity of determining whether an instance with
specified room prices admits a room envy-free allocation.
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Theorem 12: Determining whether an instance with spec-
ified room prices admits a room envy-free allocation is
NP-hard.

Proof:Given an instanceG=(X∪Y∪Z,E) of the tripartite
triangle partitioning problem with |X| = |Y| = |Z| =n,
we create an agent i for each vertex ui ∈X∪Y and create
a vertex room rz for each vertex uz ∈Z. For two vertices
ui ∈X∪Y and uz ∈Z, if (ui, uz)∈E, set vi(rz) =c>0; otherwise,
set vi(rz) =c/2. For two vertices ui, uj ∈X∪Y, if (ui, uj)∈E,
set vi(j) = vj(i) =c/2; otherwise, set vi(j) = vj(i) =0. We set
bi =c/2 for each agent i and set pr =c for each room r. We use
A to represent the agent set and< to represent the vertex room
set. After that, for any two vertices ui, uj ∈X∪Y, if (ui, uj)/∈E,
we create a room rij with price c/4 and set vi(rij) = vj(rij) =c.
For any agent i′ ∈A\{i, j}, set vi′ (rij) = 0. We refer to these
rooms as edge rooms. In addition, we create a common room
rc with price c/4. For each agent i∈A, set vi(rc) =5c/8. Let
<1 (|<1| =m) be the room set that includes all the edge
rooms and the common room. Finally, we create 2m agents
with budget c/4. We use A1 to represent the agent set. For
each agent k∈ A1, set vk (k ′) =0 for each agent k ′ 6= k ,
vk (r̄) =5c/8 for each r̄ ∈ <1 and vk (r) =0 for each r∈ <.
Let A′ = A ∪ A1 and <′ = < ∪ <1. We set the capacity of
each room in <′ as two. The reduction requires O(n4) time.
We regard not allocating agent i as allocating roommate pair
(i, ∅) to room ∅. If no agents are allocated to room r, we regard
this as allocating roommate pair (∅, ∅) to room r.
The⇐ direction: For instance < A′, <′ >, a room envy-

free allocation must ensure that each agent is allocated to
one room. This is because if an agent i is not allocated to
any room, the utility of roommate pair (i, ∅) is 0. However,
if roommate pair (i, ∅) is allocated to room rc, its utility
will become 5c/8-c/8=c/2>0. Thus, roommate pair (i, ∅) will
envy the roommate pair that is allocated to room rc. Because
of the budget constraints, each agent k∈ A1 is allocated to one
room r̄ ∈ <1 and each agent i∈A is allocated to one room
r∈ < in a room envy-free allocation. Because all the agents
are allocated, a room envy-free allocation can be represented
as n+m triples. For a triple (i, j, r) (r∈ <), if there is no edge
between vertices ui and uj that correspond to agents i and j
respectively, the utility of roommate pair (i, j) does not exceed
2c-c=c. However, if roommate pair (i, j) is allocated to the
edge room rij, the utility will become 2c-c/4=7c/4>c. Then,
roommate pair (i, j) envies the roommate pair that is allocated
to room rij. For a triple (i, j, r) (r∈ <), if there is no edge
between vertices ui (or uj) and ur that correspond to agent i
(or j) and room r respectively, the utility of roommate pair (i,
j) does not exceed vi(j) + vj(i)+c/2+c-c= vi(j) + vj(i)+c/2.
In contrast, if roommate pair (i, j) is allocated to room rc,
the utility will become vi(j)+vj(i)+c> vi(j)+vj(i)+c/2. Then,
roommate pair (i, j) envies the roommate pair that is allocated
to room rc. Based on the above analyses, we conclude that
if agents i and j (i, j∈A) are allocated to room r∈ < in a
room envy-free allocation, the corresponding vertices ui, uj
and ur must be able to construct a triangle. Namely, if the
instance < A′, <′ > admits a room envy-free allocation,

G=(X∪Y∪Z, E) can be partitioned into n vertex-disjoint
triangles.

