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ABSTRACT In this paper, an RF low noise amplifier (LNA) with self-recovery capability has been designed
and implemented. A degradation model of hot carrier injection (HCI) of n-channel MOSFETs is proposed
to simulate the aging process of the RF circuits, and a method for monitoring the HCI degradation in the RF
circuits has been developed. Self-recovery mechanism of the LNA is triggered automatically by monitoring
the HCI degradation to compensate for the HCI degradation. With the self-recovery capability, the LNA can
maintain its performance under HCI stress over time. The proposed LNA has been fabricated with a 0.13µm
CMOS technology and the self-recovery capability has been experimentally demonstrated.

INDEX TERMS LNA, HCI, self-recovery, self-monitoring, built-in compensation, degradation model.

I. INTRODUCTION
In recent years, the popularity of mobile communications
has promoted the rapid development of RF circuits. At the
same time, chip manufacturing technologies are also rapidly
advancing, and more and more RF circuits and digital circuits
are integrated on the same chip. As a result, reliability of the
RF circuits has become an important concern.

With decrease of transistor geometry size and increase
of operating frequency, aging problems of the RF circuits
have become more and more severe. Many previous studies
have discussed various aging mechanisms and their nega-
tive impacts on the circuits. Common aging mechanisms for
MOSFETs include hot carrier injection (HCI) [1]–[3], oxide
breakdown (OBD) [4]–[6] and negative bias temperature
instability (NBTI) [7]–[9]. The influence of HCI on CMOS
low noise amplifier (LNA) performance was analyzed in [10].
The authors concluded that HCI reduces the transconduc-
tance of transistors, leading to decrease of the gain of LNA
and increase of the noise figure. The influence of NBTI on
LNA and Voltage Controlled Oscillator (VCO) were reported
in [11]. The above research shows that the performance
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parameters of the RF circuits can be significantly affected by
HCI and NBTI.

Models for the aging mechanisms of RF circuits have been
reported in literature in detail. In this paper, we employ these
models to design a 2.4 GHz LNA with self-recovery capa-
bility using the self-monitoring and built-in compensation
technology. Once the monitoring circuit detects noticeable
performance degradation of the RF circuit, the performance
recovery of the RF circuit is realized by a built-in compensa-
tion circuit. The self-monitoring circuit and built-in compen-
sation circuit should be designed together with the RF circuit
to facilitate the degradation monitoring and performance
recovery.

A suitable HCI degradation model is employed to describe
the degradation of the key transistors used in the LNA.
Bymonitoring the DC status of the LNA, it can be determined
whether to start the biasing or transconductance (gm) compen-
sation process. With the self-recovery capability, the perfor-
mance of the LNA can be maintained after a long time of HCI
stress.

In this paper, we will present the design of the
power-constrained simultaneous noise and input match-
ing (PCSNIM) LNA followed by the techniques for the
HCI degradation monitoring and self-recovery realization.
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FIGURE 1. Schematic of PCSNIM LNA with a 50 � output buffer.

TABLE 1. Specifications of low noise amplifier.

FIGURE 2. Simulation results of the PCSNIM LNA.

Experimental results are shown to prove the effectiveness of
the methodology proposed in this paper.

II. LNA DESIGN
The LNA topology is presented in Figure 1. The power-
constrained simultaneous noise and input matching
(PCSNIM) technique is used [12]. The inductive degener-
ated cascode structure is commonly used in narrow band
applications [13], [14]. It is composed of cascoded transistors
M1 andM2 to obtain a high gain, a Lload Cload tank resonator
to tune the gain at 2.4 GHz. Inductors Lg and Ls and capacitor
Cex are used to provide the input match; while a 50 � output
buffer is used for measurement [15]–[17].

Using the above topology, the 50� input match is obtained
without adding noise to the design [18]. This is realized by
carefully selecting the input inductor Lg, the degenerated
inductor Ls, the extra capacitor Cex and transistor M1 with
desirable transconductance gm and gate-source capacitorCgs.
Therefore, in the PCSNIM LNA, by adding an extra capaci-
tor Cex , the simultaneous noise and input matching (SNIM)
can be achieved at a lower level of power dissipation.