The⇒ direction: IfG=(X∪Y∪Z, E) can be partitioned into
n vertex-disjoint triangles {< ui, uj, ur >}, for each triangle
< ui, uj, ur >, we allocate the corresponding agents i and
j to the corresponding vertex room r. Then, the utility of
roommate pair (i, j) is 2c, which is the maximum utility that
it can obtain in a room r∈ <∪{rc}. Moreover, for each edge
room r̄ ∈ <1\{rc}, vi(r̄)+vj(r̄) is at most c because there is an
edge between vertices ui and uj. Then, the utility of roommate
pair (i, j) is at most 7c/4<2c when they are allocated to an
edge room. Thus, roommate pair (i, j) does not envy any other
roommate pair. After that, we randomly allocate all the agents
in A1 to the rooms in <1. Because each agent k∈ A1 has the
same valuation function and vk (r̄) =5c/8> vk (r) =0 for
∀r̄ ∈ <1 and ∀r∈ <, no matter how they are allocated
to rooms in <1, they do not envy any roommate pair in a
room r∈ < and do not envy each other. Therefore, the final
allocation is room envy-free.

VII. EXPERIMENTAL EVALUATION
In the section, we mainly evaluate the solution qualities of
the proposed algorithms based on simulation experiments.
In the experiments, we randomly generate the agent valua-
tions, agent budgets, room prices and room capacities. More
precisely, the agent valuations obey the uniform distribution
in [-10, 10]. The agent budgets and room prices obey the
uniform distribution in [0, 10] and [0, 50] respectively. The
room capacities obey the uniform distribution in [1,C], where
C (C>1) is a constant.
To evaluate the performance of the proposed algorithms

(i.e., the exact algorithm, SPBA, LSBA, LSBAMC), we com-
pare them with the following approaches.
• Double-matching approach (DMA): in this approach,
first, we transform the problem instance to an instance
where the capacity of each room is 2. More precisely,
we check the capacity of each room. If the capacity of
a room is odd, we add a virtual bed to the room and
add a virtual agent to the instance. For a virtual agent i,
any agent j and any room r, we set vi(j)=vj(i)=vi(r)=0.
After that, we divide each room into several sub-rooms,
each of which can contain 2 agents. Let room r̄ be a
sub-room of room r. For an agent i, we set vi(r̄)=vi(r).
Second, we adopt the algorithm of Chan et al. [1] to find
an allocation π ′ for the agents. Finally, if a real agent
i ∈A is allocated to a real bed that belongs to a sub-room
of room r with bi ≥ pr /cr in π ′, we allocate agent i
to room r. Otherwise, we do not allocate agent i to any
room.

• Popular-matching approach (PMA): in this approach,
first, we adopt the algorithm of Paluch [26] to find an
allocation π ′ for the agents. Second, if an agent i ∈A is
allocated to a room r with bi ≥ pr /cr in π ′, we allocate
agent i to room r. Otherwise, we do not allocate agent i
to any room.

• Greedy approach (Greedy): in this approach, we allo-
cate each agent i to the room that can maximize ui+pi.
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FIGURE 3. The comparisons with the change of agent number.

In the LSBA (or LSBAMC) algorithm, we only execute
the swaps that can increase SW(π ) by at leastW’/1000 (or the
swaps that can increase SW(π ) by at leastW’/1000 and do not
decrease the trade volume), where W’ is computed based on
Algorithm 3. We conduct the experiments at a computer with
Intel E5-2640 v4 CPU (2.40GHz) and 32GB RAM. In the
experiments, the mixed-integer linear programming is solved
using CPLEX 12.5. Each experiment comprises 100 runs to
obtain the average results.

Fig. 3 shows the comparisons of the approaches with the
change of agent number. In Fig. 3(a), the room number is
5 and the C is 5. In Fig. 3(a), the ordinate is the ratio
between the social welfare SW(π ) of the allocation π that
is output by an approach and the value of the optimal solu-
tion, i.e., SW(OPT). For convenience, we refer to the ratio
as social welfare ratio. In Fig. 3(a), we compare all the
approaches. From Fig. 3(a), we find that the social welfare
ratios of both the SPBA algorithm and the LSBA algorithm
are larger than 0.9 all the time. Moreover, the SPBA algo-
rithm and the LSBA algorithm outperform the other non-
optimal approaches. Comparing with the LSBA algorithm,
the LSBAMC algorithm has a smaller social welfare ratio.
This is because the LSBAMC algorithm only executes the
swaps that do not decrease the trade volume in the local search
process. However, the LSBA algorithm does not consider the
constraint of trade volume in the local search process. In spite
of this, the LSBAMC algorithm outperforms the Double-
matching approach (DMA), the Popular-matching approach
(PMA) and the Greedy approach (Greedy) when the agent
number is larger 6.

In Fig. 3(b), the room number is 25 and the C is 10.
Because the social welfare maximization problem is NP-
hard, the exact (optimal) algorithm is not applicable to
large-scale instances. Moreover, because the SPBA algorithm
will enumerate each possible allocation state of each room,
the SPBA algorithm is not applicable to the instances that

include rooms with large capacities. Thus, we only compare
the LSBA algorithm, the LSBAMC algorithm, the Double-
matching approach (DMA), the Popular-matching approach
(PMA) and the Greedy approach (Greedy) in Fig. 3(b).
In Fig. 3(b), the ordinate is the social welfare SW(π )
of the allocation π that is output by an approach. From
Fig. 3(b), we find that both the LSBA algorithm and
the LSBAMC algorithm outperform the Double-matching
approach (DMA), the Popular-matching approach (PMA)
and the Greedy approach (Greedy). Moreover, we find that
when the instance scale is relatively large, the performance
of the LSBAMC algorithm is close to that of the LSBA
algorithm.

Fig. 4 shows the comparisons of the approaches with the
change of room number. In Fig. 4(a), the agent number is
15 and the C is 5. In Fig. 4(a), the ordinate is social welfare
ratio and we compare all the approaches. From Fig. 4(a),
we find that the SPBA algorithm, the LSBA algorithm and
the LSBAMC algorithm outperform the Double-matching
approach (DMA), the Popular-matching approach (PMA)
and the Greedy approach (Greedy). Moreover, the social
welfare ratio of the LSBA algorithm is larger than 0.9 all the
time. Not only that, we also find that the social welfare ratio
of the LSBAMC algorithm increases in the increasing process
of the room number.

In Fig. 4(b), the agent number is 150 and the C is 10.
Because the exact (optimal) algorithm is not applicable
to large-scale instances and the SPBA algorithm is not
applicable to the instances with large room capacities,
we only compare the LSBA algorithm, the LSBAMC algo-
rithm, the Double-matching approach (DMA), the Popular-
matching approach (PMA) and the Greedy approach
(Greedy) in Fig. 4(b). In Fig. 4(b), the ordinate is the social
welfare SW(π ) of the allocation π that is output by an
approach.When the room number becomes larger, we usually
need to divide the agents into more roommate groups.
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FIGURE 4. The comparisons with the change of room number.

FIGURE 5. The comparisons with the change of the capacity upper-bound of each room.

This usually makes each agent have fewer roommates. There-
fore, the social welfare of each algorithm in Fig. 4(b)
decreases with the increase of the room number. In spite
of this, both the LSBA algorithm and the LSBAMC algo-
rithm outperform the Double-matching approach (DMA),
the Popular-matching approach (PMA) and the Greedy
approach (Greedy). Moreover, we can also find that the per-
formance of the LSBAMC algorithm becomes closer to that
of the LSBA algorithm with the increase of the room number.

Fig. 5 shows the comparisons of the approaches with
the change of the capacity upper-bound of each room.
In Fig. 5(a), the agent number is 15 and the room number
is 5. In Fig. 5(a), the ordinate is social welfare ratio and
we compare all the approaches. From Fig. 5(a), we find
that the social welfare ratios of both the SPBA algorithm
and the LSBA algorithm are larger than 0.9 all the time.
Although the LSBAMC algorithm has a smaller social wel-
fare ratio than the LSBA algorithm, it still outperforms the

Double-matching approach (DMA), the Popular-matching
approach (PMA) and the Greedy approach (Greedy).