Table 1 and Figure 2 present the simulation results of
the LNA. The simulator used for the simulation is Spectre RF.

As can be seen in Figure 2, the LNA shows an input return
loss (S11) of −16 dB, gain (S21) of 19.8 dB, output return
loss (S22) of −12 dB and noise figure (NF) of 1.05 dB,
respectively, at 2.4 GHz.

III. SELF-RECOVERY CIRCUIT DESIGN
The LNA with self-recovery capability based on the degra-
dation monitoring and compensation technique is described
in this section. With this technique, the HCI degradation of
transistors is monitored, and a mechanism to compensate
for the gm shift caused by the degradation is employed to
maintain the LNA performance.

A. MODEL OF NMOS AGING BY HCI
The continuous development of CMOS technology inevitably
leads to a variety of reliability problems, such as hot
carrier injection (HCI), which is prominent in NMOS
devices [19]–[22]. When the gate of NMOS is switched on,
HCI generates interface traps at the Si/SiO2 interface near
the drain terminal, which leads to an increase in the thresh-
old voltage (Vth) of the MOSFETs and a decrease in the
MOSFETs’ channel mobility µn. The degradation may lead
to a significant decrease in the transconductance gm of the
transistors concerned. As thematching and gain of RF circuits
are significantly affected by the drain current Id and gm of
the transistors, the effects of HCI on RF circuits are signif-
icant. The influence of HCI on RF characteristics of single
MOSFET has been studied in literatures [6], [23].

HCI can be physically described as charge generation in
the region near the Si/SiO2 interface. A previous study [24]
proposed a general theoretical framework, namely the R-D
model, to explain this effect. The model of threshold voltage
shift1Vth and carrier mobility µn as a function of HCI stress
time can be expressed as follows:

1Vth =
q
Cox

K
√
Qiexp(

Eox
Eo

)exp(−
ϕit

qλEm
)tn (1)

µn = µn0/(1+ αNit )m (2)

where Nit = 1VthCox/q is the number of the charged inter-
face states; Qi = Cox(Vgs − Vth) is the inversion charge;
Eox = (Vgs − Vth)/tox is a vertical electric field (due to Vgs)
in the gate oxide; Em = (Vds − Vdsat )/l is a transverse
electric field in the channel; Eo is the activation energy; ϕit is
the minimum energy required for thermal electron collision
ionization; K is a fitting parameter; n is the time exponent;
and m is a fitting parameter for carrier mobility.

Based on the study reported in [25] we have developed
a more precise degradation model of Vth and µn. From the
model Id can be expressed as:

Id = θµn0Cox
W
L
(Vgs − (Vth +1Vth))2 (3)

θ = 1/(1+ αNit )m (4)

θ is the attenuation factor of carrier mobility.
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Id can further be expressed as:

Id = µn0Cox
W
L
(Vgs − (Vth +1Vth))2

−(1− θ )µn0Cox
W
L
(Vgs − (Vth +1Vth))2 (5)

= Id0 − (1− θ )Id0 (6)

= Id0 −1Id0 (7)

HCI stress causes an increase in the threshold voltage Vth,
leading to a decrease in the drain current. 1Vth can be seen
as a ‘‘voltage source’’ in theModeling language ‘‘Verilog-A’’.
As can be seen in Equation (7), the degradation of µn could
be described as a current source in ‘‘Verilog-A’’, which is
affected by θ and Id0. As shown in Figure 3, the aging
model can be built in the SPICE environment for simulation.
The simulators used for the simulation of the LNA degrada-
tion with the aging model are Spectre RF and AMS (Ana-
log Mixed-Signal Simulation). From the aging simulation,
the effect of transistor degradation on LNA performance can
be revealed.

FIGURE 3. Circuit implementation of the aging model.

FIGURE 4. Simulated degradation of gm and drain current (Id ) versus
aging time.

Figure 4 shows the simulation results of HCI degrada-
tion of transconductance gm and drain current Id of transis-
tor M1 used in the LNA. As observed in Figure 4, due to
the HCI effect, gm and Id undergone a large degradation.

FIGURE 5. Simulated performance degradation of the LNA. S21, S11, NF
and S22 of the LNA due to HCI effect after 1 and 3 years of operation.

gm decreases by more than 30% while Id decreases by more
than 50% for HCI stress time of 2× 108 seconds.

Figure 5 shows the simulation results of the performance
parameters of the LNA at 2.4 GHz frequency after 1-year and
3-year HCI stress. The gain (S21) of LNA decreases; the noise
figure (NF) increases; and the input return loss (S11) increases
and the output return loss (S22) remains constant. After 3-year
degradation, the S21,NF and S11 degraded 1.1 dB, 0.2 dB and
8 dB respectively. Overall, the performance of the 2.4 GHz
LNA may significantly degrades under HCI stress.

B. MONITORING AND CALIBRATION TECHNIQUE
The self-recovery capability of the LNA is realized by mon-
itoring, calibration and compensation, as shown in Figure 6.
Themonitoring circuit monitors the Id degradation and works
together with the calibration circuit to control the compensa-
tion switch with the objective to keep Id constant.

The self-recovery LNA has working mode and recovery
mode as shown in Figure 7. During operation, the monitoring
circuit should be activated periodically. In the working mode,
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FIGURE 6. Structure of the self-recovery LNA.

FIGURE 7. Workflow of the self-recovery mechanism.

the monitoring and calibration circuit are switched off and the
LNA works normally.

In the recovery mode, the current detector monitors the
biasing current of LNA, Imeas. The current detector is
designed and implemented as shown in Figure 8. This current
detector requires a small series resistance on the LNA current
path. The value of the resistance must be low enough to
prevent a significant impact on the performance of the LNA.
The series resistance of the current detector is 1 �, and the
bias current Id of the LNA is 6.4 mA under normal working
conditions. Therefore, the voltage drop on the series resis-
tance R10 is 6.4 mV, which is much smaller than the power
supply voltage of 1.2 V. The influence of the series resistance
can be neglected. Vbias_p and Vbias_n can turn off the current

FIGURE 8. Schematic of the proposed current detector.

FIGURE 9. Output current of the current detector versus Id .

FIGURE 10. Schematic of the proposed current comparator.

monitor under normal working condition. The characteristics
of the current detector is shown in Figure 9. Imeas is a linear
function of Id when Id is between 3.2 mA and 10.31 mA.
The structure of current comparator is shown Figure 10.

The current comparator determines whether Id is normal by
comparing Imeas with Iref _high and Iref _low. We set the normal
working range of the current comparator to be within±10%.
Two reference currents Iref _high and Iref _low for the current
comparator represent ±10% variation from the measured
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FIGURE 11. Output of the current comparator versus Id .

FIGURE 12. PCSNIM LNA with biasing compensation.

FIGURE 13. Circuit schematic of biasing compensation.

current Imeas, respectively. When Iref _low ≤ Imeas ≤ Iref _high,
LNA is considered to be in the normal state. The compen-
sation mechanism will be triggered if the current was out of
the range, i.e., Imeas < Iref _low or Imeas> Iref _high. Simulation
result of the current comparator is shown in Figure 11. When
Imeas < Iref _low, Id_low_sign is set to 1.2 V. On the other
hand, Id_high_sign is set to 1.2 V when Imeas > Iref _high.

C. COMPENSATION
A biasing compensation circuit (Figure 12), which adjusts
the biasing current and gm of transistor M1 by adjusting
the biasing voltage of transistor M1, and thus realizing the
performance compensation. The biasing circuit is shown in
Figure 13. It consists of a current mirror controlled by a refer-
ence current plus switch. By gradually turning on the current
mirrorM31-M36, a biasing current change of 1-1.97 times can

FIGURE 14. DC current Id versus control bits under normal operation
state.