In Fig. 5(b), the agent number is 150 and the room
number is 25. Because the exact (optimal) algorithm is
not applicable to large-scale instances and the SPBA
algorithm is not applicable to the instances with large
room capacities, we only compare the LSBA algorithm,
the LSBAMC algorithm, the Double-matching approach
(DMA), the Popular-matching approach (PMA) and the
Greedy approach (Greedy) in Fig. 5(b). In Fig. 5(b), the ordi-
nate is the social welfare SW(π ) of the allocation π

that is output by an approach. From Fig. 5(b), we find
that both the LSBA algorithm and the LSBAMC algo-
rithm outperform the Double-matching approach (DMA),
the Popular-matching approach (PMA) and the Greedy
approach (Greedy). Moreover, we can also find that the
performance of the LSBAMC algorithm becomes closer to
that of the LSBA algorithm with the increase of the C.
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According to the experimental results, we find that the
LSBA algorithm can produce near-optimal solutions. More-
over, the performance of the LSBAMC algorithm is close to
that of the LSBA algorithm when the instance scale is rela-
tively large. This illustrates that the LSBAMC algorithm can
have good performance when the instance scale is relatively
large, although it considers the constraint of trade volume.

VIII. CONCLUSIONS AND FUTURE WORK
This paper investigates the room allocation problem with
capacity diversity and budget constraints. We mainly focus
on finding an allocation that maximizes the social welfare.
First, this paper demonstrates that finding an allocation that
maximizes the social welfare is NP-hard, even if only one
room’s capacity is larger than 1 and the other rooms’ capac-
ities are all 1. Second, this paper presents a polynomial-
time (c∗ + 2)/2+ε-factor approximation algorithm for the
case in which the capacity of each room is bounded by a
constant c∗. Third, this paper demonstrates that there is no
polynomial-time c∗/2-factor approximation algorithm for the
social welfare maximization problem unless P=NP, where
c∗ is the capacity upper-bound of each room. Fourth, this
paper proposes a heuristic algorithm based on local search
for the general case in which the capacity of each room is not
bounded by a constant. The experimental results demonstrate
that the proposed algorithm can produce near-optimal solu-
tions. Fifth, this paper shows that a 2-person weakly stable
allocation with a provable social welfare guarantee can be
found in polynomial time if the capacity of each room is
bounded by a constant c∗. Finally, this paper proves that it
is NP-hard to determine whether an instance with specified
room prices admits a room envy-free allocation. In future
work, we will investigate the room allocation with couples,
in which a couple must be allocated to the same room.

REFERENCES
[1] P. H. Chan, X. Huang, Z. Liu, C. Zhang, and S. Zhang, ‘‘Assignment

and pricing in roommate market,’’ in Proc. 13th AAAI Conf. Artif. Intell.
(AAAI), Phoenix, AZ, USA, Feb. 2016, pp. 446–452.

[2] G. Huzhang, X. Huang, S. Zhang, and X. Bei, ‘‘Online roommate allo-
cation problem,’’ in Proc. 27th Int. Joint Conf. Artif. Intell. (IJCAI),
Melbourne, Australia, Aug. 2017, pp. 235–241.

[3] D. Gale and L. S. Shapley, ‘‘College admissions and the stability of
marriage,’’ Amer. Math. Monthly, vol. 69, no. 1, pp. 9–15, Jan. 1962.

[4] R.W. Irving, ‘‘An efficient algorithm for the ‘stable roommates’ problem,’’
J. Algorithms, vol. 6, no. 4, pp. 577–595, 1985.

[5] R. Bredereck, J. Chen, U. P. Finnendahl, and R. Niedermeier, ‘‘Stable
roommate with narcissistic, single-peaked, and single-crossing prefer-
ences,’’ in Proc. 5th Int. Conf. Algorithmic Decision Theory. Springer,
Luxembourg, U.K., Oct. 2017, pp. 315–330.

[6] T. Feder, N. Megiddo, and S. A. Plotkin, ‘‘A sublinear parallel algorithm
for stable matching,’’ Theor. Comput. Sci., vol. 233, nos. 1–2, pp. 297–308,
2000.

[7] D. Gusfield and R.W. Irving, The Stable Marriage Problem: Structure and
Algorithms. Cambridge, MA, USA: MIT Press, 1989.

[8] R. W. Irving and D. F. Manlove, ‘‘The stable roommates problem with
ties,’’ J. Algorithms, vol. 43, no. 1, pp. 85–105, 2002.
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