FIGURE 15. Circuit schematic of transistor compensation.

be achieved. We use the M31-M36 current mirrors according
to the 6-bit binary code. The M31 weight is the largest, and
the M36 weight is the smallest. A binary-weighted current
source can determine the total biasing current. The simulation
of biasing current is shown in Figure 14.

The biasing compensation has a limit. It can only com-
pensate for the shift of the threshold voltage, but it cannot
compensate for the decrease of the carrier mobility. With the
transistor aging, the biasing voltage increases progressively,
causing the static operating point of the transistor enter into
the unsaturated region. Then the biasing method cannot be
used for compensation. In this case, the method of transistor
replacement is used in this work. When the biasing compen-
sation fails to compensate the current to the normal level,
the replacement transistor will be turned on, and thus the per-
formance of LNAwill be compensated. The circuit schematic
of the transistor compensation is shown in Figure 15. At the
beginning, transistorsM1 andM2 are on, whileM38 andM39
are off. When the switch of the transistor compensation is
turned on,M1 andM2 are off, whileM38 andM39 are on. The
simulation result of the LNA with the transistor replacement
compensation circuit is shown in Figure 16. The transistor
replacement compensation circuit almost has no effect on the
performance of the LNA.

The collaborative workflow of monitoring, calibration and
compensation is shown in Figure 7. The calibration circuit
will select the best control bits for the compensation circuit to
ensure the LNA is in the normal state. The simulation results
of the LNA biasing current Id and gm of transistor M1 are
shown in Figure 17. As can be seen in Figure 17, gm and Id
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FIGURE 16. Simulated results of LNA without and with transistor
compensation.

FIGURE 17. Simulated results of gm and Id versus aging time with
compensation.

are almost constant, and no significant degradation occurs
when the compensationmodule is in operation. The simulated
performance of the LNA is shown in Figure 18. S21 and
NF remain 19.8 dB and 1.05 dB respectively. S11 fluctuates
between −16 dB and −14 dB. To summarize, S11, S21, and
NF of LNA do not deteriorate significantly after the monitor-
ing recovery circuit turns on.

IV. MEASUREMENT RESULTS
The proposed self-recovery capability was verified on a
2.4 GHz CMOS LNA manufactured with a 130 nm CMOS
technology. Figure 19 shows the die photograph of the LNA
with the monitoring and self-recovery circuits. The chip area
is 1.14 mm×0.82 mm. Accelerated aging tests at a high tem-
perature with voltage overstress [26], [27] were carried out.
The chips were stressed with the bias voltage of 1.44 V, which
is 120% of the supply voltage, at the temperature of 120◦C

FIGURE 18. Simulated results of S21, S11 and NF versus aging time.

FIGURE 19. Die photograph of the LNA with self-monitoring and
self-recovery circuits.

for 400 hours. The measurement results of the fabricated
chips are summarized in Table 2.

The degradation and compensation experimental results of
LNA are shown in Figure 20. As can be seen in Figure 20,
after 400 hours of stress, without the compensation mecha-
nism, the parameters including S21, S11, andNF of LNA have
undergone a significant degradation, i.e., S21, S11, and NF
deteriorates 1.9 dB, 6.1 dB and 0.57 dB respectively.
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TABLE 2. Summary of chip measurements.

FIGURE 20. Experimental demonstration of the compensation effect of
the proposed self-recovery technique. S21, S11 and NF of the LNA.

However, when the monitoring and recovery circuits are
turned on, S21, S11, and NF of LNA remain almost constant,
showing the excellent self-recovery capability.

V. CONCLUSION
In this paper, we propose a LNA having the self-recovery
capability to counter the HCI degradation. The self-recovery
module has both the degradation monitoring and compensa-
tion functions. The compensation function can be triggered
automatically based on the result of the monitoring process.
With the self-recovery capability, the performance of LNA
can be maintained over time under HCI stress. This technique
has been proved to be efficient by the experiment carried out
with the LNA fabricated with a 0.13 µm CMOS process.
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